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Abstract: For a simple graph G with no isolated edges and at most, one isolated vertex, a labeling
ϕ : E(G)→ {1, 2, . . . , k} of positive integers to the edges of G is called irregular if the weights of the
vertices, defined as wtϕ(v) = ∑u∈N(v) ϕ(uv), are all different. The irregularity strength of a graph
G is known as the maximal integer k, minimized over all irregular labelings, and is set to ∞ if no
such labeling exists. In this paper, we determine the exact value of the irregularity strength and the
modular irregularity strength of fan graphs.
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strength; fan graph
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1. Introduction

It is well-known that a simple graph of an order of at least two must contain a pair of
vertices with the same degree. However, a multigraph can be irregular, that is, each vertex
can have a different degree. By Frieze et al. in [1], a natural question would be: What is the
least number of edges we would need to add to a graph in order to convert a simple graph
into an irregular multigraph?

Motivated by this question, Chartrand et al. in [2] introduced an edge k-labeling
ϕ : E(G) → {1, 2, . . . , k} of a graph G (i.e., a mapping that assigns numbers 1, 2, . . . , k to
the edges of G) with the property that the weights of the vertices are all different. The
weight of a vertex v ∈ V(G) is defined as wtϕ(v) = ∑u∈N(v) ϕ(uv), where N(v) denotes
the set of neighbors of v in G. Such labelings were called irregular assignments. Note that
as the induced vertex weights are all distinct and the only edges of a graph are labeled
with the numbers 1, 2, . . . , k this assignment can also be called vertex irregular edge k-labeling.
The irregularity strength s(G) of a graph G is known as the maximal integer k, minimized
over all irregular assignments. This means that the irregularity strength of a graph G is the
minimum k for which a graph admits an irregular assignment using the number k as the
largest edge label. If no such labeling of G exists, then s(G) = ∞. Clearly, the irregularity
strength is finite only for graphs that contain, at most, one isolated vertex and no isolated
edges. To view the irregularity strength via the degree-based problem, this graph invariant
is connected to the maximal number of edges joining any pair of vertices in an irregular
multigraph corresponding to the given graph G.

The lower bound of the irregularity strength is given in [2] in the form

s(G) ≥ max
{

ni+i−1
i : 1 ≤ i ≤ ∆

}
, (1)
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where ni denotes the number of vertices of degree i and ∆ is the maximum degree of the
graph G. For d-regular graphs of order n, the lower bound (1) reduces to

s(G) ≥ n+d−1
d . (2)

Faudree and Lehel in [3] showed that if G is a d-regular graph of order n, d ≥ 2, then
s(G) ≤

⌈ n
2
⌉
+ 9, and they conjectured that there exists an absolute constant C such that

s(G) ≤ n
d + C. For general graphs with no component of order at most 2, it is known that

s(G) ≤ |V(G)| − 1, see [4,5]. This upper bound was gradually improved by Cuckler and
Lazebnik in [6], Przybyło in [7], Kalkowski, Karonski, and Pfender in [8], and recently by
Majerski and Przybyło in [9]. Other interesting results on the irregularity strength can be
found in [1,10].

The exact value of the irregularity strength of particular families of graphs are known,
where among them are paths, complete graphs [2], cycles, most of the complete bipartite
graphs, Turan graphs [11], generalized Petersen graphs [12], circulant graphs [13], and
trees [14]. For more results, see [15].

A natural modification of an irregular assignment is a modular irregular assignment
introduced in [16]. Edge k-labeling ϕ : E(G) → {1, 2, . . . , k} of positive integers to the
edges of a graph G of order n is called a modular irregular assignment of G if the weight
function ϑ : V(G)→ Zn defined by

ϑ(v) = wtϕ(v) = ∑
u∈N(v)

ϕ(uv) (3)

is bijective and is called as the modular weight of the vertex v, where Zn is the group of
integers modulo n. The modular irregularity strength, ms(G), is defined as the minimum k
for which G has a modular irregular assignment. If there is no such labeling for the graph
G, then the value of ms(G) is defined as ∞.

In [16], a lower bound of the modular irregularity strength is established, and the
exact values of this parameter for certain families of graphs, namely paths, cycles, stars,
triangular graphs, and gear graphs are determined.

A fan graph Fn, n ≥ 2 is a graph obtained by joining all vertices of path Pn on n vertices
to a further vertex, called the centre. Thus, Fn contains n + 1 vertices, say, u1, u2, . . . , un, w,
and 2n− 1 edges, say, uiui+1, 1 ≤ i ≤ n− 1, and uiw, 1 ≤ i ≤ n.

In this paper, we determine the exact value of the irregularity strength and the modular
irregularity strength of fan graphs Fn of order n + 1. The rest of the article is organized as
follows. First we deal with the irregularity strength of fan graphs. We describe a desired
labeling scheme that proves the exact value of the irregularity strength of fan graphs.
We describe a labeling scheme with symmetrical distribution of even weights and odd
weights of vertices ui. We use this symmetrical distribution of the weights to prove that
the weight of the centre w is always greater than the weights of ui. It proves that the
labeling scheme is a desired vertex irregular edge labeling that proves the exact value of the
irregularity strength of fan graphs. Next, by modifications of this irregular assignment we
obtain labelings that imply the results for the modular irregularity strength of fan graphs.

2. Results
2.1. Fan Graphs—The Irregularity Strength

The main result of this subsection is the following theorem.

Theorem 1. Let Fn, n ≥ 3, be a fan graph on n + 1 vertices. Then,

s(Fn) =

{
3, if n = 2,⌈

n+1
3

⌉
, if n ≥ 3.
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To prove the above-mentioned result, we present several lemmas. The first lemma
gives a lower bound for the irregularity strength for the fan graphs.

Lemma 1. Let Fn, n ≥ 3, be a fan graph on n + 1 vertices. Then,

s(Fn) ≥
⌈

n+1
3

⌉
.

Proof. According to the general lower bound (1), we have that the irregularity strength
for the fan graphs s(Fn) ≥

⌈ n
3
⌉

for n ≥ 4. However, we can improve this bound. If we
consider only vertices ui ∈ V(Fn), i = 1, 2, . . . , n, and assume that an edge labeling ϕ is
the irregular assignment of Fn with s(Fn) = k, then the smallest weight of each considered
vertex is at least 2, and the largest weight admits the value at least n + 1, and at most 3k.
Thus, n + 1 ≤ 3k. This implies

k = s(Fn) ≥
⌈

n+1
3

⌉
.

For n ≥ 3, we define the edge labeling ϕ in the following way:

ϕ(uiui+1) =
⌈

i−1
3

⌉
+
⌈

i
3

⌉
, for 1 ≤ i ≤

⌊ n
2
⌋
, (4)

ϕ(un−iun−i+1) =
⌈

i−1
3

⌉
+
⌈

i+1
3

⌉
,

{
for 1 ≤ i ≤ n

2 − 1 if n is even,
for 1 ≤ i ≤ n−1

2 if n is odd,

ϕ(uiw) =

{
1, for i = 1,
2, for i = n,

ϕ(uiw) =
⌈

i−2
3

⌉
+
⌈

i
3

⌉
,

{
for 2 ≤ i ≤ n

2 + 1 if n is even,
for 2 ≤ i ≤ n−1

2 if n is odd,

ϕ(un−iw) =
⌈

i
3

⌉
+
⌈

i+1
3

⌉
,

{
for 1 ≤ i ≤ n

2 − 2 if n is even,
for 1 ≤ i ≤ n−1

2 if n is odd.

Now we prove that the above-defined labeling ϕ is an
⌈

n+1
3

⌉
-labeling, and that the

vertex weights induced by the labeling ϕ are all distinct.
The following lemma shows that under the edge labeling ϕ, the edge labels of Fn are

bounded from above.

Lemma 2. The labeling ϕ is an
⌈

n+1
3

⌉
-labeling.

Proof. Let n ≥ 3 and let ϕ be the edge labeling of the fan graph Fn defined above. Let
b =

⌈
n−1

6

⌉
+
⌈

n+1
6

⌉
and c =

⌈ n−2
6
⌉
+
⌈ n+2

6
⌉
.

If n is odd, then

max
{

ϕ(uiui+1) : 1 ≤ i ≤ n−1
2

}
= ϕ(u n−1

2
u n+1

2
) =

⌈ n−3
6
⌉
+
⌈

n−1
6

⌉
< b,

max
{

ϕ(un−iun−i+1) : 1 ≤ i ≤ n−1
2

}
= ϕ(u n+1

2
u n+3

2
) =

⌈ n−3
6
⌉
+
⌈

n+1
6

⌉
≤ b,

max
{

ϕ(uiw) : 2 ≤ i ≤ n−1
2

}
= ϕ(u n−1

2
w) =

⌈ n−5
6
⌉
+
⌈

n−1
6

⌉
< b,

max
{

ϕ(un−iw) : 1 ≤ i ≤ n−1
2

}
= ϕ(u n+1

2
w) =

⌈
n−1

6

⌉
+
⌈

n+1
6

⌉
= b.

If n is even, then

max
{

ϕ(uiui+1) : 1 ≤ i ≤ n
2
}
= ϕ(u n

2
u n

2 +1) =
⌈ n−2

6
⌉
+
⌈ n

6
⌉
≤ c,
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max
{

ϕ(un−iun−i+1) : 1 ≤ i ≤ n
2 − 1

}
= ϕ(u n

2 +1u n
2 +2) =

⌈
n−4

6

⌉
+
⌈ n

6
⌉
≤ c,

max
{

ϕ(uiw) : 2 ≤ i ≤ n
2 + 1

}
= ϕ(u n

2 +1w) =
⌈ n−2

6
⌉
+
⌈ n+2

6
⌉
= c,

max
{

ϕ(un−iw) : 1 ≤ i ≤ n
2 − 2

}
= ϕ(u n

2 +2w) =
⌈

n−4
6

⌉
+
⌈ n−2

6
⌉
< c.

It is easy to see that if n is odd, then the parameter b =
⌈

n−1
6

⌉
+
⌈

n+1
6

⌉
=
⌈

n+1
3

⌉
, and

if n is even, then the parameter c =
⌈ n−2

6
⌉
+
⌈ n+2

6
⌉
=
⌈

n+1
3

⌉
. Thus, the labeling ϕ is an

edge
⌈

n+1
3

⌉
-labeling of Fn.

The next two lemmas show the induced weights of the vertices of Fn under the edge
labeling ϕ.

Lemma 3. The weights of the vertices ui, 1 ≤ i ≤ n of the fan graph Fn, under the labeling ϕ,
admit the values

wtϕ(ui) =

{
2i, for 1 ≤ i ≤

⌈ n
2
⌉
,

2n− 2i + 3, for
⌈ n

2
⌉
+ 1 ≤ i ≤ n.

Proof. One can check that

wtϕ(u1) = ϕ(u1u2) + ϕ(u1w) = 2

and for i = 2, 3, . . . ,
⌊ n

2
⌋

we get

wtϕ(ui) =ϕ(ui−1ui) + ϕ(uiui+1) + ϕ(uiw) =
⌈

i−2
3

⌉
+
⌈

i−1
3

⌉
+
⌈

i−1
3

⌉
+
⌈

i
3

⌉
+
⌈

i−2
3

⌉
+
⌈

i
3

⌉
= 2i.

If n is even, then

wtϕ(u n
2 +1) =ϕ(u n

2
u n

2 +1) + ϕ(un− n
2 +1un− n

2 +2) + ϕ(u n
2 +1w) =

⌈ n−2
6
⌉
+
⌈ n

6
⌉
+
⌈

n−4
6

⌉
+
⌈ n

6
⌉
+
⌈ n−2

6
⌉
+
⌈ n+2

6
⌉
= n + 1.

If n is odd, then

wtϕ(u n+1
2

) =ϕ(u n−1
2

u n+1
2

) + ϕ(u
n− n−1

2
u

n− n−3
2

) + ϕ(u
n− n−1

2
w) =

⌈ n−3
6
⌉
+
⌈

n−1
6

⌉
+
⌈ n−3

6
⌉
+
⌈

n+1
6

⌉
+
⌈

n−1
6

⌉
+
⌈

n+1
6

⌉
= n + 1,

wtϕ(u n+3
2

) =ϕ(u
n− n−1

2
u

n− n−3
2

) + ϕ(u
n− n−3

2
u

n− n−5
2

) + ϕ(u
n− n−3

2
w) =

⌈ n−3
6
⌉

+
⌈

n+1
6

⌉
+
⌈ n−5

6
⌉
+
⌈

n−1
6

⌉
+
⌈

n−1
6

⌉
+
⌈ n−3

6
⌉
= n.

For i = 1, 2, . . . ,
⌊ n

2
⌋
− 2 we get

wtϕ(un−i) =ϕ(un−iun−i+1) + ϕ(un−i−1un−i) + ϕ(un−iw) =
⌈

i−1
3

⌉
+
⌈

i+1
3

⌉
+
⌈

i
3

⌉
+
⌈

i+2
3

⌉
+
⌈

i
3

⌉
+
⌈

i+1
3

⌉
= 2i + 3,

wtϕ(un) =ϕ(un−1un) + ϕ(unw) = 3.

Combining the previous, the result follows.
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Lemma 4. The centre w of the fan graph Fn, under the labeling ϕ, admits the weight

wtϕ(w) =


n(n+3)

6 + 2, for n ≡ 0, 3 (mod 6),
(n+4)(n−1)

6 + 2, for n ≡ 1, 2, 5 (mod 6),
(n+1)(n+2)

6 + 1, for n ≡ 4 (mod 6).

Proof. If we consider a triple of edges (u3s+1w, u3s+2w, u3s+3w) for s = 0, 1, 2, . . . , p, where
p =

⌊ n
6
⌋

when n ≡ 4 (mod 6) and p =
⌊ n

6
⌋
− 1 otherwise, then the sum of the labels of

edges for each triple is

3

∑
j=1

ϕ(u3s+jw) =
⌈

3s+1−2
3

⌉
+
⌈

3s+1
3

⌉
+
⌈ 3s+2−2

3
⌉
+
⌈ 3s+2

3
⌉
+
⌈ 3s+3−2

3
⌉
+
⌈ 3s+3

3
⌉
= 6s + 4.

If we consider a triple of edges (un−3r−1w, un−3r−2w, un−3r−3w) for r = 0, 1, 2, . . . , q,
where q =

⌊ n
6
⌋
− 2 when n ≡ 0, 2 (mod 6) and q =

⌊ n
6
⌋
− 1 otherwise, then the sum of

labels of edges for each such triple is

3

∑
j=1

ϕ(un−3r−jw) =
⌈

3r+1
3

⌉
+
⌈ 3r+2

3
⌉
+
⌈ 3r+2

3
⌉
+
⌈ 3r+3

3
⌉
+
⌈ 3r+3

3
⌉
+
⌈

3r+4
3

⌉
= 6r + 7.

Next we consider six cases according to the residue of n modulo 6.

Case 1. n ≡ 0 (mod 6).
Decompose the edges uiw, 1 ≤ i ≤ n

2 , into n
6 triples (u3s+1w, u3s+2w, u3s+3w) for

s = 0, 1, 2, . . . , n
6 − 1, and decompose the edges un−iw, 1 ≤ i ≤ n

2 − 3 into n
6 − 1 triples

(un−3r−1w, un−3r−2w, un−3r−3w) for r = 0, 1, 2, . . . , n
6 − 2. Then, for the weight of the centre

vertex, we get

wtϕ(w) =

n
6−1

∑
s=0

3

∑
j=1

ϕ(u3s+jw) + ϕ(u n
2 +1w) + ϕ(un− n

2 +2w) +

n
6−2

∑
r=0

3

∑
j=1

ϕ(un−3r−jw)

+ ϕ(unw) =

n
6−1

∑
s=0

(6s + 4) +
⌈ n−2

6
⌉
+
⌈ n+2

6
⌉
+
⌈

n−4
6

⌉
+
⌈ n−2

6
⌉
+

n
6−2

∑
r=0

(6r + 7)

+ 2 = n(n+3)
6 + 2.

Case 2. n ≡ 1 (mod 6).
Decompose the edges uiw, 1 ≤ i ≤ n−1

2 , into n−1
6 triples (u3s+1w, u3s+2w, u3s+3w) for

s = 0, 1, 2, . . . , n−1
6 − 1, and decompose the edges un−iw, 1 ≤ i ≤ n−1

2 , into n−1
6 triples

(un−3r−1w, un−3r−2w, un−3r−3w) for r = 0, 1, 2, . . . , n−1
6 − 1. Then for the centre vertex

weight, we have

wtϕ(w) =

n−1
6 −1

∑
s=0

3

∑
j=1

ϕ(u3s+jw) +

n−1
6 −1

∑
r=0

3

∑
j=1

ϕ(un−3r−jw) + ϕ(unw) =

n−1
6 −1

∑
s=0

(6s + 4)

+

n−1
6 −1

∑
r=0

(6r + 7) + 2 = (n+4)(n−1)
6 + 2.

Case 3. n ≡ 2 (mod 6).
Decompose the edges uiw, 1 ≤ i ≤ n

2 − 1, into n−2
6 triples (u3s+1w, u3s+2w, u3s+3w)

for s = 0, 1, 2, . . . , n−2
6 − 1, and the edges un−iw, 1 ≤ i ≤ n

2 − 4 we decompose into n−2
6 − 1
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triples (un−3r−1w, un−3r−2w, un−3r−3w) for r = 0, 1, 2, . . . , n−2
6 − 2. Then, for the weight of

the centre vertex, we get

wtϕ(w) =

n−2
6 −1

∑
s=0

3

∑
j=1

ϕ(u3s+jw) + ϕ(u n
2

w) + ϕ(u n
2 +1w) + ϕ(un− n

2 +3w) + ϕ(un− n
2 +2w)

+

n−2
6 −2

∑
r=0

3

∑
j=1

ϕ(un−3r−jw) + ϕ(unw) =

n−2
6 −1

∑
s=0

(6s + 4) +
⌈

n−4
6

⌉
+
⌈ n

6
⌉
+
⌈ n−2

6
⌉

+
⌈ n+2

6
⌉
+
⌈ n−6

6
⌉
+
⌈

n−4
6

⌉
+
⌈

n−4
6

⌉
+
⌈ n−2

6
⌉
+

n−2
6 −2

∑
r=0

(6r + 7) + 2

= (n+4)(n−1)
6 + 2.

Case 4. n ≡ 3 (mod 6).
Decompose the edges uiw, 1 ≤ i ≤ n−3

2 , into n−3
6 triples (u3s+1w, u3s+2w, u3s+3w) for

s = 0, 1, 2, . . . , n−3
6 − 1, and decompose the edges un−iw, 1 ≤ i ≤ n−3

2 , into n−3
6 triples

(un−3r−1w, un−3r−2w, un−3r−3w) for r = 0, 1, 2, . . . , n−3
6 − 1. Then, for the centre vertex

weight, we have

wtϕ(w) =

n−3
6 −1

∑
s=0

3

∑
j=1

ϕ(u3s+jw) + ϕ(u n−1
2

w) + ϕ(u
n− n−1

2
w) +

n−3
6 −1

∑
r=0

3

∑
j=1

ϕ(un−3r−jw)

+ ϕ(unw) =

n−3
6 −1

∑
s=0

(6s + 4) +
⌈ n−5

6
⌉
+
⌈

n−1
6

⌉
+
⌈

n−1
6

⌉
+
⌈

n+1
6

⌉

+

n−3
6 −1

∑
r=0

(6r + 7) + 2 = n(n+3)
6 + 2.

Case 5. n ≡ 4 (mod 6).
Decompose the edges uiw, 1 ≤ i ≤ n

2 + 1, into n−4
6 + 1 triples (u3s+1w, u3s+2w, u3s+3w)

for s = 0, 1, 2, . . . , n−4
6 , and the edges un−iw, 1 ≤ i ≤ n

2 − 2 we decompose into n−4
6 triples

(un−3r−1w, un−3r−2w, un−3r−3w) for r = 0, 1, 2, . . . , n−4
6 − 1. Then, for the weight of the

centre vertex, we get

wtϕ(w) =

n−4
6

∑
s=0

3

∑
j=1

ϕ(u3s+jw) +

n−4
6 −1

∑
r=0

3

∑
j=1

ϕ(un−3r−jw) + ϕ(unw) =

n−4
6

∑
s=0

(6s + 4)

+

n−4
6 −1

∑
r=0

(6r + 7) + 2 = (n+1)(n+2)
6 + 1.

Case 6. n ≡ 5 (mod 6).
Decompose the edges uiw, 1 ≤ i ≤ n−1

2 − 2, into n−5
6 triples (u3s+1w, u3s+2w, u3s+3w)

for s = 0, 1, 2, . . . , n−5
6 − 1, and decompose the edges un−iw, 1 ≤ i ≤ n−1

2 − 2, into n−5
6

triples (un−3r−1w, un−3r−2w, un−3r−3w) for r = 0, 1, 2, . . . , n−5
6 − 1. Then, for the centre

vertex weight, we have

wtϕ(w) =

n−5
6 −1

∑
s=0

3

∑
j=1

ϕ(u3s+jw) + ϕ(u n−1
2 −1

w) + ϕ(u n−1
2

w) + ϕ(u
n− n−1

2 +1
w)
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+ ϕ(u
n− n−1

2
w) +

n−5
6 −1

∑
r=0

3

∑
j=1

ϕ(un−3r−jw) + ϕ(unw) =

n−5
6 −1

∑
s=0

(6s + 4)

+
⌈ n−7

6
⌉
+
⌈ n−3

6
⌉
+
⌈ n−5

6
⌉
+
⌈

n−1
6

⌉
+
⌈ n−3

6
⌉
+
⌈

n−1
6

⌉
+
⌈

n−1
6

⌉
+
⌈

n+1
6

⌉
+

n−5
6 −1

∑
r=0

(6r + 7) + 2 = (n+4)(n−1)
6 + 2.

Combining the previous lemmas, we can prove Theorem 1.

Proof of Theorem 1. The fan graph F2 is isomorphic to a cycle C3. It admits an irregular
assignment with edge labels 1, 2, 3 and with the induced vertex weights 3, 4, 5. Thus,
s(F2) = s(C3) = 3.

According to Lemma 1, we have that s(Fn) ≥
⌈

n+1
3

⌉
for n ≥ 3. To prove the equality,

it suffices to prove the existence of a vertex irregular edge
⌈

n+1
3

⌉
-labeling of Fn.

For n ≥ 3, consider the edge labeling ϕ of Fn defined by (4). From Lemma 2, it follows
that ϕ is an

⌈
n+1

3

⌉
-labeling.

Lemma 3 proves that weights of the vertices ui, i = 1, 2, . . . , n, under the labeling
ϕ successively attain values 2, 3, . . . , n + 1. Moreover, with respect to Lemma 4, we get
that wtϕ(w) > n + 1 for every n ≥ 3. Thus, the vertex weights are distinct for all pairs of

distinct vertices. Therefore, the labeling ϕ is a suitable vertex irregular edge
⌈

n+1
3

⌉
-labeling

of Fn. This concludes the proof.

2.2. The Modular Irregularity Strength of the Fan Graphs

Let us recall the following two lemmas.

Lemma 5. [16] Let G be a graph with no component of order ≤ 2. Every modular irregular
labeling of G is also its irregular assignment.

In general, the converse of the previous lemma does not hold. For example, the edge
labeling of star K1,3 with edge labels 1, 2, 3 is an irregular assignment with vertex weights 1,
2, 3, 6. However, this irregular labeling is not modular. If we label the edges of the star K1,3
by labels 1, 2, 4, then we get a modular irregular assignment with modular vertex weights
0, 1, 2, 3, and ms(K1,3) = 4.

The next statement gives a condition when an irregular assignment of a graph is also
its modular irregular labeling.

Lemma 6. [16] Let G be a graph with no component of order ≤ 2, and let s(G) = k. If there exists
an irregular assignment of G with edge values of at most k, where the weights of vertices constitute
a set of consecutive integers, then

s(G) = ms(G) = k.

The following theorem gives a lower bound of the modular irregularity strength.

Theorem 2. [16] Let G be a graph with no component of order ≤ 2. Then,

s(G) ≤ ms(G).

Now, we give the precise value of the modular irregularity strength for fan graphs Fn,
for n ≥ 2 even.
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Theorem 3. Let Fn be a fan graph on n + 1 vertices with n ≥ 2 even. Then,

ms(Fn) =


3, if n = 2,
4, if n = 8,⌈

n+1
3

⌉
, otherwise.

Proof. Let n = 2. We have already mentioned that the fan graph F2 admits an irregular
assignment with edge labels 1, 2, 3 and with vertex weights 3, 4, 5. From Lemma 6, it follows
that the irregular assignment of F2 is modular and ms(F2) = 3.

Let n = 8. Suppose that there exists a modular irregular 3-labeling ξ of F8. As the
vertices ui, i = 1, 2, . . . , 8 are either of degree 2 or 3, the weights of these vertices under any
3-labeling is at least 2 (this can be realizable only on a vertex of degree 2 as the sum of edge
labels 1 + 1) and is at most 9 (this can be realizable only on a vertex of degree 3 as the sum
of edge labels 3 + 3 + 3). As all the vertices must have distinct modular weights, we get
that the weights of the vertices ui, i = 1, 2, . . . , 8, constitute the sequence of consecutive
integers from 2 up to 9. Thus, the modular weight 1 can be obtained only by the centre w.
Moreover, it is easy to see that the weight of the centre cannot be 10 (must be at least 11 but
at most 21). Thus, wtξ(w) = 19 ≡ 1 (mod 9). Then,

8

∑
i=1

ξ(uiw) + 2
7

∑
i=1

ξ(uiui+1) =
8

∑
i=1

wtξ(ui). (5)

Since
8
∑

i=1
ξ(uiw) = wtξ(w) = 19 and

8
∑

i=1
wtξ(ui) = 44, then Equation (5) gives

19 + 2
7

∑
i=1

ξ(uiui+1) = 44,

which is a contradiction. Thus, there is no modular irregular 3-labeling for F8. Figure 1
shows an example of a modular irregular 4-labeling of the fan graph F8, where the modular
weights are depicted in italic font.

2 4 6 8 0 7 5 3
1 2 3 3 4 2 2

1 1 1 2 2 1 1 1

u1 u2 u3 u4 u5 u6 u7 u8

w

1

Figure 1. A modular irregular 4-labeling of the fan graph F8.

Now, for n 6= 2, 8 let us distinguish the following three cases, according to n.

Case 1. n ≡ 4 (mod 6).
It is sufficient to consider the edge irregular

⌈
n+1

3

⌉
-labeling ϕ defined by (4). By

Lemma 3, under the labeling ϕ, the weights of all vertices ui ∈ V(Fn), i = 1, 2, . . . , n,
successively assume values 2, 3, . . . , n, n + 1, and by Lemma 4, the weight of the centre
vertex is wtϕ(w) = (n+1)(n+2)

6 + 1. Since n ≡ 4 (mod 6), then n+2
6 is an integer and
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(n+1)(n+2)
6 + 1 ≡ 1 (mod n + 1). This implies that the labeling ϕ is a suitable modular

irregular
⌈

n+1
3

⌉
-labeling.

Case 2. n ≡ 0 (mod 6).
Observe that under the labeling ϕ, by Lemma 4, the centre of Fn admits the weight

wtϕ(w) = n(n+3)
6 + 2. Since n ≡ 0 (mod 6), it follows that wtϕ(w) 6≡ 1 (mod n + 1) and

the labeling ϕ is not modular irregular. Therefore, we need to modify the labeling ϕ.
Figure 2 illustrates a modular irregular 3-labeling of the fan graph F6, where the

modular weights are depicted in italic font.

2 5 6 0 1 4
1 3 1 3 3

1 1 2 3 2 1

u1 u2 u3 u4 u5 u6

w

3

Figure 2. A modular irregular 3-labeling of the fan graph F6.

For n ≥ 12, we define an edge labeling ψ of Fn as follows:

ψ(uiui+1) =

{
ϕ(uiui+1), for 1 ≤ i ≤ n

2 , i 6= 2, 4, . . . , n
3 − 2, n

3 ,
ϕ(uiui+1)− 1, for i = 2, 4, . . . , n

3 − 2, n
3 ,

ψ(un−iun−i+1) =

{
ϕ(un−iun−i+1), for 1 ≤ i ≤ n

2 − 1, i 6= 2, 4, . . . , n
3 − 2, n

3 ,
ϕ(un−iun−i+1)− 1, for i = 2, 4, . . . , n

3 − 2, n
3 ,

ψ(uiw) =


1, for i = 1,
ϕ(uiw) + 1, for 2 ≤ i ≤ n

3 + 1,
ϕ(uiw), for n

3 + 2 ≤ i ≤ n
2 + 1,

2, for i = n,

ψ(un−iw) =

{
ϕ(un−iw), for n

3 + 1 ≤ i ≤ n
2 − 2,

ϕ(un−iw) + 1, for 1 ≤ i ≤ n
3 .

One can see that decreasing the labels of the edges uiui+1 and un−iun−i+1, i =
2, 4, . . . , n

3 − 2, n
3 by one, and increasing the labels of the edges uiw, 2 ≤ i ≤ n

3 + 1 and
un−iw, 1 ≤ i ≤ n

3 by one has no effect on the weights of vertices ui ∈ V(Fn), as they suc-
cessively attain the values 2, 3, . . . , n, n + 1. We note that max

{
ψ(uiw) : 2 ≤ i ≤ n

3 + 1
}
=

ψ(u n
3 +1w) =

⌈ n−3
9
⌉
+
⌈ n+3

9
⌉
+ 1 <

⌈
n+1

3

⌉
and max

{
ψ(un−iw) : 1 ≤ i ≤ n

3
}
= ψ(u 2n

3
w) =⌈ n

9
⌉
+
⌈ n+3

9
⌉
+ 1 <

⌈
n+1

3

⌉
.

However, by increasing the labels of the edges uiw, 2 ≤ i ≤ n
3 + 1 and un−iw, 1 ≤ i ≤

n
3 , the weight of the centre increases, and we have

wtψ(w) = n(n+3)
6 + 2 + 2n

3 = (n+1)(n+6)
6 + 1.

Since n+6
6 is an integer, then wtψ(w) ≡ 1 (mod n + 1). Thus, the labeling ψ is a

required modular irregular
⌈

n+1
3

⌉
-labeling of Fn.

Case 3. n ≡ 2 (mod 6), n ≥ 14.
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According to Lemma 4 we have that wtϕ(w) = (n+4)(n−1)
6 + 2 and it is not congruent

to 1 (mod n + 1). Our next goal is to modify the edge labeling ϕ such that the weights of
vertices ui ∈ V(Fn), i = 1, 2, . . . , n, will not change but the weight of the centre decreases to
a value congruent to one (mod n + 1).

Therefore, for n ≥ 14, we construct an edge labeling ϑ of Fn in the following way:

ϑ(uiui+1) =

{
ϕ(uiui+1), for 1 ≤ i ≤ n

2 , i 6= 3, 5, . . . , n+1
3 − 2, n+1

3 ,
ϕ(uiui+1) + 1, for i = 3, 5, . . . , n+1

3 − 2, n+1
3 ,

ϑ(un−iun−i+1) =

{
ϕ(un−iun−i+1), for 1 ≤ i ≤ n

2 − 1, i 6= 1, 3, . . . , n+1
3 − 2, n+1

3 ,
ϕ(un−iun−i+1) + 1, for i = 1, 3, . . . , n+1

3 − 2, n+1
3 ,

ϑ(uiw) =


1, for i = 1, 2, n,
ϕ(uiw)− 1, for 3 ≤ i ≤ n+1

3 + 1,
ϕ(uiw), for n+1

3 + 2 ≤ i ≤ n
2 + 1,

ϑ(un−iw) =

{
ϕ(un−iw), for n+1

3 + 1 ≤ i ≤ n
2 − 2,

ϕ(un−iw)− 1, for 1 ≤ i ≤ n+1
3 .

By direct computation we can see that increasing the labels of the edges uiui+1, i =
3, 5, . . . , n+1

3 − 2, n+1
3 , and un−iun−i+1, i = 1, 3, 5, . . . , n+1

3 − 2, n+1
3 by one and decreasing

the labels of the edges uiw, 3 ≤ i ≤ n+1
3 + 1 and un−iw, 1 ≤ i ≤ n+1

3 by one has no
impact to weights of the vertices ui ∈ V(Fn), and they preserve the values 2, 3, . . . , n, n + 1.
Since max

{
ϕ(uiui+1) : i = 3, 5, . . . , n+1

3

}
= ϕ(u n+1

3
u n+4

3
) =

⌈ n−2
9
⌉
+
⌈

n+1
9

⌉
+ 1 <

⌈
n+1

3

⌉
and max

{
ϕ(un−iun−i+1) : i = 1, 3, 5, . . . , n+1

3

}
= ϕ(u 2n−1

3
u 2n+2

3
) =

⌈ n−2
9
⌉
+
⌈

n+4
9

⌉
+ 1 <⌈

n+1
3

⌉
, it follows (applying Lemma 2) that all edge labels under the labeling ϑ are at

most
⌈

n+1
3

⌉
.

Decreasing the labels of the edges uiw, 3 ≤ i ≤ n+1
3 + 1 and un−iw, 1 ≤ i ≤ n+1

3 ,
the weight of the centre decreases and we get

wtϑ(w) = (n+4)(n−1)
6 + 2− 2 n+1

3 = (n−2)(n+1)
6 + 1.

Because n−2
6 is an integer, wtϑ(w) ≡ 1 (mod n + 1). It proves that the labeling ϑ is a

suitable modular irregular
⌈

n+1
3

⌉
-labeling.

The next theorem, proved in [16], gives a condition when no modular irregular labeling
of a graph exists.

Theorem 4. [16] If G is a graph of order n, n ≡ 2 (mod 4), then G has no modular irregular
labeling, that is, ms(G) = ∞.

An immediate consequence of the above theorem is the following statement.

Corollary 1. If n ≡ 1 (mod 4), then the fan graph Fn on n + 1 vertices has no modular irregu-
lar labeling.

Theorem 5. Let Fn be a fan graph on n + 1 vertices with n ≥ 3 odd. Then

ms(Fn) =

{⌈
n+1

3

⌉
, if n ≡ 3 (mod 4),

∞, if n ≡ 1 (mod 4).
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Proof. It is a matter of routine checking to see that under the edge labeling ϕ defined by
(4), for n odd, the weights of the centre of Fn listed in Lemma 4 are not congruent to 1
(mod n + 1). In order to preserve the property of the edge labeling ϕ that the weights of
all vertices ui ∈ V(Fn), i = 1, 2, . . . , n, form the set {2, 3, . . . , n, n + 1}, and to attain the
weights of the centre congruent to one (mod n + 1), we will construct some appropriate
modifications of the labeling ϕ in a similar way as in the proof of Theorem 3.

Since we consider only n odd and moreover, n 6≡ 1 (mod 4), then we distinguish the
following three cases according to the residue of n modulo 12.

Case 1. n ≡ 3 (mod 12).
From Theorem 1, it follows that s(F3) = 2 and wtϕ(u1) = 2, wtϕ(u3) = 3, wtϕ(u2) = 4

and wtϕ(w) = 5. According to Lemma 6, we have that s(F3) = ms(F3) = 2.
For n ≥ 15, we define an edge labeling ρ of Fn such that:

ρ(uiui+1) =

{
ϕ(uiui+1), for 1 ≤ i ≤ n−1

2 , i 6= 2, 4, . . . , n−3
6 − 2, n−3

6 ,
ϕ(uiui+1)− 1, for i = 2, 4, . . . , n−3

6 − 2, n−3
6 ,

ρ(un−iun−i+1) =ϕ(un−iun−i+1), for 1 ≤ i ≤ n−1
2 ,

ρ(uiw) =


1, for i = 1,
2, for i = n,
ϕ(uiw) + 1, for 2 ≤ i ≤ n+3

6 ,
ϕ(uiw), for n+3

6 + 1 ≤ i ≤ n−1
2 ,

ρ(un−iw) =ϕ(un−iw), for 1 ≤ i ≤ n−1
2 .

By a direct verification, we can detect that under the labeling ρ, all edge labels are at
most

⌈
n+1

3

⌉
, the weights of the vertices ui, 1 ≤ i ≤ n constitute a sequence of consecutive

integers from 2 up to n + 1, and the weight of the centre determined by Lemma 4 is
increased by n−3

6 . Consequently,

wtρ(w) = wtϕ(w) + n−3
6 = n(n+3)

6 + 2 + n−3
6 = (n+3)(n+1)

6 + 1.

As n+3
6 is an integer, then wtρ(w) ≡ 1 (mod n + 1).

Case 2. n ≡ 7 (mod 12).
Figure 3 depicts a modular irregular 3-labeling of the fan graph F7. The modular

weights are again illustrated using italic font.

2 4 6 0 7 5 3
1 2 3 3 2 2

1 1 1 2 2 1 1

u1 u2 u3 u4 u5 u6 u7

w

1

Figure 3. A modular irregular 3-labeling of the fan graph F7.

For n ≥ 19, we define an edge labeling λ of Fn in the following way:

λ(uiui+1) =

{
ϕ(uiui+1), for 1 ≤ i ≤ n−1

2 , i 6= 3,
3, for i = 3,
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λ(un−iun−i+1) =

{
ϕ(un−iun−i+1), for 1 ≤ i ≤ n−1

2 , i 6= 1, 3, 5, . . . , n−5
2 − 2, n−5

2 ,
ϕ(un−iun−i+1) + 1, for i = 1, 3, 5, . . . , n−5

2 − 2, n−5
2 ,

λ(uiw) =


1, for i = 1, 2, n,
i− 2, for i = 3, 4,
ϕ(uiw), for 5 ≤ i ≤ n−1

2 ,

λ(un−iw) =

{
ϕ(un−iw)− 1, for 1 ≤ i ≤ n−5

2 ,
ϕ(un−iw), for n−3

2 ≤ i ≤ n−1
2 .

We can see that the labeling λ, as a modification of the labeling ϕ, did not increase the
largest values of the edges and has no effect on the weights of vertices ui in Fn. The weight
of the centre is reduced by n+1

2 , and we get

wtλ(w) = wtϕ(w)− n+1
2 = (n+4)(n−1)

6 + 2− n+1
2 = (n−1)(n+1)

6 + 1.

Indeed, n−1
6 is an integer, and then wtλ(w) ≡ 1 (mod n + 1).

Case 3. n ≡ 11 (mod 12).
For n ≥ 11, we define an edge labeling µ of Fn as follows:

µ(uiui+1) =


i, for i = 1, 2,
ϕ(uiui+1), for 3 ≤ i ≤ n−1

2 , i 6= 3, 5, . . . , n+7
6 − 2, n+7

6 ,
ϕ(uiui+1) + 1, for i = 3, 5, . . . , n+7

6 − 2, n+7
6 ,

µ(un−iun−i+1) =ϕ(un−iun−i+1), for 1 ≤ i ≤ n−1
2 ,

µ(uiw) =


1, for i = 1, 2,
ϕ(uiw)− 1, for 3 ≤ i ≤ n+7

6 + 1,
ϕ(uiw), for n+7

6 + 2 ≤ i ≤ n−1
2 ,

2, for i = n,

µ(un−iw) =ϕ(un−iw), for 1 ≤ i ≤ n−1
2 .

Again, it is readily seen that this modification of the labeling ϕ has no impact on the
weights of vertices ui ∈ V(Fn) and to the largest values of the edges. Under the labeling µ,
the weight of the centre determined by Lemma 4 is decreased by n+1

6 , and we have

wtµ(w) = wtϕ(w)− n+1
6 = (n+4)(n−1)

6 + 2− n+1
6 = (n+1)2

6 + 1.

Obviously, n+1
6 is an integer and wtµ(w) ≡ 1 (mod n + 1). Thus, we arrive at the

desired result.

3. Conclusions

In this paper, we proved that the exact value of the irregularity strength of the fan
graph Fn of order n + 1 is

s(Fn) =

{
3, if n = 2,⌈

n+1
3

⌉
, if n ≥ 3.
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By modifying an irregular assignment of the fan graph, we obtained modular irregular
assignments and proved that

ms(Fn) =


3, if n = 2,
4, if n = 8,
∞, if n ≡ 1 (mod 4),⌈

n+1
3

⌉
, otherwise.

According to the given result, we get that the fan graphs are an example of graphs
for which the irregularity strength and the modular irregularity strength are almost the
same, up to a small case and one case excluded by the necessary condition for the modular
irregularity strength to be finite. Thus, naturally, we conclude our paper with the following
open problem.

Problem 1. Find another family of graphs for which the irregularity strength and the modular
irregularity strength are the same.
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