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����������
�������

Citation: Kumar Pal, A.;

Abouelmagd, E.I.; García Guirao, J.L.;
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* Correspondence: dbrzezinski@iis.p.lodz.pl; Tel.: +48-42-631-27-50

Abstract: The relative motion of an outline of the rendezvous problem has been studied by assuming
that the chief satellite is in circular symmetric orbits. The legitimacy of perturbation techniques and
nonlinear relative motion are investigated. The deputy satellite equations of motion with respect
to the fixed references at the center of the chief satellite are nonlinear in the general case. We found
the periodic solutions of the linear relative motion satellite and for the nonlinear relative motion
satellite using the Lindstedt–Poincaré technique. Comparisons among the analytical solutions of
linear and nonlinear motions and the obtained solution by the numerical integration of the explicit
Euler method for both motions are investigated. We demonstrate that both analytical and numerical
solutions of linear motion are symmetric periodic. However, the solutions of nonlinear motion
obtained by the Lindstedt–Poincaré technique are periodic and the numerical solutions obtained by
integration by using explicit Euler method are non-periodic. Thus, the Lindstedt–Poincaré technique
is recommended for designing the periodic solutions. Furthermore, a comparison between linear
and nonlinear analytical solutions of relative motion is investigated graphically.

Keywords: periodic solutions; nonlinear relative motion; perturbation methods; Lindstedt–Poincaré
technique; explicit Euler method

1. Introduction
1.1. Importance of Relative Motion Satellites

Relative motion is considered one of the fundamental problems in orbital mechanics,
it has different applications that arise in the literature of astrodynamics for rendezvous and
formation of flying satellites. The first idea concerning this problem was explained by the
author of [1] in the late 19th century, who proposed analyzing the Moon’s motion. His
objective was to establish a more mathematically sound method for developing tables of
lunar motion, this was at the time based on “practical astronomy rather than of mathematics”
in his talk.

The first practical space of relative motion was in the field of intercept and space
rendezvous throughout the late 1950s and extends up to the current time. In the intercept
model, a chase satellite is compelled to move in such a way that its orbit intersects the
trajectory of the chief satellite at a certain time. In the rendezvous problem the relative
velocities of both vehicles must be pushed to zero at the intersection instant; thereby, a
docking or berthing procedure or other activities may be carried out.

The authors in [2] analyzed the relative motion within the frame of developing a
guidance algorithm for a rendezvous task with an assumption that the chief satellite moves

Symmetry 2021, 13, 595. https://doi.org/10.3390/sym13040595 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4445-1052
https://orcid.org/0000-0002-2800-4527
https://orcid.org/0000-0003-2788-809X
https://orcid.org/0000-0001-7207-5253
https://doi.org/10.3390/sym13040595
https://doi.org/10.3390/sym13040595
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13040595
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/4/595?type=check_update&version=2


Symmetry 2021, 13, 595 2 of 20

in a circular orbit, and acts as a control center. It sends messages with relative location
and velocity data to slave satellites. Based on that data, the satellites perform a docking
maneuver and rendezvous by using an on-board propulsion system.

The comprehension of relative motion satellites is substantial for two significant
applications of orbital mechanics:

• The space rendezvous problem.
• The formation flight problem.

The first problem investigates the designing of centralization and decentralization
algorithms to dock a satellite successfully, for instance, the space shuttle with the Interna-
tional Space Station. These algorithms demand the modeling of relative motion satellites,
without needing permanent communication with ground-based stations. Rendezvous
orbital dynamics and control is one of the key elements of space flight technology for oper-
ating space rendezvous and docking missions. Rendezvous demands a specific congruent
of the orbital velocities and position vectors of the two vehicles, permitting them to stay
at a constant separation during orbital station-keeping. It may or may not be followed by
docking or berthing, procedures which bring the spacecraft into physical connection and
generate a link between them. The same rendezvous method could be used for a spacecraft
“landing” on a natural celestial body with a weak gravitational field, for example, landing
on one of the Martian moons will demand the same conveniency of orbital velocities,
followed by a “descent” that shares some similarities with docking.

The second problem is related to the formation of a satellite system, where the dy-
namics of the system are exploited to place a number of satellites in space. Formation of
satellites is a novel concept that distributes a large spacecraft function among several small
satellites, which are less expensive and cooperative. Most applications to relative motion
are in the formation satellites, which have a considerable significance, because the use of
a large number of satellites with low impact satellites running, in a concrete style, could
introduce a better outcome than a single high implementation satellite. Furthermore, these
formations do not require a big cost, which means a great opportunity for space mission
success with more resiliency. Satellite formations have good benefits for Earth observation
of space missions, where the group distribution of low resolution devices, operating in
conjunction with each other, may provide a higher overall information quality than a single
high resolution device.

1.2. Mathematical Models of Relative Motion Satellites

The relative motion between two satellites is described by several mathematical
models [3–6]. The “Hill–Clohessy–Wiltshire model (HCW)” is as a classical approach
described by a set of linearized, time-invariant ordinary differential equations. However,
this model assumes a circular chief orbit and it is valid only for small initial separations
between the satellites.

An assumption of an elliptical shape of the chief satellite orbit results in time-varying
differential equations. In this work such a model is represented by the Tschauner–Hempel
(TH) equations. However, since the applicability of this model is also limited to small
initial separations between the satellites, this investigation deploys it only for comparative
purposes.

In cases where a chief satellite (target or passive vehicle) is moving in a circular
orbit, the orbital relative motion can be described using HCW equations [2]. A principal
assumption for the application of HCW equations is a distance of separation between chief
and deputy (chase or active vehicle) satellites of less than 1 km.

The authors of [7] were the first to find a closed-form solution for linearized relative
motion within the frame of elliptic orbits. The authors of [8] found a singularity in Lawden’s
solution and then constructed a state-transition matrix that depends explicitly on the true
and the eccentric anomaly, overcoming the singularity. We find a closed-form solution for
a linearized relative motion within the frame of elliptic orbits in [7] for the first time. The
author of [8] found a singularity in Lawden’s solution. Afterwards, they proposed a new
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state-transition matrix without a singularity by explicitly using the true and the eccentric
anomaly data. They derived the state transition matrix (STM) of the (TH) equations for
orbits with small eccentricity, based mainly on the solutions of the HCW equations using a
perturbation theory. In the framework of improving the obtained solution, approximation
solutions of the second–order relative motion equations set in spherical coordinates are
constructed [9].

Several versions of the relative motion dynamics have been developed to involve
the perturbations effect [10–13]. The inhomogeneous gravitational field generated by the
presence of the non-sphericity of objects, such as the Earth’s oblateness, is based on an
assumption that the gravitational field is a sum of zonal harmonics coefficients; the authors
of [10] derived a set of relative dynamics time-variant equations under the effect of the
zonal harmonic parameter. An analytical solution of relative motion subject to Lorentz-
force perturbations is constructed in [14]. Within the frame of developing the analysis
of relative motion using state transition, matrices for the elliptical case are found, by the
authors in [15,16], to be under the perturbation effect.

Furthermore, an outstanding piece of work studied the reformulation of relative
motion based on non-linear system dynamics; see [17]. Another excellent piece of work
proposed to analyze relative motion dynamics, control techniques and specific applications
for formation flying, deployment, station keeping, and reconfiguration; see [18–22].

The aim of the proposed paper is to find the Periodic solutions of nonlinear relative
motion using the perturbation technique of the Lindstedt–Poincaré method, which enable
us to remove the secular terms, which will be growth with increasing time and will go
to infinity with increasing time to infinity. However, there are some numerical methods,
which can be used to estimate such solutions; for example: The Verrlet method, the step
size control algorithm and the explicit Runge–Kutta method; for details, comparisons and
effective methods, see [23,24]. However, we emphasize that the numerical methods are
not used to verify the analytical solutions in most cases, and vice versa. In addition, there
is no full warranty for convergence of numerical solutions in most cases. Thus, we are
interested to find the periodic solution of non-linear relative motion, which is more realistic
in practical applications by using the perturbation technique of Lindstedt–Poincaré.

2. Formulation of Motion Model

We consider a set of two satellites model, the first is called target satellite (or chief or
passive vehicle) and the second is called chaser (or deputy or active vehicle). In general,
this model is implemented to accomplish some space mission such as space rendezvous.
The mission between two space crafts or satellites is successful when the two satellites have
the same velocity and position vectors at a certain time. In the initiates of rendezvous time
the two parts in a rendezvous sequence are:

• Phasing of maneuvers to accomplish a rendezvous in the timing sequence, which will
bring the two satellites into close proximity.

• Maneuvers of finalizing rendezvous that involve the relative motion between the two
satellites for rendezvous and docking.

Now we will assume that the inertial references frame with origin, which coincides
with the center of the main body, say Earth’s center; the orthogonal unit vector is denoted by
{ix, iy, iz}. The vector ix in the direction of the equinoxes and the vectors iy is perpendicular
to it, while iz passes through the North Pole. To describe a relative motion satellite in
Local-Vertical-Local-Horizontal (LVLH) coordinates, we proposed that the orientation of
these frame by the unit vector triad {ir, iθ , ih}, where the vector ir lies in the chief radial
direction, ih lies in the direction of the chief angular momentum, and iθ completes the
right-handed orthogonal triad, such that iθ = ih ∧ ir; see Figure 1.
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Figure 1. Configuration of relative motion satellite.

According to Figure 1, the deputy satellite relative position vector in LVLH coordinates
can be written as:

R = ξir + ϑiθ + ζih, (1)

where ξ, ζ, and ϑ are the components of the relative position vector along the radial, long
track, and out of plane, respectively.

Since rd = rc + r, then
rd = (r + ξ)ir + ϑiθ + ζih,

where rc = rir represents the current radius of the chief’s satellite orbit. The LVLH frame
rotation with angular velocity ω is given by

ω = ωrir + ωθ iθ + ωhih,

where ωr = ωθ = 0 and ω = ωhih, while the attached frame rotates with the angular
velocity ωh = θ̇ = ḟ . We have to note that θ = Ω + f in which Ω and f are the argument
of perigee and the true anomaly, respectively, within the frame of two-body motion. The
angular momentum magnitude of the chief satellite is expressed by

h = r2 θ̇,

θ̈ = − 2
ṙ θ̇

r
,

where r is the trajectory of the chief (target) satellite, which may be circular or elliptical. On
the other hand, the expression of the chief’s true anomaly rate θ̇ can be written in terms of
a semi-latus rectum as

θ̇ =

√
µp
r4 ,

wherein the elliptical case p = a(1− e2), a are the semi-major axes and e is the eccentricity,
µ is the gravitational constant and r = p/(1 + e cos f ). The angular velocity and the
acceleration of the the LVLH reference frame are given by

ω = θ̇ih =
h
r2 ih,

ω̇ = θ̈ih = −2
ṙθ̇

r
ih.

(2)

Now, the general vectorial equations that model the relative motion in the LVLH
reference frame are

R̈ + 2ω× Ṙ + ω̇× R + ω× (ω× R) = T , (3)
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where T is the sum of total external forces acting on the deputy and chief, respectively; (.)
and (..) denote the first and second derivative with respect to time.

Substituting Equations (1) and (2) into Equation (3), we obtain(
ξ̈ − 2θ̈ϑ− θ̇ϑ̇− θ̇2ξ

)
ir +

(
ϑ̈ + θ̈ξ + 2θ̇ξ̇ − θ̇2ϑ

)
iθ + ζ̈ih = T , (4)

Now we can write the right-hand side of Equation (4) in the form

T = Td − Tc,

where Td is the external forces acting on the deputy and Tc is the external forces acting on
the chief satellite, which can be written in the case of the gravitational field being generated
by a spherical object, such as

Td = −µ
Rd

r3
d

,

Tc = −µ
Rc

r3
c

,

Hence,

T = −µ
(r + ξ)ir + ϑiθ + ζih

[(r + ξ)2 + ϑ2 + ζ2]
3/2 + µ

1
r2 ir, (5)

Substitution Equation (5) into Equation (4); then, the vector form or relative motion
equations will be controlled by(

ξ̈ − 2θ̈ϑ− θ̇ϑ̇− θ̇2ξ
)

ir +
(

ϑ̈ + θ̈ξ + 2θ̇ξ̇ − θ̇2ϑ
)

iθ

+ ζ̈ih = −µ
(r + ξ)ir + ϑiθ + ζih

[(r + ξ)2 + ϑ2 + ζ2]
3/2 + µ

1
r2 ir,

(6)

The vector Equation (6) can be degraded to

ξ̈ − 2θ̇ϑ̇− θ̇2ξ − θ̈ϑ = − µ(r + ξ)

[(r + ξ)2 + ϑ2 + ζ2]
3/2 +

µ

r2 ,

ϑ̈ + 2θ̇ξ̇ − θ̇2ϑ + θ̈ξ = − µϑ

[(r + ξ)2 + ϑ2 + ζ2]
3/2 ,

ζ̈ = − µζ

[(r + ξ)2 + ϑ2 + ζ2]
3/2 .

(7)

Equation (7) represents the general equations of the satellite relative motion in LVLH
coordinates.

2.1. General Circular Relative Motion Satellites

Now, we denote vc and vd as the potential functions for gravitational forces Tc and Td,
acting on the chief and deputy satellite, respectively; hence,

vc = −µ

r
,

vd = −µ

r

(
1 +

R2

r2 + 2
ξ

r

)−1/2

, (8)
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Note that (ξ/r) = (ξ/R).(R/r); Equation (8) is a generating function for Legendre
polynomials with argument −(ξ/R); consequently,

vd = −µ

r

∞

∑
n=0

(−1)n
(

R
r

)n
Pn(ξ/R),

where Pn is the Legendre polynomial with degree n, where

P0(ξ/R) = 1,

P1(ξ/R) =
ξ

R
,

P2(ξ/R) =
1
2

((
ξ

R

)2
− 1

)
,

Then,

vd = − µ

R

[
1− ξ

r
+

(2ξ2 − ϑ2 − ζ2)

2r2

]
+ vh,

where vh is the higher-order of a Legendre polynomial given by

vh = −µ

r

∞

∑
n=3

(−1)n
(

R
r

)n
Pn(ξ/R).

Then the total external forces can be rewritten as

T = −∆v,

where

∆v = −(∆vd − ∆vc).

Since ∆vd is the gravitational acceleration acting on the deputy and ∆vc is the gravita-
tional acceleration acting on the chief’s satellite, while ∆v is the total relative gravitational
acceleration, then

∆v =

(
−2µξ

r3 +
∂vh
∂ξ

)
ir +

(
µϑ

r3 +
∂vh
∂ϑ

)
iθ +

(
µζ

r3 +
∂vh
∂ζ

)
ih, (9)

and

T =

(
2µξ

r3 −
∂vh
∂ξ

)
ir −

(
µϑ

r3 +
∂vh
∂ϑ

)
iθ −

(
µζ

r3 +
∂vh
∂ζ

)
ih, (10)

Utilizing Equations (9) and (10) with Equation (4), the vector equation of relative
motion can be rewritten as(

ξ̈ − 2θ̈ϑ− θ̇ϑ̇− θ̇2ξ
)

ir +
(

ϑ̈ + θ̈ξ + 2θ̇ξ̇ − θ̇2ϑ
)

iθ + ζ̈ih

=

(
2µξ

r3 −
∂vh
∂ξ

)
ir +

(
−µϑ

r3 −
∂vh
∂ϑ

)
iθ +

(
−µζ

r3 −
∂vh
∂ζ

)
ih,

(11)
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Hence, Equation (11) can be written as three differential equations of second order

ξ̈ − 2θ̇ϑ̇−
(

θ̇2 +
2µ

r3

)
ξ − θ̈ϑ =− ∂vh

∂ξ
,

ϑ̈ + 2θ̇ξ̇ −
(

θ̇2 − µ

r3

)
ϑ + θ̈ξ =− ∂vh

∂ϑ
,

ζ̈ +
µζ

r3 =− ∂vh
∂ζ

.

(12)

Equation (12) represents the general dynamical system of the relative motion satellite.
However, we have to observe that the quantities in the right-hand sides,
∂vh/∂ξ, ∂vh/∂ϑ, ∂vh/∂ζ, represent the components of perturbing gravitational acceler-
ations, which are considered the main contribution for higher order of nonlinearity to a
dynamical system of relative motion.

2.2. Linear Circular Relative Motion Satellites

In the case where the chief’s orbit is moving in circular orbits, then r = a and θ̇ = n are
constants. Thereby, the rotation frame with these properties is referred to as Hill’s frame
and rotates with angular velocity n =

√
µ/a3, and the resulting equations are referred to

as HCW equations, as in [2]. In addition, if the perturbing acceleration or the higher order
on nonlinearity terms (vh = 0) are neglected. Then the linearized relative motion equations
will be governed by

ξ̈ − 2nϑ̇− 3n2ξ = 0,

ϑ̈ + 2nξ̇ = 0,

ζ̈ + n2ζ = 0.

Let ξ = x, ϑ = y, ζ = z; thereby, the above equations can be written as

ẍ− 2nẏ− 3n2x = 0,

ÿ + 2nẋ = 0,

z̈ + n2z = 0.

(13)

The above dynamical system is famous and is called the Hill–Clohessy–Wiltshire equa-
tions, and represents the linearity of relative satellite motion. Furthermore, the dynamical
system of relative motion (HCW) is invariant under the symmetry (x, y, z)→ (−x,−y,−z).

3. Solutions of HCW Equations

In order to construct the solutions of the dynamical system which represent the linear
relative motion satellite, we will assume that the deputy satellite starts its motion under
the following set of the initial conditions

x(0) = x0
0, ẋ(0) = ẋ0

0,

y(0) = y0
0, ẏ(0) = ẏ0

0, (14)

z(0) = z0
0, ż(0) = ż0

0,

Thereby, after integration of the second equation in System (13), we obtain

ẏ + 2nx = X0, (15)

where X0 is a constant which can be determined from the initial conditions, so one obtains

X0 = ẏ0
0 + 2nx0

0,
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and Equation (15) will take the following form

ẏ = X0 − 2nx. (16)

Substituting ẏ into the first equation in System (13), we get

ẍ + n2
(

x− 2X0

n

)
= 0. (17)

Let ψ = x− 2X0/n, then dψ/dt = dX/dt and d2ψ/dt2 = d2X/dt2 and, the Equation (17)
becomes

d2ψ

dt2 + n2ψ = 0, (18)

Hence, Equation (18) has the solution

ψ = X sin[nt + θ0].

Then the final form solution is

x = X sin[nt + θ0] +
2
n

(
ẏ0

0 + 2nx0
0

)
. (19)

Substituting Equation (19) into Equation (16) and integrating it, we get

y = 2X cos[nt + θ0]− 3
(

ẏ0
0 + 2nx0

0

)
t + Y0, (20)

where Y0 the constant of the integration.
To complete our steps, we have to integrate the third equation in System (13), which

represents the out-plane motion; hence, we get

z = Z sin(nt + ϕ0). (21)

Using the obtained solutions of Equations (19)–(21), the solutions of System (13) are
summarized in the following formulas

x = X sin[nt + θ0] +
2
n

(
ẏ0

0 + 2nx0
0

)
,

y = 2X cos[nt + θ0]− 3
(

ẏ0
0 + 2nx0

0

)
t + Y0, (22)

z = Z sin(nt + ϕ0),

where X, Y, Z, θ0, and ϕ0 are arbitrary constants that must match the initial conditions.
Here, we observe that the second formula in Solutions (22) contains an unbounded

term, which will grow to infinity with increasing time. To get bounded solutions, in
particular, periodic solutions, the coefficient of the unbounded term must equal zero; these
will give an additional condition to get periodic and bounded solutions; thereby, we will
obtain the new conditions on the initial conditions as

ẏ0
0 + 2nx0

0 = 0. (23)

So we rewrite the periodic solutions of System (13) in the following formulas

x = X sin[nt + θ0],

y = Y0 + 2X cos[nt + θ0], (24)

z = Z sin(nt + ϕ0).
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Applying the first derivative to Equations (24), we obtain the relative velocities in
the form

ẋ = nX cos[nt + θ0],

ẏ = −2nX sin[nt + θ0], (25)

ż = nZ cos(nt + ϕ0),

If we apply the initial conditions on Equation (24) and the condition in Equation (23),
then the constants of integration can be determined by

Y0 = y0
0 −

2
n

ẋ0
0,

X2 =
(

x0
0

)2
+

1
n2

(
ẋ0

0

)2
, (26)

Z2 =
(

z0
0

)2
+

1
n2

(
ż0

0

)2
,

and

tan θ0 =
nx0

0

ẋ0
0

,

tan ϕ0 =
nz0

0

ż0
0

.

(27)

Equations (24) and (25) represent the relative positions and velocities of the chaser
satellite for space rendezvous within the framework of linearized motion.

With the help of Equations (24)–(27), the initial amplitude of the chaser satellite for
space rendezvous, i.e., (x0

0, y0
0, z0

0) is taken as (0.13, 0.12, 0.10), with different values of
phase angle. The projection of the periodic solution in the xy-plane is shown in Figure 2,
whereas the orbit in three dimensions is shown in Figure 3 at different values of the
phase angle.
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Figure 2. Solutions of linear relative motion in two dimensions. (a) Analytical solution of linear relative motion at different
phases. (b) Numerical solutions by using numerical integration of explicit Euler method.
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It is clear from Figure 2a that the analytical solution of linear relative motion in two
dimensions is periodic, and the obtained solution by a numerical integration of the explicit
Euler method using step size 10−3 at a set of initial condition

(
x0

0, y0
0, ẋ0

0, ẏ0
0
)

as (0, 1.2, 1.0, 0)
is also periodic; this solution is shown in Figure 2b. In addition, the two solutions are
symmetric due to the y-axis (x = 0).

The linear motion in three dimensions is also periodic due two both solutions. We
remark that both analytical and numerical solutions of linear relative motion in three
dimensions are also periodic. The analytical solution is given in Figure 3a, while the
solution by a numerical integration of the explicit Euler method using step size 10−3 at a
set of initial condition

(
x0

0, y0
0, ẋ0

0, ẏ0
0
)

as (0, 1.2, 1.0, 0) is given in Figure 3b.

θ0
π

3

θ0
π

2

θ0
π

6

(a) (b)

Figure 3. Solutions of linear relative motion in three dimensions (a) Analytical solutions at different phases when ϕ0 = π/4.
(b) Numerical solutions by using numerical integration of the explicit Euler method.

Nonlinear Circular Relative Motion Satellites

In the case of considering the perturbed potential vh 6= 0, and keeping the nonlin-
earity up to second order terms, the relative motion satellite equations of System (12) are
approximated to the following equations

ξ̈ − 2nϑ̇− 3n2ξ =
3n2

2r

(
ϑ2 + ζ2 − 2ξ2

)
,

ϑ̈ + 2n2ξ̇ =
3n2ξϑ

r
,

ζ̈ + n2ζ =
3n2ξζ

r
.

(28)

The above dynamical system consists of the three second-order differential equations
with second degree, which represent the relative motion of the deputy satellite.

Now we intend to find the periodic solutions of these equations to find the relative
position and velocity of the deputy satellite to accomplish space rendezvous. The solutions
of these equations will be generalized or extended for the linear solutions; then, we have to
find the solutions under the previous conditions of linear relative motion. Unfortunately,
there are no exact analytical solutions for these equations, and the exact solutions are not
possible. Thereby, we must introduce techniques or perturbation methods, which can be
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used to evaluate approximate or semi-analytical solutions; in particular, we must construct
periodic solutions. So, the next section will be devoted to analysis of a perturbation
technique, which enables us to find an appropriate approximated analytical solution to
perform a space rendezvous mission.

4. Periodic Solution of Nonlinear Relative Motion Satellites

This section is devoted to constructing the periodic solutions of the nonlinear relative
motion satellite. From physical point of view, it is sufficient to find the solutions of the
dynamical system within the frame of second degree or third in maximum. This view can
be applied for the model of relative motion satellite, because the relative distance (distance
between chief and deputy satellites) is very small compared to the initial position of the
target satellite.

4.1. Legitimacy of Perturbation Techniques

The classical perturbation theory, which is called the straightforward expansion tech-
nique, the Lindstedt–poincaré method, and the multiple scales method are used when the
dynamical systems are either weakly nonlinear or weakly non-autonomous; this means
that the effects of either nonlinearity or non-autonomy are very small. Alternatively, the
dynamical systems with these properties can be considered either linear or quasi-linear.
In most cases, the systems of differential equations have linear expressions and small
nonlinear or non-autonomous expressions in such a way that they are separated from
each other.

In the context of either weak nonlinearity or weak non-autonomy, more approxima-
tions may still be required by finding a parameter in the dynamical system, which can be
used as a very small perturbation effect, but its value will be replaced by one at the end.
This technique is reasonable and accepted when the terms of the dynamical system are
quasi-linear or small in themselves. The obtained parameters in this case are called “place
keeping parameters”.

4.2. Legitimacy of Relative Motion Equations

In line with the reasons outlined in the previous subsection, we can neither apply the
multiple scales technique nor the Lindstedt–Poincaré method to System (28). Thereby, we
will use the place keeping parameters method, after carrying out the relative equations of
motion in dimensionless variables.

In order to set the equations in dimensionless variables, we assume that (ξ, ϑ, ζ) =
r(x, y, z); then, System (28) can be written as

ẍ− 2nẏ− 3n2x =
3
2

n2(y2 + z2 − 2x2),

ÿ + 2nẋ = 3n2xy,

z̈ + n2z = 3n2xz.

(29)

Since R0 << r, we can write ε = R0
r << 1, where R0 is the measure of relative orbit

size. Regarding this idea, we can use the place keeping parameters method, and replace
the coordinate (x, y, z) by (εx, εy, εz). Then System (29) can be written as

ẍ− 2nẏ− 3n2x =
3
2

n2ε(y2 + z2 − 2x2),

ÿ + 2nẋ = 3εn2xy,

z̈ + n2z = 3εn2xz.

(30)

The above equations represent the nonlinear relative motion satellite in dimensionless
variables, which are convenient for applying some perturbation techniques, such as multi-
ple scales technique [25–27] and KBM methods or Lindstedt–Poincaré [28–31]. However,
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we will examine the provided solution by the latter method with the initial conditions of
the linear relative motion satellite; these conditions are describe in Equation (14).

5. Periodic Solutions by the Lindstedt–Poincar é Technique

Now we will apply the Lindstedt–Poincaré technique on the relative satellite motion to
find the periodic solution of the equations of motion of the second degree, say System (30).
For simplicity, we suppose that θ = nt; then, System (30) can be written in the form

d2x
dθ2 − 2

dy
dθ
− 3x =

3
2

ε(y2 + z2 − 2x2),

d2y
dθ2 + 2

dx
dθ

= 3εxy,

d2z
dθ2 + z = 3εxz.

(31)

To account for the nonlinear dependence of the frequency, we will introduce the
stretch variable, τ = ωθ; we denote dΓ/dτ = Γ′ and d2Γ/dτ2 = Γ′′; then, System (31) can
be written in the form

ω2x′′ − 2ωy′ − 3x =
3
2

ε(y2 + z2 − 2x2),

ω2y′′ + 2ωx′ = 3εxy,

ω2z′′ + z = 3εxz.

(32)

Now we look for approximated solutions in the form of a power series as

x(τ, ε) =
∞

∑
n=0

εnxn(τ),

y(τ, ε) =
∞

∑
n=0

εnyn(τ),

z(τ, ε) =
∞

∑
n=0

εnzn(τ),

(33)

and

ω(ε) =
∞

∑
n=0

εnωn, ω0 = 1, (34)

The initial conditions of position components can be rewritten in the form

x(0, ε) =
∞

∑
n=0

εnxn(0) = x0
0,

y(0, ε) =
∞

∑
n=0

εnyn(0) = y0
0,

z(0, ε) =
∞

∑
n=0

εnzn(0) = z0
0,

(35)
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while the initial conditions of velocity components can also be rewritten in the form

x′(0, ε) =
∞

∑
n=0

εnx′n(0) = x′00 ,

y′(0, ε) =
∞

∑
n=0

εny′n(0) = y′00 ,

z′(0, ε) =
∞

∑
n=0

εnz′n(0) = z′00 .

(36)

Substituting Equation (33) into Equation (32) with the help of Equation (34) and
keeping the terms up to first order in ε, we obtain

x′′0 − 2y′0 − 3x0 + ε

[
x′′1 − 2y′1 − 3x1 + 2ω1x′′0

(
−2ω1y′0 −

3
2
(y2

0 + z2
0 − 2x2

0)

)]
= 0,

y′′0 + 2x′0 + ε
[
y′′1 + 2x′1 + 2ω1y′′0 + 2ω1x′0 − 3x0y0

]
= 0,

z′′0 + z0 + ε
[
z′′1 + z1 + 2εω1Z′′0 − 3x0z0

]
= 0

(37)

where the frequency is

ω(ε) = 1 + εω1,

The set of initial conditions in Equations (35) and (36) may be rewritten as

x(0, ε) = x0(0) + εx1(0) = x0
0,

y(0, ε) = y0(0) + εy1(0) = y0
0,

z(0, ε) = z0(0) + εz1(0) = z0
0,

(38)

and

x′(0, ε) = x′0(0) + εx′1(0) = x0
0,

y′(0, ε) = y′0(0) + εy′1(0) = y0
0,

z′(0, ε) = z′0(0) + εz′1(0) = z0
0,

(39)

Equating each of the coefficients of ε that have the same power in System (37), using
Conditions (38) and (39), we get the unperturbed equations system in the form

x′′0 − 2y′0 − 3x0 = 0,

y′′0 + 2x′0 = 0,

z′′0 + z0 = 0,

(40)

and the set of initial conditions is

x0(0) = x0
0, x′0(0) = ẋ0

0,

y0(0) = y0
0, y′0(0) = ẏ0

0,

z0(0) = z0
0, z′0(0) = ż0

0,

(41)

while the equations which represent the first corrections are

x′′1 − 2y′1 − 3x1 =
3
2

(
y2

0 + z2
0 − 2x2

0

)
− 2ω1x′′0 + 2ω1y′0,

y′′1 + 2x′1 = 3x0y0 − 2ω1y′′0 − 2ω1x′0,

z′′1 + z1 = 3x0z0 − 2ω1z′′0 ,

(42)
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with the initial conditions

x1(0) = 0, x′1(0) = 0,

y1(0) = 0, y′1(0) = 0,

z1(0) = 0, z′1(0) = 0,

(43)

To accomplish our procedure and find the approximated periodic solutions, we have
to find solutions for both the dynamical systems in Equations (40) and (42)

Zero order solutions

According to the solutions of linear motion, the general periodic solutions of the
unperturbed relative motion will be controlled by

x0 = X sin[τ + θ0],

y0 = Y0 + 2X cos[τ + θ0],

z0 = Z sin[τ + ϕ0],

(44)

With a help of Conditions (41), the constants of integration are given by

Y0 = y0
0 − 2ẋ0

0,

X2 =
(

x0
0

)2
+
(

ẋ0
0

)2
,

Z2 =
(

z0
0

)2
+
(

ż0
0

)2
,

and

tan θ0 =
x0

0

ẋ0
0

, tan ϕ0 =
z0

0

ż0
0

.

First order solutions

Substituting Equation (44) into Equation (42), we obtain

x′′1 − 2y′1 − 3x1 = X11 + X12 cos(τ + θ0) + X13 sin(τ + θ0) + X14 sin(τ + ϕ0)

+ X15 cos 2(τ + θ0) + X16 cos 2(τ + ϕ0),

y′′1 + 2x′1 =Y11 sin(τ + θ0) + Y12 cos(τ + θ0) + Y13 sin 2(τ + θ0),

z′′1 + z1 = Z11 + Z12 sin(τ + ϕ0) + Z13 cos(2τ + θ0 + ϕ0),

(45)

where X1i, i = 1, 2, 3, . . . 6, Yij and Z1j, j = 1, 2, 3 are constants, which are calculated by the
following relations

X11 =
3
4

(
2X2 + 2Y2

0 + Z2
)

, X12 = 6XY0,

X13 = −4ω1X, X14 = 4ω1Z, X15 =
9
2

X2,

X16 = −3
4

Z2, Y11 = 3XY0, Y12 = 2ω1X,

Y13 = 3X2, Z11 =
3
2

XZ cos(θ0 − ϕ0),

Z12 = −2ω1Z, Z13 = −3
2

XZ.

Equation (45) consists of a dynamical system of second-order non-homogeneous
differential equations. After integrating this system with the help of Conditions (43), we
observe that the terms with coefficients X1i = 1, 2, 3, 4, Y11, Y12, and Z12 represent secular
terms, as well as the extra term with coefficient S = 2X2 + Z2 + 3X2 cos 2θ0. Therefore, if
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these coefficients are nonzero, then the correction solutions will involve secular terms in
the scale τ. However, that is exactly what we need to avoid. Hence we will remove these
terms by equating their coefficients by zeros. These procedures ensure that the solutions
will not include secular terms and at least no secularities appear in the first two terms in
the perturbation series. Furthermore, the terms with coefficients X1i = 1, 2, 3, 4, Y11, Y12,
and Z12 represent solutions for the associated homogeneity of Equation (45); hence, we set
the coefficients to zeros before integration.

In this context, the removal of the secular terms yields

ω1 = 0, Y0 = 0, S = 0.

Then the first correction will be controlled by

x1(τ) =
1
2

 3
(
2X2 + Z2)

+2X2[7 cos 2θ0 + 2 cos(2θ + τ)]
−Z2(cos 2φ0 + 2 cos(τ + φ0))

 sin2 1
2

τ,

y1(τ) =
1
4


9X2 sin 2θ0 − 14X2 sin(2θ0 − τ)

+Z2
(

8 cos
1
2
(τ + 4φ0) sin3 1

2
τ + 6 sin τ

)
+X2(12 sin τ − sin 2(θ0 + τ) + 6 sin(2θ0 + τ))

,

z1(τ) = XZ[3 cos(θ0 − φ0)− cos(θ0 + φ0)− 2 cos(τ + θ0 − φ0)] sin2 1
2

τ.

(46)

Therefore, the periodic solutions of the nonlinear relative motion satellite can be
written in the form

x(τ, ε) = x0(τ) + εx1(τ),

y(τ, ε) = y0(τ) + εy1(τ),

z(τ, ε) = z0(τ) + εz1(τ),

(47)

where τ = nωt.
Since we use the method of place keeping parameters, we have to take ε = 1; then,

Solutions (47) will be rewritten as

x(τ, ε) = x0(τ) + x1(τ),

y(τ, ε) = y0(τ) + y1(τ),

z(τ, ε) = z0(τ) + z1(τ).

(48)

Substituting Equations (44) and (46) into Equation (48), the periodic solutions of the
nonlinear relative motion satellite, with the first corrections, can be estimated approximately
by using the Lindstedt–Poincaré technique.

With the help of Equation (48), the initial amplitude of the chaser satellite for space
rendezvous, i.e., (x0

0, y0
0, z0

0), works similar to in the previous section (0.13, 0.12, 0.10) with
different values for the phase angle. The projection of the periodic solution in the xy-plane
is shown in Figure 4, whereas the orbit in three dimensions is shown in Figure 5 with
different values of phase angle.

A comparison between the nonlinear relative motion solutions of the Lindstedt–
Poincaré technique obtained by the numerical integration of the explicit Euler method are
shown in Figure 4, in two dimensions, and in Figure 5, in three-dimensional motion. While
numerical solutions for linear motion are periodic, the numericality of nonlinear motion is
not periodic; this can be observed in Figures 4b and 5b.

The projections in the xy-plane of the periodic solution of linear and nonlinear motion
are shown in Figure 6 at different phases, whereas the differences between orbits in three
dimensions of the linear and nonlinear motion at the same different phases angle with
ϕ0 = π/4 are shown in Figure 7.
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Figure 4. Solution of nonlinear relative motion in two dimensions. (a) Solutions of the Lindstedt–Poincaré technique at
different phases. (b) Numerical solutions by integration of the explicit Euler method.
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Figure 5. Solution of nonlinear relative motion in three dimensions; (a) Solutions of the Lindstedt–Poincaré technique at
different phases when ϕ0 = π/4. (b) Numerical solutions by integration of the explicit Euler method.
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Figure 6. Comparison between analytical solutions of linear and nonlinear relative motion in two dimensions at different phases.
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Figure 7. Comparison between analytical solutions of linear and nonlinear relative motion in three dimensions at different
phases when ϕ0 = π/4.

The graphical investigations in both Figures 6 and 7 show that the analytical solutions
of linear and nonlinear motions are periodic; however, there are differences between the
style of the two motions. The periodicity of the nonlinear relative motion solutions gives a
considerable verification due to the solution obtained with the Lindstedt–Poincaré tech-
nique.

6. Conclusions

In this paper, we studied the relative motion of an outline of the space rendezvous
problem, assuming that the chief satellite was in circular symmetric orbits. It was found
that the equations that describe the motion of the deputy satellite with respect to the
references fixed at the center of the chief satellite is nonlinear in the general case. Then
the periodic solutions first for linear relative motion satellite were evaluated. Here a key
role is the symmetry of the periodic solution joined with the fact that the system HCW is
invariant under negative symmetry.

The Lindstedt–Poincaré technique was used to get the approximated periodic solu-
tions for nonlinear differential equations of the second degree. This method is referred to
by many sources as a method of successive approximations. In our study, we use it to find
the first corrections of a relative motion satellite. In this context, the obtained solutions
are more general compared to the linear solutions. The analysis of a linear relative motion
satellite and its periodic solutions are constructed. The approximate periodic solutions
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of the nonlinear relative motion satellite are constructed using the Lindstedt–Poincaré
technique.

Comparisons among the analytical solution of linear motion and the obtained solution
by the numerical integration of the explicit Euler method are investigated, and we show
that bth solutions are periodic in two and three dimensions. Moreover, comparisons
among the obtained solutions of nonlinear relative motion using the Lindstedt–Poincaré
technique and the numerical solution by integration of the explicit Euler method were
studied. However, the numerical solutions are not periodic in both motions in two and
three dimensions. Thus, the Lindstedt–Poincaré technique is recommended for designing
the periodic solutions.
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