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Abstract: The Reynolds stress equations for two-dimensional and axisymmetric turbulent shear flows
are simplified by invoking local equilibrium and boundary layer approximations in the near-wall
region. These equations are made determinate by appropriately modelling the pressure–velocity
correlation and dissipation rate terms and solved analytically to give a relation between the turbulent
shear stress τ/ρ and the kinetic energy of turbulence (k = q2/2). This is derived without external
body force present. The result is identical to that proposed by Nevzgljadov in A Phenomenological
Theory of Turbulence, who formulated it through phenomenological arguments based on atmospheric
boundary layer measurements. The analytical approach is extended to treat turbulent flows with
external body forces. A general relation τ/ρ = a1[1−AF(RiF)]

(
q2/2

)
is obtained for these flows,

where F(RiF) is a function of the gradient Richardson number RiF, and a1 is found to depend on
turbulence models and their assumed constants. One set of constants yields a1 = 0.378, while another
gives a1 = 0.328. With no body force, F≡ 1 and the relation reduces to the Nevzgljadov equation with
a1 determined to be either 0.378 or 0.328, depending on model constants set assumed. The present
study suggests that 0.328 is in line with Nevzgljadov’s proposal. Thus, the present approach provides
a theoretical base to evaluate the turbulent shear stress for flows with external body forces. The result
is used to reduce the k–ε model to a one-equation model that solves the k-equation, the shear stress
and kinetic energy equation, and an ε evaluated by assuming isotropic eddy viscosity behavior.

Keywords: turbulence modelling; one-equation model; shear stress equation; turbulent flows;
fluid dynamics

1. Introduction

Many turbulence models are available to date. Some of the more popular ones are the
zero-equation models, the two-equation models and the full Reynolds stress models [1].
The number of modelled equations that need to be solved together with the mean flow
equations will range from zero to six depending on the choice of the models. The most
commonly adopted model for practical applications is two-equation models [1]. Among
them, a more popular one is the k–ε model (from this point on k and (q2/2) will be used
interchangeably to denote turbulent kinetic energy in order to comply with their usage by
different authors). In this model, the local turbulent shear stress τ/ρ = − uv is expressed
as the product of an isotropic eddy viscosity νt and the local mean velocity gradient. The
eddy viscosity is defined as the product of a factor and the ratio of the local k to that of its
dissipation rate, ε. Therefore, in order to close the set of turbulent mean flow equations,
two additional equations describing the transport of k and ε are required. Two-equation
turbulence models are broadly adopted in flow analysis programs used by industries to
gain insight into internal and external flow behavior in problems commonly found in
mechanical and aerospace industries. This approach to model turbulent flow requires
assumptions to simplify terms representing the mean and the turbulence field. They are
invoked to close the set of governing equations and to reduce the set of equations to as
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simple a set as possible, yet still retains as much history effect and flow physics. Therefore,
these assumptions require sound physical understanding, and they are derived from good
insight of the physics of the problem at hand. Other assumptions might rely on physical
intuition that could be derived from experimental measurements and correlations [1,2].

An alternative to the two-equation model has been put forward by making use of the
work of Nevzgljadov [2] who, through phenomenological arguments based on atmospheric
boundary layer data, sought to express the local τ/ρ as a function of the local k = (q2/2)
alone; thus, leading to a proposal for the following relation,

τ

ρ
= a1

(
q2/2

)
= a1k, (1)

where a1 is a constant to be determined and ρ is air density. Since the underlying physics of
this equation had been examined by Dryden [3] who found it to be quite valid, the physical
basis of Equation (1) could be considered established for the Reynolds number (Re) range of
the atmospheric data used to establish Equation (1). The turbulent kinetic energy equation,
or k-equation for short, can be derived from the Reynolds stress equations with suitable
modelling assumptions invoked for the pressure–velocity correlation and the dissipation
rate terms. However, the dissipation rate ε is still not known. Normally, it is determined
from the definition of the eddy viscosity which is expressed as a factor multiply by k/ε.
Thus formulated, the set of equations given by the k-equation, the mean flow equations and
Equation (1) would lead to a closed set of equations; therefore, they can be solved using any
finite difference scheme. Since dissipation has been assumed isotropic through modelling
assumptions, the dissipation rate ε could be expressed in terms of

(
q2/2

)
, the mean flow

gradient and an arbitrary constant. Consequently, it gives rise to a one-equation model that
could partially account for the history effect of the turbulent kinetic energy because the
k-equation solved could account for the convection, diffusion and the production and/or
destruction of k [1,3]. This way, the behavior and development of the turbulent shear stress
τ/ρ and

(
q2/2

)
could be captured more accurately. At this point, it should be pointed

out that the analytically derived equations are valid for all Re, while Equation (1) and a1
might only be valid for the Re range of the atmospheric data used to deduced Equation (1).
Even then, the approach has been adopted by Laster [4], Lee and Harsha [5], Harsha and
Lee [6–8] in their simulations of free mixing layers and free shear flows. In addition, Harsha
and Lee [7,8] determined a1 by correlating measurements of τ/ρ with (q2/2) for a variety
of free turbulent mixing flows. They obtained a value of a1 = 0.3 for Equation (1). These
correlations were carried out and used in spite of the fact that Equation (1) was formulated
for atmospheric boundary layers where density stratification plays an important role. On
the other hand, the free mixing flow data was drawn from simple isothermal flows where
external body forces are absent and the Re might be different from the data of atmospheric
boundary layer.

A different approach to use Equation (1) to model turbulent flow has been taken up
by Bradshaw et al. [9] who proposed to solve an equation for the turbulent shear stress τ/ρ
by invoking Equation (1) plus two other relations that describe the turbulence structure
in the k-equation. Furthermore, Bradshaw et al. [10] demonstrated that the one-equation
approach they had formulated was also suitable for compressible flow on adiabatic walls;
thus, indicating that direct integration to a solid boundary is possible and rendering it
more amenable to boundary layer flow simulation [9,10]. Work by Rodi et al. [11] lend
support to the ability of this approach [10] to satisfy the no slip condition at the wall. In
addition, its ability to replicate history effect renders the model suitable for treating free
shear flows [12]. Again, with no modification, Equation (1) formulated for atmospheric
boundary layer was used to treat flows not subject to any external body force influence.

An alternative one-equation model proposed by Baldwin and Barth [13], and Spalart
and Allmaras [14] has also been put forward. It is based on solving a suitably modelled
transport equation for the eddy viscosity νt. Their proposal is also attractive because the
transport equation for νt has the usual convection, diffusion and production/destruction



Symmetry 2021, 13, 576 3 of 24

format of the k-equation. In addition, this one-equation model does not require further
modelling assumptions for the dissipation rate because it can be shown to be related to
Equation (1) which is part of the one-equation model. As such, this one-equation model
also tacitly assumed that Equation (1) is applicable to simple turbulent flows without
external body force influence.

In the studies mentioned above, a1 took on a value of 0.3 if τ/ρ calculated using mea-
sured (q2/2) in Equation (1) was required to give the best correlation with measurements.
This value of a1 has been tested by Bradshaw et al. [9,10], Lee and Harsha [5], Harsha
and Lee [6] and Harsha [7]. Consistently good agreement was obtained for a wide range
of isothermal free turbulent shear flows that include two-dimensional (2-D) as well as
axisymmetric wakes and jets, coaxial jets and jets in moving streams. This implies that
measurements of free mixing flows [5–8,12] and boundary layers [9,10] together suggest
that a1 = 0.3 is a suitable constant over the range of Re investigated and does not need
further adjustment when apply to other 2-D turbulent flows.

It is obvious that, besides the assumptions invoked by Nevzgljadov [2], this one-
equation approach to model turbulent flow does not require additional assumptions
compared to the mixing length or eddy viscosity approach [1]. Furthermore, the approach
also allows other Reynolds stresses to be determined separately by solving a different set
of modelled Reynolds stress equations once −uv and k are determined together with the
mean field. Consequently, there is no need to solve the mean field equations and Equation
(1) simultaneously with a full set of modelled Reynolds stress equations. This feature
is quite attractive, especially for numerical simulation of turbulent thermal flows where
simultaneous solutions of four more equations are required; these additional equations
are the mean temperature equation, two modelled turbulent heat fluxes equations and a
temperature variance equation in any 2-D flows. This one-equation model is simple, yet it
has a slight drawback, i.e., assuming Equation (1) to be independent of flow type, and can
be used without modifications to model simple and complex turbulent flows without a
valid analytical foundation to support this assumption.

1.1. Rationale for Current Study

From the above discussion, it is clear that the one-equation model assuming validity
of Equation (1) has been adopted by Laster [4], Harsha and Lee [5–8], Bradshaw et al. [9,10],
Rodi et al. [11] and Morel et al. [12] to simulate turbulent boundary layers and different
types of turbulent free mixing flows. Furthermore, applications to high Re turbulent flow
modelling have also been attempted by Baldwin and Barth [13], while its extension to
model aerodynamic flows have been carried out by Spalart and Allmaras [14]. In all these
studies, an equation formulated using atmospheric boundary layer data had been used to
model simple flows covering a range of Re with no external body force effects. Therefore, it
is necessary to justify the application of Equation (1) to flows with no density stratification
effect and for a wide range of Re. In addition, another follow-up point to note is the validity
of using Equation (1) to model complex turbulent flows where the external body force
is given rise by other means besides that of density stratification. To accomplish these
objectives, it is necessary to demonstrate that Equation (1) can be derived analytically
from the governing equations of turbulent boundary layer flows. Since the equations are
valid for all Re, the analytically derived Equation (1) will also be valid for a wide range of
Re. Once this analysis has been established, the methodology can be extended to tackle
complex turbulent flows to deduce an equivalent Equation (1) for complex flows with and
without external body force present.

In addition, all these studies assumed the validity of using Equation (1) with an a1
determined from data drawn on simple flows without body force effects, and over a limited
range of Re. If the approach based on Equation (1) does indeed have an advantage, then
it is prudent to question whether a1 is constant for all flow types and all Re, and that
the value suggested by Nevzgljadov [2] for atmospheric boundary layers is equally valid
for other flow types and different Re. In order to shine light on these questions, it might
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be necessary to establish a firm analytical base for Equation (1). A firm physical base
for Equation (1) had been provided by Dryden [3]. However, a firm analytical base for
Equation (1) has yet to be established; thus, preventing its extension to model complex
turbulent flows with and without external body force effects and over a wide range of Re.
Furthermore, the constancy of a1 is another concern. Would its value remain constant for
all flow types and all Re, or would it change from one flow type to another? Either way, the
correct value to adopt for a1 is far from known. Therefore, a1 might need to be evaluated
analytically if its value for different flow types and Re were to be determined. This point
is just as important to resolve if Equation (1) was to be used to model complex turbulent
flows subject to density stratification, streamline curvature, swirl, system rotation and/or a
combination of some or all of these effects, such as found in flow around turbine blades in
gas turbine engines.

Finally, viable turbulence modelling assumptions needed to invoke to broaden the
scope of Equation (1) have not been assessed and considered. It should be noted that any
turbulence model formulated to correctly simulate one type of turbulent flow might not
be equally suitable for another type of turbulent flow [1]. Since additional buoyant force
terms are present in the atmospheric boundary layer equations, this implies that the effects
of the buoyancy terms have already been factored into Equation (1). In other words, one
should be mindful in using Equation (1) to model boundary layers where such terms are
absent. On the other hand, if Equation (1) were assumed valid and appropriate for simple
boundary layers and free mixing flows, then would that be equivalent to making a tacit
assumption that density stratification essentially has no effect on Equation (1). Therefore,
it is necessary to clarify these important points before claiming universality for Equation
(1) and adopting it to simulate a variety of turbulent simple and complex flows with and
without external body force present.

1.2. Effects of Turbulence Models

A good example to illustrate the importance of realistic turbulence models could be
found in the work on symmetries and their relation to turbulence [15], and also in the
modelling of near-wall flow to replicate the universal log-law behavior [1]. The current
work is mainly focused on turbulence modelling in the near-wall region, therefore, work
on symmetries will not be discussed in this paper. In the modelling of curved boundary
layer flow, it is necessary to account for surface curvature effect in the log-law region if the
complete boundary layer profile were to be correctly simulated [16]. This is precisely the
reason why wall bounded flows are difficult to replicate correctly if the turbulence models
were formulated without due consideration of the near-wall asymptotic behavior of the
turbulence field in both isothermal [17] and thermal [18] flow. The need to model near-wall
flow correctly has also been illustrated by work carried out to simulate turbulent plane
wall jets [19]. Among the many two-equation models, such as the k–ε type [20–22] and the
k–ω type [23] tested for near-wall flow modelling, the models of Yang and Shih [19] and
Sarkar and So [21] were found to perform slightly better compared to other models [1];
yet, these two models [20,21] still fall short in their recovery of the log-linear behavior
when used to simulate plane wall jets. Consequently, these two models also give rise to
errors in the prediction of the outer layer. Once an asymptotically correct near-wall model
derived analytically [17,18] has been implemented into any two-equation model, significant
improvement on the prediction of the log-linear behavior in the near-wall region can be
achieved. Improvements in the near-wall region will then lead to a correct prediction of
the entire wall jet profile [19]. The studies on plane wall jets [19] showed that near-wall
effects have to be analytically and explicitly accounted for in the constant flux layer of
any boundary layer flow. In view of this realization, it is reasonable to expect that an
analytically derived Equation (1), with explicit terms to account for body force effect, could
better reflect the history effect thus created by the external body forces.

To strengthen the analytical base and to broaden the applications of Equation (1), it
is necessary to demonstrate that Equation (1) or its equivalent can be derived separately
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for flows with and without the influence of different types of external body forces. In
addition, assumptions made to close the Reynolds stress equations should focus on the
constant flux or near-wall region and their influence on the modelled behavior of the entire
flow. These assumptions should not be flow-type dependent. Instead, the assumptions
should be equally valid for all flow types considered. Once the approach has led to a
successful formulation for flows without external body force, the analytical approach can
be extended to account for additional effects such as those created by different types of
rotating curved flows. These flows can range from simple isothermal flow to complex
thermal flow where body forces created by density stratification, streamline curvature,
system rotation, swirl, etc. are present individually or in combination. Therefore, an
analytically derived Equation (1) will be most helpful to advance the viability and validity
of a one-equation turbulence model for complex turbulent flows.

1.3. Present Objectives

Once an analytical foundation for Equation (1) has been established for a simple
flow, it provides an analytical base to formulate modifications to Equation (1) for complex
flows created by external body forces and not by geometric complexity. Thus improved,
a one-equation model based on a generalized version of Equation (1) would become an
attractive alternate to two-equation models used to simulate a wide range of turbulent
flows. Therefore, the present objectives can be stated as:

(i) To show that Equation (1) can be derived from a modelled set of Reynolds stress
equations under the assumption of local equilibrium in the near-wall region of a
thermal boundary layer. The equation for simple flows with no external body force is
derived first; it is then extended to simple and complex flows with different external
body forces present.

(ii) To show that a1 is a universal constant. It only depends on the set of model constants
invoked for the pressure–velocity correlation and the dissipation rate terms. Thus
determined, it is also necessary to demonstrate that a1 is valid for all turbulent flows
with or without external body force effects.

(iii) To show that for flows with external body force effect, the constant a1 in Equation (1)
would be modified by a function that reflects the importance of the external body force,
such as one that depends on the Richardson number of the flow under investigation.

(iv) To show that for complex turbulent flows, the generalized equation has a form similar
to Equation (1); however, it could be quite different in details. Thus derived, the resul-
tant one-equation model will also be suitable for simple and complex turbulent flows.

Thus accomplished, the validity and extent of a generalized Equation (1) is established
and can be adopted in a one-equation model to study complex turbulent isothermal and
thermal flows.

2. Basic Equations

The current objective is to analytically derive Equation (1), which has been proposed
for atmospheric surface layer by Nevzgljadov [2]. In order to sort out whether Equation
(1) is truly valid for atmospheric surface layer, it is necessary to start the present analysis
using the basic equations for simple turbulent thermal flows that are subject to the action
of Coriolis force and/or system rotation. That way, the equations for flows without any
external body force present can be easily deduced from these equations. The atmospheric
boundary layer is treated separately; thus, allowing an equivalent Equation (1) for atmo-
spheric boundary layer to be deduced and compared with Equation (1) for an analysis of
its validity and reliability.

The set of equations for the case of turbulent thermal flow with system rotation is made
up of the mean velocity equation for Uj, the mean temperature equation for T, the equations
for the fluctuating velocity ui and the fluctuating temperature θ, plus the equations for
the Reynolds stress and the heat conduction moments, uiuj and uiθ, respectively. A set of
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these equations is given in So and Speziale [24]. They are reproduced here in Cartesian
tensor form:

∂Ui

∂xi
= 0, (2)

∂Uj

∂t
+

∂

∂xk

(
UkUj + ukuj

)
+ εjlmΩlUm = − ∂P

∂xj
+ ν∇2Uj (3)

∂T
∂t

+
∂

∂xk

(
UkT + ukθ

)
= α∇2T (4)

The coordinate system is assumed to be fixed to the surface and obeys the right-hand
rule. Therefore, the centrifugal force due to rotation can be absorbed into the mean pressure
gradient term. The overbars represent ensemble averages and the lower-case terms, uj, θ,
etc. are the fluctuating components of the velocity and temperature. These variables are
governed by the following equations,

∂ui

∂xi
= 0, (5)

∂uj

∂t
+

∂

∂xk

(
Ukuj + Ujuk + ukuj − ukuj

)
+ 2εjlmΩkul = −

∂p
∂xj

+ ν∇2uj, (6)

∂θ

∂t
+

∂

∂xk

(
Tuk + Ukθ + ukθ − ukθ

)
= σT∇2θ, (7)

Since the mean flow Equations (2)–(4) involve the Reynolds stress uiuj and the heat
flux uiθ terms, their closure is made possible by introducing transport equations for these
terms. These three equations are deduced from Equations (6) and (7). The final equations
for uiuj and ujθ are given below [24] as:

∂uiuj
∂t + ∂

∂xk

[
Uk uiuj + ukuiuj − ν

∂uiuj
∂xk

]
+ ∂

∂xk

[
puiδjk + pujδik

]
= − uiuk

∂Uj
∂xk
− ujuk

∂Ui
∂xk
− 2

[
εilmΩlumuj + εjlmΩlumui

]
+ p

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2ν ∂ui

∂xk

∂uj
∂xk

,

(8)

∂ujθ

∂t + ∂
∂xk

[
Ukujθ + ukujθ − σTuj

∂θ
∂xk
− ν θ

∂uj
∂xk

]
+

∂pθ
∂xj

=

− ujuk
∂T
∂xk
− θuk

∂Uj
∂xk
− 2εjlmΩlumθ + p ∂θ

∂xj
− (σT + ν)

∂uj
∂xk

∂θ
∂xk

,
(9)

Note that in writing down Equations (8) and (9), all the advection and diffusion terms
are grouped into the left-hand side of the equations. Consequently, if these terms are
assumed to be negligible, only the pressure–strain correction and the dissipation terms
need modelling.

3. Modelling Assumptions and the Simplified Transport Equations

The equations that govern the transport of the Reynolds stress−uiuj, i.e., Equation (8),
form an indeterminate set of equations because higher order moments, such as uiujuk

and ukujθ, are present. Furthermore, the energy redistribution term, or more precisely the

pressure–velocity correlation term ∂
(

puiδjk + pujδik

)
/∂xk and the viscous dissipation

term 2ν
{
(∂ui/∂xk)

(
∂uj/∂xk

)}
are not known. In order to reduce the Reynolds stress

equations to a closed set of equations where the dependent variables are the Reynolds
stresses, suitable modelling of the pressure–velocity correlation and the dissipation terms
are necessary. In view of this, further assumptions need to be introduced to simplify the
Reynolds stress equations. The approach used follows closely that adopted by Mellor [25]
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to treat atmospheric surface layer, and by So [26,27] to model curvature and swirl effect in
boundary layer flows.

The first of these assumptions is local equilibrium in the turbulence field, i.e., pro-
duction of turbulence energy balances viscous dissipation except in a very thin layer next
to the surface. A second assumption stipulates that the advection and diffusion terms in
Equation (8) are small outside of the constant flux region; thus, the only terms that need
modelling are the pressure–velocity correlation and dissipation rate terms in Equation (8).
Consequently, these two assumptions allow simplifications to be made in the modelling
of the pressure–velocity correlation and dissipation rate terms. With these simplifications,
the classical model of Rotta [28] can be justifiably used to model the pressure–velocity
correlation terms, while the local small-scale isotropy hypothesis of Kolmogorov [29,30]
can be adopted to model the dissipation rate terms. Finally, under these simplifications, a
parallel can be drawn between the atmospheric surface layer and other boundary layers
subject to the influence of external body forces. These assumptions have also been invoked
by So [31] to derive a Reynolds analogy that is valid for thermal turbulent flows over
rotating curved surfaces. In that analysis, the Reynolds analogy was shown to reduce
exactly to the original Reynolds analogy put forward by Monin and Oboukhov [32] for the
atmospheric surface layer when all external body forces other than buoyancy are essentially
zero. Thus simplified, the modelled terms proposed are given by

− p

(
∂ui

∂xj
+

∂uj

∂xi

)
= −1

6
q
`1

(
uiuj − δij

q2

3

)
, (10)

− p
∂θ

∂xj
=

q
3`2

ujθ, (11)

2ν
∂ui

∂xk

∂uj

∂xk
=

2
3

q3

Λ1
δij, (12)

(σT + ν)
∂uj

∂xk

∂θ

∂xk
= 0, (13)

where Equation (13) is a consequence of the fact that there is no isotropic first-order tensor.
Note that in Equation (10), the effect of the mean velocity gradient on the redistribution
terms is neglected as suggested by Rotta [28]. However, this contribution is put back into
Equation (10) in the modelling of the atmospheric boundary layer [25]. It will be shown
later that this mean velocity gradient term does have an effect on the value of a1 and should
be included in Equation (10), irrespective of whether the flow is simple or complex and
with or without external body force effect.

Equations (10)–(13) are substituted into Equations (8) and (9). If the flow is assumed
to be statistically steady and the advection and diffusion terms are assumed to be small,
then these simplifications would enable the transport equations, Equations (8) and (9), to
be written in a generalized tensor form as:

0 = ukuj Ui, k − ukui Uj, k − 2
[
εilmΩlumuj + εjlmΩlumui

]
− q

3`1

(
uiuj − 1

3 gijq
2
)
− 2

3 gij
q3

Λ ,
(14)

0 = − θukUj, k − ukujT, k − 2εjlmΩlumθ − q
3`2

ujθ, (15)

where q and gij are given by q =
(

uiui

)1/2
, and gij =

(
∂ym∂ym/∂xi∂xj). The component

equations can be written out with respect to a curvilinear co-ordinate system fixed to the
surface and obeys the right-hand rule (Figure 1). Rotation about the y3 axis is assumed
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to have components (0, 0, − Ω). If
{

xi} = (x, y, z) and {ui} = (u, v, w), then it can be
shown that

g11 = (1 + Ky)2, g22 = g33 = 1, gij = 0 for i 6= j, (16)

g ≡ det
(

gij

)
= (1 − Ky)2 and

{
gij

}
=


(1 + Ky)−2 0 0

0 1 0

0 0 1

. (17)

Figure 1. Coordinate system for rotating curved flow.

Invoking the 2-D boundary-layer approximations and assuming 2ΩU is of the same
order as KU2/(1 + Ky), then with the help of Equations (16) and (17), the component
equations of the generalized tensor Equations (14) and (15) can be deduced and they are
given by

q
3`1

(
u2 − q2

3

)
+

2
3

q3

Λ1
+ 2 uv

∂U
∂y

+
2KU

1 + Ky
uv = 0, (18)

q
3`1

(
v2 − q2

3

)
+

2
3

q3

Λ1
− 4KU

1 + Ky
uv + 4 Ω uv = 0, (19)

q
3`1

(
w2 − q2

3

)
+

2
3

q3

Λ1
= 0, (20)
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q
3`1

uv + v2 ∂U
∂y
− KU

1 + Ky

(
2u2 − v2

)
+ 2Ω vθ = 0, (21)

1
3

q
`2

uθ + uv
∂T
∂y

+ vθ
∂U
∂y

+
KU

1 + Ky
vθ − 2Ω vθ = 0, (22)

1
3

q
`2

vθ + v2 ∂T
∂y
− KU

1 + Ky
uθ + 2Ω uθ = 0, (23)

vw = 0, uw = 0, wθ = 0, (24)

These simplified equations are algebraic in nature and the stress components can be
solved in terms of the mean flow properties. This approach has been used by So [26], and
So and Mellor [33] to estimate small and large streamline curvature effects on boundary
layers, respectively. It has also been applied to estimate the effect of swirl on turbulence
velocity scales [27]. Furthermore, a similar approach has been used to analytically derive
a Reynolds analogy for turbulent heat transfer on rotating curved surfaces by So [31]. In
view of these successes, the present approach will be adopted to model the Reynolds stress
equations in pursuit of analytically deriving an expression for the shear stress and the
kinetic energy of turbulence, much like the equation given by Equation (1).

Equations (18)–(24) are formulated for complex turbulent thermal flows. However,
they are not suitable for analyzing atmospheric boundary layers. Since the basic data
used to formulate Equation (1) was collected from atmospheric boundary layers [2], it
would seem logical to start the examination of Equation (1) by considering the atmospheric
boundary layer first. Atmospheric boundary layer modelling has been thoroughly treated
by Mellor [25], therefore, the governing equations are readily available in [25]. On the
other hand, governing equations for other complex flow cases are not readily available
in the literature. In view of this, the governing equations for simple turbulent flows plus
other complex turbulent flows are analyzed first to see if an equivalent Equation (1) can
be derived for these flows before embarking on a similar derivation for the atmospheric
boundary layer. In this approach, there is no need to repeat the above exercise to deduce the
simplified equations for atmospheric boundary layer; they can be drawn directly from [25].
Further, Equation (1) has been found to yield good simulation results in a one-equation
modelling of jets and free mixing flows [5–7]; thus, the present work should demonstrate
that an equation similar to Equation (1) could also be derived for axisymmetric flows. A
worthy example of an axisymmetric flow with external body force is represented by a
swirling flow; thus, swirling flow will also be examined as part of complex turbulent flow.

Based on this assessment, Equations (10)–(17) will form the base to deduce a sim-
plified set of governing equations necessary for the derivation of an equation similar to
Equation (1) for each of the following five cases: Case (I)—simple flow, Case (II)—curved
flow, Case (III)—rotating curved flow and Case (IV)—swirling flow. As for Case (V)—
atmospheric boundary layer, it will be analyzed using the simplified governing equations
reported in [25]. Together, this analysis provides a firm analytical base for a one-equation
turbulence model suitable for a wide variety of turbulent flows with or without external
body forces present.

4. Case I—Simple Flow

The modelled equations needed for the derivation of an equivalent Equation (1)
are based on the set of simplified equations given in Equations (18)–(24). For this case,
the simple flow is assumed to have no rotation and no streamline curvature. Further-
more, only isothermal flow is considered. Then the relevant equations are reduced to
Equations (18)–(21) with K = 0 and Ω = 0. The co-ordinate system for these equations
has already been specified in Figure 1, therefore, it is also adopted for this flow case. The
Reynolds stresses are u2, v2, w2 and uv, and k = u2 + v2 + w2 = q2/2 is the kinetic
energy of turbulence, where (u, v, w) are the fluctuating velocity components along the
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(x, y, z) direction, respectively. Thus, for a two-dimensional flow, the simplified Reynolds
stress equations are given by:

q
3`1

(
u2 − q2

3

)
+

2
3

q3

Λ1
+ 2 uv

∂U
∂y

= 0, (25)

q
3`1

(
v2 − q2

3

)
+

2
3

q3

Λ1
= 0, (26)

q
3`1

(
w2 − q2

3

)
+

2
3

q3

Λ1
= 0, (27)

q
3`1

uv + v2 ∂U
∂y

= 0, (28)

and uw = vw = 0 because of symmetry, U is the mean flow along the x-direction, while `1
is a length scale introduced in the modelled terms given by Equation (10) and Λ1 is a length
scale introduced in the modelling of the dissipation rate terms in Equation (12). The above
equations can be solved to give an expression each for q2 and − uv. The algebra involved
is too cumbersome to report here verbatim; however, for the sake of the other cases, the
solution procedure could be briefly described below. First, Equations (25)–(27) are solved
to give an expression between − uv, q2 and ∂U/∂y. The − uv obtained is substituted into
Equation (28); and with the help of Equation (26) will yield an expression between q2 and
(∂U/∂y), which is Equation (29) given below. Once this is obtained, Equations (26), (28)
and (29) can be used to deduce an equation for − uv, the final form thus obtained is given
in Equation (30).

q2 = Λ2
1 [γ(1 − 6γ)]

(
∂U
∂y

)2
, (29)

− uv = [γ(1 − 6γ)] 1/2
{

q2
}

, (30)

where γ = `1/Λ1. Therefore, the relation between τ/ρ( or − uv ) and q2/2 follows
naturally from Equation (30) and can be written in a form similar to Equation (1), or:

τ

ρ
= 2 [γ(1 − 6γ)]1/2

(
q2/2

)
. (31)

Comparing Equation (1) with Equation (29) gives the following expression for a1,

a1 = 2 [γ(1 − 6γ)]1/2, (32)

which is only dependent on the model constants introduced in Equations (10) and (12).
From the work of Mellor [25] and So [26,27], it is known that `1 and Λ1 are proportional to
a master length scale `. These constants were determined from neutral boundary layers
and grid-generated, homogeneous turbulent flows. They are found to work well for a wide
variety of flows including curved shear flows and atmospheric boundary layers; as a result,
γ = 0.052 is obtained. With this value for γ, Equation (32) yields a1 = 0.378. With the
constants thus determined, Equation (31) reduces to

τ

ρ
= 0.378

(
q2/2

)
, (33)

which is Equation (1) with a different a1. The case for the atmospheric boundary layer will
be analyzed later in the paper. Once that is accomplished, the similarity and difference
between these two cases can be identified and analyzed in detail.

This analytical derivation shows that Equation (1) should be interpreted as an equation
for simple flow rather than an equation for the atmospheric boundary layer. Furthermore,
this is the reason why the work of Laster [4], Lee and Harsha [5] and Harsha and Lee [6–8]



Symmetry 2021, 13, 576 11 of 24

yield good results in their use of Equation (1) to simulate free mixing layers and free shear
flows without body force effects. Applications of Equation (1) to model boundary layers,
both incompressible and compressible [9–11], and free shear flows [12] also yield good
simulation results. Together, these studies lend evidence to support Equation (1) being
more valid for flows without density stratification rather than for atmospheric boundary
layer as suggested by Nevzgljadov [2].

In summary, it has been shown that Equation (1) can be derived from Equations
(23)–(26) and a1 thus determined is about 26% higher than the empirical value deduced by
Bradshaw et al. [9], and Harsha and Lee [8]. This result shows that a1 is a true constant
because it only depends on the model constants invoked in the pressure–velocity correlation
and dissipation rate terms. Therefore, Equation (1) can be used to simulate a wide range
of 2-D turbulent shear flows without any external body force present. This analytical
approach is then extended to treat flows with body force effects in subsequent sections.
In the following, curvature effect will be attempted first; this is followed by rotating
cured flow and swirling flow. Finally, an attempt is made to derive an equivalent of
Equation (1) for atmospheric boundary layer. It is hoped that, through this systematic
treatment, Equation (1) and its validity and viability for atmospheric boundary layer could
be explored thoroughly.

5. Case II—Curved Flow

The effect of streamline curvature on 2-D flows due either to surface curvature, system
rotation, separately or in combination, have been investigated by So [26,31], and So and
Mellor [33]. The governing equations for the present analysis can be deduced from those
given in [30] or directly from Equations (18)–(24). Since a curvilinear orthogonal co-ordinate
system fixed to the rotating surface has been adopted by So [30] to analyze Reynlds analogy
and turbulent heat transfer on turbine blades, the coordinate system used in [31] and shown
in Figure 1 is adopted. The rotation about the y3 or z-axis is assumed to have components
(0, 0, −Ω) for the rotating blade case. In the present case, the y-axis is normal to the x–z
plane, while surface curvature defined as K = 1/R also lies on the x–z plane. Therefore,
the equations derived for rotating curved flow can be used for the curved flow case by
simply setting the rotational speed Ω to zero because the blade is stationary. For the
present case, i.e., a stationary blade, Ω = 0, then the governing equations can be deduced
from Equations (18)–(24) by setting Ω = 0. In the following equations, the turbulent shear
stress (− uv) is replaced by τ/ρ and the simplified component equations for the Reynolds
stresses, after invoking 2-D boundary layer approximations and assuming production
balances dissipation in the constant flux region, can be written as:

1
3

q
`1

(
u2 − q2

3

)
+

2
3

q3

Λ
− 2

τ

ρ

∂U
∂z
− 2KU

1 + Ky
τ

ρ
= 0, (34)

1
3

q
`1

(
v2 − q2

3

)
+

2
3

q3

Λ
+

4KU
1 + Ky

τ

ρ
= 0, (35)

1
3

q
`1

(
w2 − q2

3

)
+

2
3

q3

Λ
= 0, (36)

1
3

q
`1

τ

ρ
− v2 ∂U

∂y
+

KU
1 + Ky

(
2u2 − v2

)
= 0, (37)

As before, these equations can be solved to give the following equations for q2 and τ/ρ:

q2 = Λ2
1

a2
1

4

(
1 − 1

2
βRiC

)(
∂U
∂y
− KU

1 + Ky

)2
, (38)

τ

ρ
= a1

(
1 − 1

2
βRiC

) 1
2 (

q2/2
)

, (39)
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where β = 72γ/(1 − 6γ) has been substituted. In these equations, a1 is again given by
Equation (32). Since the gradient Richardson number RiC for curved flow is defined as
the ratio (body force created by streamline curvature)/(typical inertial force). It has been
shown to be RiC = SC(1 + SC) by So [31], where SC for curved flow only is given by

SC =

(
2KU

1 + Ky

)
/
(

∂U
∂y
− KU

1 + Ky

)
. (40)

Equations (38) and (39) can be combined to give an equation for the shear stress and
kinetic energy of turbulence. The result is:

τ

ρ
= a1

[
1 − 1

4
βRiC

]1/2(
q2/2

)
. (41)

This equation is similar to Equation (1). However, a1 is modified by an expression that
is a function of the gradient Richard number, RiC. For RiC � 1, Equation (41) reduces to

τ

ρ
= 0.378 [1 − 1.36RiC]

(
q2/2

)
, (42)

where a1 = 0.378, γ = `1/Λ1 = 0.052 and β = 72γ/(1 − 6γ) = 5.44 have been substituted.
This shows that a1 does not change with flow type. In addition, it is observed that
external body force gives rise to a multiplying function of RiC for a1 in Equation (1). This
case shows that streamline curvature will give rise to a modification of the constant a1 .
Therefore, it could be speculated that an equivalent Equation (1) for atmospheric boundary
layer would be more in line with Equation (41) than with Equation (1).

6. Case III—Rotating Curved Flow

The thermal rotating curved flow case has been treated by So [31]. For the present
case, the flow is assumed to be isothermal and the coordinate system adopted is shown in
Figure 1. In this figure, z is the axis of rotation and Ω is the rotational speed.
Equations (18)–(24) can be simplified to give the component equations for the Reynolds
stresses after invoking 2-D boundary layer approximations and assuming production
balances dissipation in the constant flux region. The resultant equations can be written as:

1
3

q
`1

(
u2 − q2

3

)
+

2
3

q3

Λ
− 2

τ

ρ

∂U
∂y
− 2KU

1 + Ky
τ

ρ
+ 4Ω

τ

ρ
= 0, (43)

1
3

q
`1

(
v2 − q2

3

)
+

2
3

q3

Λ
+

4KU
1 + Ky

τ

ρ
− 4Ω

τ

ρ
= 0, (44)

1
3

q
`1

(
w2 − q2

3

)
+

2
3

q3

Λ
= 0, (45)

1
3

q
`1

τ

ρ
− v2 ∂U

∂y
+

KU
1 + Ky

(
2u2 − v2

)
− 2Ω

(
u2 − v2

)
= 0, (46)

where vw = 0, and uw = 0. For the sake of convenience in deriving an equivalent
Equation (1), τ/ρ has been substituted for −uv in writing down Equations (43)–(46).
Furthermore, it has been assumed that 2ΩU and KU2/(1 + Ky) are of the same order.
Therefore, solving these equations yield the following expressions for q2 and τ/ρ = −uv,
respectively:

q2 = Λ2
1

a2
1

4

(
1 − 1

2
βRiRC

)(
∂U
∂y
− KU

1 + Ky

)2
, (47)

τ

ρ
= −uv = a1

(
1 − 1

2
βRiRC

) 1
2 (

q2/2
)

, (48)
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where β = 72γ/(1 − 6γ) is again obtained for this case, and the gradient Richardson
number RiRC for rotating curved flow is defined as

RiRC = SRC(1 + SRC), (49)

with SRC given by

SRC =

(
2KU

1 + Ky
− 2Ω

)
/
(

∂U
∂y
− KU

1 + Ky

)
(50)

Here, a1 is again given by Equation (32), while RiRC is now defined to include both
rotation and streamline curvature effects. From these results, it can be seen that the
equivalent Equation (1) for rotating curved flow is given by Equation (48). These results
show that the number and type of external body force present do not change the overall
form of the equivalent Equation (1). The form remains the same; however, based on the
Richardson number proposed by Monin and Oboukhov [32], the gradient Richardson
number for rotating curved flow is now given by Equations (49) and (50). Since the
modifying factor for a1 depends on the gradient Richardson number, it will change as the
nature of the external body force changes. These changes do not affect the constants in
Equation (48), therefore, γ and β are again given by 0.052 and 5.44, respectively. If this
behavior holds true for other external body forces, the modifier of a1 for flows with different
external body forces would essentially have the same form; however, the Richardson
number function might be completely different.

7. Case IV—Swirling Flow

The effect of swirl on τ can also be examined in the same way. In this case, the flow is
assumed to be axisymmetric and swirl around the x-axis (Figure 2). Since swirl effect has
been previously examined by So [27], only the final equations for the components of the
Reynolds stresses are given here. This swirling flow is akin to a 3-D shear flow. However,
the following additional assumptions are required to further simplify the component
equations. First, the flow is assumed to be statistically steady, the advection and diffusion
terms are taken to be small by invoking boundary layer approximations and the local
equilibrium assumption. The resultant component equations are written with respect to a
(x, r, φ) coordinate system shown in Figure 2. The velocity components along the coordinate
axis (x, r, φ) are given by (u, v, w), respectively. Details of the derivation of the Reynolds
stress component equations can be found in [27]; therefore, for brevity’s sake, only the final
set of equations is reproduced here to facilitate the derivation of the equation between the
turbulent shear stress and the kinetic energy of turbulence. The Reynolds stress component
equations are [27]:

− q
3`1

(
u2 − q2

3

)
− 2

3
q3

Λ
− 2uv

∂U
∂r

= 0, (51)

− q
3`1

(
v2 − q2

3

)
− 2

3
q3

Λ
+ 4vw

W
r

= 0, (52)

− q
3`1

(
w2 − q2

3

)
− 2

3
q3

Λ
− 4vw

W
r
− 2vw

(
∂W
∂r
− W

r

)
= 0, (53)

− q
3`1

uv − v2 ∂U
∂r

+ 2uw
W
r

= 0, (54)

− q
3`1

vw − v2
(

∂W
∂r
− W

r

)
+ 2

(
w2 − v2

)W
r

= 0, (55)

− q
3`1

uw − vw
∂U
∂r
− uv

(
∂W
∂r
− W

r

)
− 2uv

W
r

= 0, (56)
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Figure 2. Coordinate system for swirling flow.

Solving Equations (51)–(56) yield the following relations for q2, −uv and− vw:

q2 = Λ2
1

a2
1

4
Z1(RiS)

[(
∂U
∂r

)2
+

(
∂W
∂r
− W

r

)2
]

(57)

τrx

ρ
= −uv = a1H(RiS)

(
q2/2

)
(58a)

where H(RiS) =

{
Z1/2

1
Z1 + (1/2)βRiS

}Z1 +
1
2βRiS + σ2

1

(
Z1 +

1
2βRiS − 1

)
(1 + σ1)

1/2

, (58b)

τrφ

ρ
= − vw = a1G(RiS)

(
q2/2

)
(59a)

where G(RiS) =

[
Z1/2

1

Z1 + 1
2 β RiS

] [
σ1(

1 + σ2
1
)1/2

]
. (59b)

The equation for −uv is given by Equation (58a), where, for the sake of brevity, a
function H(RiS) defined in Equation (58b) is introduced. Similarly, the equation for
−vw, given in Equation (59a), is written in terms of a function G(RiS), which is defined
in Equation (59b). The other symbols β, RiS, Z1(RiS), σ and σ1 are defined by the
following expressions:

β = 72γ(1 − 6γ)−1, (60)
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RiS =
2 W

r

(
∂W
∂r −

W
r

)
(

∂U
∂r

)2
+
(

∂W
∂r −

W
r

)2 , (61)

Z1(RiS) = 1 − 5
8
βRiS +

[(
1 − 3

8
βRiS

)2
+

3
2
βRi2S σ2

] 1
2

, (62)

σ = (∂U/∂r)/
(

∂W
∂r

+
W
r

)
, (63)

σ1 =

(
∂W
∂r
− W

r

)
/(∂U/∂r), (64)

where W is the mean swirl velocity in the φ-direction and a1 is again given by Equation (32).
In addition, RiS, defined in Equation (61), has the meaning of a gradient Richardson number
and is the correct parameter to use to characterize swirling flows. Therefore, for swirling
flows, relations similar to Equation (1) are given by Equations (58a) and (59a) for the
turbulent shear stresses τrx and τrφ, respectively. In the swirling flow case, the a1 modifying
functions given in Equations (58a) and (59a) assume a more complicated form compared to
the simple form seen in the curved flow and rotating curved flow cases. This means that the
complexity of the modifying function in the equivalent Equation (1) is greatly influenced
by the complexity of the body forces, which, in turn, is influenced by the interactions of the
3-D mean field with the 3-D turbulence field. However, for the curved flow and rotating
curved flow cases, the mean field is still 2-D in nature; thus, the modifying functions are
relatively simple in those cases. The ratio of the shear stresses τrφ/τrx is then given by the
ratio of G/H, i.e., Equation (59b) divided by Equation (58b). The result is

τrφ

τrx
=

G
H

=
σ1

Z1 + 1
2 βRiS + σ2

1

(
Z1 + 1

2βRiS − 1
) , (65)

For flows with small whirl, such that W/r � ∂W/∂r, Equation (65) reduces to

τrφ

τrx
=

∂W/∂r
∂U/∂r

, (66)

which is simply a statement for isotropic eddy viscosity or mixing length for the turbulent
shear stresses. The relations given by Equations (57), (58a) and (59a) have been used to pre-
dict turbulent swirling flows and the results compared favorably with measurements [27].
Therefore, if Equations (58a) and (59a) are used in conjunction with a turbulent kinetic
energy equation to calculate turbulent swirling flows, improvements over the results previ-
ously obtained by So [27] can be expected because k = (q2/2) is now given by the solution
of the turbulent kinetic energy equation instead of by Equation (50) alone. The present
approach to model swirling flows offers an attractive alternative to the mixing length
and/or the k–ε two equation model. It is much simpler mathematically because the model
stress equations are algebraic in nature.

Furthermore, Equation (42) can be used to evaluate τrx for swirling flows, while τrφ can
be determined from Equation (66) once τrx is known. In this case, the coefficient modifying
RiC can still be taken as 1.36. Another point to note is that Equation (48) can also be used to
relate τ/ρ to

(
q2/2

)
for flows with combined body force effects, such as buoyancy and

system rotation. However, in those cases, the modifying coefficient might take on a value
different from 1.36. It should be pointed out that the Richardson number function becomes
more complicated for the swirling flow case. The function is no longer linear as in the
former two cases; rather, it is quite nonlinear as can be discerned from Equations (58b) and
(59b). This simply reflects the enhanced complications in the turbulence field of a swirling
flow. In spite of this complication, the current case demonstrates that the present approach
can be easily extended to analyze axisymmetric flows.
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8. Case V—Atmospheric Boundary Layer

Equations (18)–(24) are not valid for atmospheric boundary layers. Due to Coriolis
force, density stratification and thermal effect, the governing equations and modelling
proposals are slightly different from those given in Sections 2 and 3. Since the problem
of modelling the atmospheric boundary layer has already been thoroughly treated by
Mellor [25], the present study simply adopt the governing equations and turbulence
models proposed in [25]. It should be pointed out that in modelling the pressure–velocity
correlation terms, the present model as given in Equation (10) does not include the mean
flow gradient effect on the pressure–velocity correlation. In atmospheric boundary layer
modelling, due to Coriolis force, buoyancy and thermal stratification, the mean flow
gradient effect would play an important role. Therefore, it is prudent to take this mean flow
gradient effect into account in the modelling of the pressure–velocity correlation terms.
Inclusion of this effect amounts to adding a term such as Cq2(∂Ui/∂xj + ∂Uj/∂xi

)
to

Equation (10). The coordinate system adopted by Mellor [25] use the x–y plane to represent
the Earth’s surface with the z-axis normal to this plane; refer to Figure 1. Therefore,
the turbulent shear stress is given by − uw. Again, invoking the same boundary layer
approximations and local equilibrium assumption to simplify the modelled equations, the
resulting uiuj, uiθ and θ2 equations in their component form can be deduced from the full
set of modelled equations. After simplifications, these equations are given by Mellor [25] as

q
3`1

(
u2 − q2

3

)
+

2
3

q3

Λ1
+ 2uw

∂U
∂z

= 0, (67)

q
3`1

(
v2 − q2

3

)
+

2
3

q3

Λ1
= 0, (68)

q
3`1

(
w2 − q2

3

)
+

2
3

q3

Λ1
− 2κ g wθ = 0, (69)

q
3`1

uw +
(

w2 − Cq2
) ∂U

∂z
− κ g uθ = 0 (70)

q
3`2

uθ + uw
∂T
∂r

+ wθ
∂U
∂z

= 0, (71)

q
3`2

wθ + w2 ∂T
∂r
− κ g θ2 = 0, (72)

2wθ
∂T
∂z

+
2q
Λ2
θ2 = 0, (73)

where uv = vw = vθ = 0, κ = − (∂ρ/∂T)p/ρ is the coefficient of thermal expansion,
T is the mean temperature, `2 is a length scale introduced in Equation (11) and Λ2 is a
length scale introduced in the modelling of the dissipation rate term in the temperature
variance equation. The modelled term with Λ2 appears in the second term of Equation (73).
Comparing this set of equations with those given in Equations (25)–(28), it can be seen that
density stratifications and Coriolis force give rise to terms that reflect nonlinear effects due
to Coriolis force, and density and thermal stratifications.

Again, Equations (67) to (73) can be solved for the four components of the Reynolds
stress tensor, two components of heat conduction moments, and the temperature variance
θ2 in terms of the mean flow properties. Since the present interest is in deriving a relation
between shear stress and the kinetic energy of turbulence, only the results for –uw and
k = q2/2 are given below. Omitting all algebraic details, the results are

q2 = Λ2
1

(
1
4

a2
1

)
(1 − β1RiB)

[√
1
4
− B2

B2
1
+

1
2

](
∂U
∂z

)2
, (74)
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τ

ρ
= − uw = a1(1 − β1RiB)

1/2

[√
1
4
− B2

B2
1
+

1
2

]1/2

FB(RiB )
{

q2/2
}

, (75a)

FB(RiB) =

1 +
γ1(1 − 6γ)RiB

3γ1(6γ + γ2)RiB + 1
4 a2

1(1 − β1RiB)
(√

1
4 −

B2
B2

1
+ 1

2

)
, (75b)

where γ1, γ2, β1, RiB, B1, B2 and a1 are introduced to abbreviate writing and are given
below as

γ1 = `2/Λ1, γ2 = Λ2/Λ1, (76)

β1 =
21γγ1 + γ1 + 3γ1γ2

(1 − 6γ − 3C)
, (77)

RiB =
κ g (∂T/∂r)

(∂U/∂r)2 , (78)

B1 = Λ2
1

a2
1

4
(1 − β1RiB), (79)

B2 = Λ4
1[ 9γγ1C (γ2 + 6γ)− 3γ(1 − 6γ)

(
3γ2

1 − γγ2
)

+ 9γγ2
1(1 + 3γ2 + 12γ)RiB

]
RiB,

(80)

a1 = 2 [γ(1 − 6γ − 3C)]1/2. (81)

In these equations, RiB is the gradient Richardson number for buoyant flow. Since its
definition has been given by Monin and Oboukhov [32] as the ratio of the body force due to
buoyancy divided by the inertial force of the buoyant flow, it is as defined in Equation (78).
In addition, there is an additional term representing the effect of mean velocity gradient on
the Rotta [28] model for the pressure–velocity correlation term. Therefore, the previously
derived coefficient a1, as given by Equation (32), will be modified by this additional term.
The new term for a1 is given by Equation (81). It can be seen that an additional term
given by (−3C) is added to the expression (1 − 6γ), a consequence of the mean velocity
gradient effect.

Another observation can be made on Equations (74), (75a) and (75b). The presence of
buoyant force, Coriolis force and temperature change in the atmospheric boundary layer
complicates the turbulence field in the surface layer in a significant way. This complication
is reflected in Equations (75a) and (75b) where the dependence on RiB is nonlinear in
nature. However, if RiB is very small, then Equation (75b) can be approximated by one and
Equation (75a) becomes quite similar to Equation (39) for the curved flow case. Even then,
Equation (75a) is not similar to Equation (1), except for the case where RiB is very much
smaller than 1, such that it can be essentially assumed to be zero; then, Equation (1) can be
recovered. In other words, Equation (1) only holds true for this limiting case. For other
more complicated atmospheric conditions, Equation (1) is most likely not applicable.

For the more general case, the required relation between τ/ρ = − (uw) =
(
q2/2

)
is

given by Equation (75a), which can be rewritten in a short form as

τ

ρ
= − (uw) = a1 Z(RiB)

{
q2/2

}
, (82)

where Z(RiB) is defined as

Z =

{
(1 − β1RiB)

1/2

[√
1
4
− B2

B2
1
+

1
2

]
FB(RiB)

}
(83)

The constant between τ and ρ
(
q2/2

)
is given by a1 = 0.328, if as previously assumed,

γ = 0.052 and C = 0.056 are adopted. Since none of the length scales introduced through
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the turbulence models appear explicitly in Equation (82), a length scale equation will not
be required, and Equation (82) can be used in conjunction with the turbulent kinetic energy
equation to define the turbulent shear field in atmospheric boundary layer.

Using the length scales adopted by Mellor [25], the two ratios given in Equation (76)
take on the following values, γ1 = 0.052 and γ2 = 0.533. If RiB � 1, then to the first
approximation, the modifying function Z(RiB) given in Equation (82) can be simplified to

Z(RiB) = 1 − β2RiB, (84)

with β2 = 4.453 determined from Equation (82) by assuming RiB to be very small. Fur-
thermore, γ = γ1 = 0.052, γ2 = 0.533, C = 0.056 and β2 = 4.453 can be deduced
from Equation (82). With these simplifications and assuming very small RiB, Equation (82)
reduces to

τ

ρ
= 0.328 [1 − 4.453RiB]

(
q2/2

)
, (85)

thus, providing a simple correction for density stratification alone. Other effects are
essentially neglected.

It is now clear why Equation (1) works well in the simulations of a wide range of
turbulent mixing flows and boundary layers even though it is derived using atmospheric
boundary layer data [4–14]. For very small RiB, Equation (85) essentially reduces to
Equation (1) or Equation (33). This indicates that if RiB is indeed very small, the sim-
ple turbulent flow and the atmospheric boundary layer behaves similarly and can be
analyzed using Equation (1) or its equivalent. Thus, the good agreement between mod-
elling and measurements of turbulent free mixing flows and boundary layers [4–14] is
not surprising. It is only under the condition RiB � 1 that Equation (1) is valid for use
to analyze atmospheric boundary layers. Verification of this result can be found in the
modelling work of Mellor [24], who solved the set of Equations (67)–(73) together with
the mean flow equations for an atmospheric boundary layer and found good agreement
with atmospheric measurements. Alternatively, Hwang [34] solved one more equation
governing the length scale ` in order to avoid making an assumption between the length
scales ` and `1 and `2, and Λ1 and Λ2. His calculations of a stratified boundary layer also
compared favorably with measurements. Thus, the Mellor [25] and Hwang [34] simula-
tions indicate that when either Equation (82) or Equation (85) is used in conjunction with a
k-equation to define the turbulent shear field for atmospheric boundary layers, reasonably
good agreement can be achieved between calculations and measurements. In view of
this analysis, the simulation studies of Mellor [25] and Hwang [34] strongly support the
conclusions drawn for Equation (1) and Equation (31).

9. Discussion

If RiB � 1, Equation (85) is essentially identical to Equation (1). This could be the
reason why good agreement between simulation results and measurements were obtained
by researchers who made use of Equation (1) in their one-equation modelling studies
of different types of turbulent flows [4–14]. In view of this, it can be inferred that the
one-equation model based on Equation (1) and adopted by former researchers [4–14] is
essentially valid; thus, rendering their one-equation model less phenomenological and
more analytically inclined. Furthermore, the good to excellent turbulent modelling results
obtained by different researchers [4–14] using the one-equation model based on the phe-
nomenological Equation (1) demonstrates that the one-equation model is just as effective
as any two-equation turbulence model. In view of the firm theoretical backing given to
the one-equation model in the current study, the present approach could facilitate the
extension of the one-equation model to cover a wide range of flows where external body
force effects are present and are instrumental in changing the turbulent characteristics
of the flow. External body force effects can be accounted for by thoroughly analyzing
the turbulent flow modelled equations with external body forces present. This approach
had been shown to work well for 2-D flows by So [30] who deployed the methodology to
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investigate the effect of external body forces on the Reynolds analogy in thermal flows.
For swirling flows, if the flow is 3-D but axisymmetric, it can still be handled by a 2-D
approach. This explains why the modifying functions in Equations (58a) and (59a) are no
longer linear in terms of RiS. Therefore, the present approach paves the way to extend the
treatment to 3-D flow as well. The results thus obtained might not be as simple as that
given in Equation (85); however, the methodology provides an alternative to formulate a
one-equation model for 3-D flows.

Since the viability and applicability of Equation (1) has already been demonstrated
by previous researchers [4–14], and the focus of the present paper is on establishing a
firm theoretical base for Equation (1), therefore, it is deemed unnecessary to run more
validation cases to affirm the application of Equation (1). The present analysis shows the
way to broaden the approach to complex flows with or without body force effects and has
demonstrated that the analysis outlined above can be extended to treat four cases with
widely different external body force effects. Furthermore, the same methodology has been
used by So [31] to seek corrections to the Reynolds analogy for flows with external body
forces, and the improvements thus obtained are substantiated by comparison with heat
transfer measurements on a rotating turbine blade. Therefore, in the following discussion,
the focus is on examining the ability of the one-equation model for flows with external body
force effects, such as those derived from streamline curvature, rotation, swirl, buoyancy, etc.

For ease of reference, results of a1 and τ for the five cases examined are tabulated
below (together with their respective equation number in the text). These five cases have
been selected to reflect the effects of a wide range of external body forces, such as density
stratification, rotating curved flow and swirling flow. That way, the τ/ρ and k = q2/2
equation for the five cases are readily available for examination, and the complex external
body force effect on the τ/ρ and k = q2/2 equation can be easily identified and studied.
These results are:

Case (I) Simple Flow—Equations (32) and (33)

a1 = 2 [γ(1 − 6γ)]1/2,

τ

ρ
= 0.378

(
q2/2

)
,

Case (II) Curved Flow—Equation (42)

τ

ρ
= 0.378 [1 − 1.36RiC]

(
q2/2

)
,

Case (III) Rotating Curved Flow—Equation (48)

τ

ρ
= − ρuv = 0.378

(
1 − 1

2
βRiRC

) 1
2 (

q2/2
)

,

Case (IV) Swirling Flow—Equations (58a), (58b), (59a) and (59b)

τrx

ρ
= −uv = 0.378H(RiS)

{
q2/2

}

where H(RiS) =

{
Z1/2

1
Z1 + (1/2)βRiS

}Z1 +
1
2βRiS + σ2

1

(
Z1 +

1
2βRiS − 1

)
(1 + σ1)

1/2

,

τr∅
ρ

= − vw = 0.378G(RiS)
{

q2/2
}

,

where G(RiS) =

[
Z1/2

1

Z1 + 1
2 β RiS

] [
σ1(

1 + σ2
1
)1/2

]
,
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Case (V) Atmospheric Boundary Layer—Equations (81) and (85)

a1 = 2 [γ(1 − 6γ − 3C)]1/2

τ

ρ
= 0.328 [1 − 4.453RiB]

(
q2/2

)
In writing down these expressions, the derived value of a1 for each case is specified.

For Cases (I)–(IV), the value of a1 is determined to be 0.378, while for Case (V), its value is
0.328. The difference can be attributed to the modelling of the pressure–velocity correlation
terms. In Cases (I)–(IV), it is assumed that the effect of the mean field gradient on the
pressure–velocity correlation terms is essentially zero; therefore, it is not included in the
model given in Equation (10) as recommended by Rotta [28]. However, in Case (V), the
Rotta model is modified to include the effect of the mean velocity gradient term for the
atmospheric boundary layer, even for the condition where RiB � 1. In other words,
the following models are suggested for energy redistribution, i.e., the pressure–velocity
correlation terms:

− p

(
∂ui

∂xj
+

∂uj

∂xi

)
= −1

6
q
`1

(
uiuj − δij

q2

3

)
+ Cq2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
(86)

This gives rise to an a1 = 2 [γ(1 − 6γ − 3C)]1/2, which is identical to Equation (81).
Using the same model constants as before, a1 now assumes a value of 0.328, which is much
closer to 0.3 as suggested by Nevzgljadov [2] and determined from data obtained for free
mixing flows, boundary layers and free shear layers [5–10]. It should be pointed out that, in
Cases (I)–(IV), if the pressure–velocity correlation terms in the Reynolds stress equations are
also modelled by Equation (86), then a1, instead of taking on a value given by Equation (32),
would take on a value given by Equation (81). Using the same values of `1, Λ1, γ and C as
those suggested for Case (V), a1 is again determined to be 0.328. This value is more in line
with 0.3 deduced by Nevzgljadov [2] and determined by Lee and Harsha [5], Harsha [7],
Harsha and Lee [8] and Bradshaw et al. [9,10]. The data of these studies were drawn
from a wide variety of turbulent free mixing flows and boundary layers with no external
body force effects, no heat transfer and no density stratification. Therefore, current results
suggest that modelling the pressure–velocity correlation or energy redistribution terms
as given in Equation (10) might not be appropriate, irrespective of whether the flow is
under the influence of external body force or not. Rather, the model should be revised
to that given in Equation (86). This could broaden the application of Equation (1) and its
equivalent to flows with or without external body forces effect.

Another point to note is that in all five cases studied, the form of the shear stress and
kinetic energy equation is very similar. However, only the equation derived for Case (I)
has an identical form with that proposed by Nevzgljadov [2]. In the other four cases, the
constant a1 is modified by an expression that is a function of the gradient Richardson
number RiF of the flow under consideration. In other words, a general shear stress and
kinetic energy equation that is valid for all flow cases considered, except the swirling flow
case, can be written as

τ

ρ
= a1[1 − ARiF]

(
q2/2

)
(87)

where A takes on a different value for each case. The resulting expression for Case (I) can
be recovered identically irrespective of the value of A because RiF = 0 for this case. The
value of A for the other four cases has been determined in Sections 6–9 and summarized
above. In view of this, it can be concluded that Equation (1) is only valid for simple
flow without buoyancy and/or other body force effect. It is also not valid for other flow
types. Furthermore, it should be pointed out that A only depends on the model constants
assumed. On the other hand, a1 is influenced by how the pressure–velocity correlation
terms are modelled. The current study suggests that a more suitable model for the pressure–
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velocity correlation terms should be that given by Equation (86), rather than that proposed
by Rotta [28]. After all, external body forces do affect the mean velocity field as well as
its gradient field; consequently, they should also have an effect on the modelling of the
pressure–velocity correlation terms in flows with body force effect. The result is an a1 given
by Equation (81) rather than by Equation (32) and is uniformly valid for all flow cases
considered. Further, one could speculate that this might also hold true for other flow cases
that have not been examined in the present analysis.

One-Equation Model Based on Equation (87)

The analytically derived Equation (87) is valid for simple as well as complex turbulent
flows. It is also an equation that is derived from the Reynolds stress equations. Therefore, it
is valid for all Re. Consequently, a one-equation model based on this equation also will be
valid for modelling turbulent flows with and without body force effects for all Re. The one-
equation model only needs to solve the k-equation since the ε appearing in the k-equation
can be determined from a simplified definition of νt under the assumption of isotropic
dissipation. The two-equation model is now reduced to solving the k-equation plus the
algebraic equation given by Equation (87). A typical k-equation can be written as [1]

∂k
∂t

+ Ui
∂k
∂xi

= P − E + ∂

∂xj

[(
ν +

νt

σk

)
∂k
∂xj

]
(88)

In this equation, P = −uiuj∂Ui/∂xj is the production of k, Ui is the ith component
of the mean velocity, xj is the jth component of the coordinate and σk is a constant. The
unknown dissipation rate ε is determined by invoking the isotropic dissipation assumption
and by making use of the turbulent viscosity νt definition, namely, νt = τ/

(
∂Ui/∂xj

)
.

Thus simplified, the result yields ε = Cµ

(
k2/τ

)[
∂Ui/∂xj

]
where Cµ is a constant. This way,

ε can be determined once the shear stress τ is known. The two-equation turbulence model
is then reduced to solving Equation (88) with τ given by Equation (87). Since Equation
(87) is derived analytically from the simplified Reynolds equations for a wide variety of
flows and a1 only depends on the model constants invoked, the equation is valid for all
Re. Consequently, the questions posed in Section 1.1 have all been answered and the one-
equation model thus formulated is valid for all Re, much like other turbulence models, such
as the zero-equation, one-equation, two-equation and Reynolds stress models, discussed
in [1]. The k-equation is relatively simple and easy to implement. Further, unlike other
one-equation models [1], the k-equation in this one-equation model can also account for the
history effect of the turbulent kinetic energy because the modelled k-equation does account
for the convection, diffusion and the production and/or destruction of k. Demonstration of
the validity and viability of this one-equation approach to model turbulent flows with no
body force effects had already been provided by a host of researchers [4–14]; consequently,
its extension to complex turbulent flows with body force effects provides an attractive
alternative to the conventional more complicated two-equation models.

10. Conclusions

The current study demonstrates that the phenomenologically deduced Equation (1)
can be derived from turbulence modelling of the Reynolds stress equations by invoking
equilibrium and isotropic turbulence behavior in the constant flux or near-wall region
of the boundary layer. The analytically derived equation is given by Equation (87), and
its constant, a1, is found to depend only on the turbulence models with their usually
adopted constants. Previously, by correlating experimental measurements of τ/ρ and(
q2/2

)
obtained from turbulent boundary layers and free mixing flows, the constant was

determined to be 0.3 by Harsha and Lee [8] and Bradshaw et al. [9]. Adopting commonly
used model constants for the turbulence models assumed, a1 was determined to be 0.378
for all cases considered, except for the atmospheric boundary layer. The value of a1 for this
latter case is 0.328, which agrees to within 10% of that suggested by Nevzgljadov [2] and
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previously determined by correlation with experimental data [8,9]. If the pressure–velocity
correlation terms are modelled by Equation (86) rather than by Equation (10) for all cases
studied, the value of a1 thus determined is 0.328, more in line with the value suggested
in previous studies [2,8,9]. This indicates that the equation thus derived for Case (I) is
essentially the same as Equation (1) formulated by Nevzgljadov [2] using data derived
from atmospheric boundary layer measurements. Therefore, the current study suggests
that the pressure–velocity correlation terms should be modelled by Equation (86) instead
of by Equation (10). In other words, the model proposed by Rotta [28] should be modified
to include the part play by the velocity gradient term, irrespective of whether buoyancy
effect is present in the flow or not. This affirms the necessity to account for the mean field
gradient effect on the pressure–velocity correlation of the turbulence field, irrespective of
whether or not the flow is influenced by external body forces.

The present study also shows that Equation (1) is valid for all Re as well as simple
flows without body force and atmospheric boundary layer where the condition RiB � 1
is satisfied. Even though the actual RiB had not been calculated and reported by Nevzgl-
jadov [2], this finding supports the claim that the atmospheric boundary layer data adopted
by Nevzgljadov [2] will most likely satisfy the RiB� 1 condition. This conclusion is further
supported by the studies of Laster, Bradshaw, Ferriss, Lee, Harsha and others [4–14] who
used Equation (1) to model boundary layers and free mixing flows with no external body
forces, and their results are in good agreement with measurements. The present analysis,
therefore, demonstrates that if the condition RiB� 1 is satisfied, the atmospheric boundary
layer is essentially a simple boundary layer with zero or insignificantly small buoyancy
effect. Therefore, buoyancy is not an important factor in the near-wall region and that is
why Equation (1) deduced from analyzing atmospheric boundary layer measurements
by Nevzgljadov [2] is essentially identical to Equation (33) which is derived for a simple
boundary layer flow. Finally, since Equation (33) is derived from the Reynolds Stress
equations, it is valid for all Re.
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Nomenclature

a1 constant in Equation (1)
A constant in Equation (87)
gi = (0, 0,−g) gravitational vector
g gravitational constant
k = q2/2 turbulent kinetic energy
K = 1/R surface curvature
p fluctuating static pressure
P mean static pressure
Prt turbulent Prandtl number for stationary plane flow
q2/2 = u2 + v2 + w2 kinetic energy of turbulence
r radial distance from origin of co-ordinate system
R radius of curvature or distance from the axis of rotation
Re flow Reynolds number
RiB Richardson number for atmospheric boundary layer
RiC Richardson number for curved flow
RiF Richardson number for complex flow
RiRC Richardson number for rotating curved flow
RiS Richardson number for swirling flow
T mean temperature of flow
Uj mean velocity vector
U mean velocity along x-axis
V mean velocity along r-axis or y-axis
W circumferential mean velocity along the φ direction
u, v, w fluctuating velocities along x, y, z or z, r, φ directions, respectively
x, y, z coordinates along the flow, normal to the flow, and normal to the x–y plane, respectively

Greek Symbols

α the kinematic heat conductivity (or thermal diffusivity)
β = 72γ/(1− 6γ) function introduced in Equation (38) to abbreviate equation writing
β1 constant defined in Equation (77)
γ = `1/Λ1 length scale ratio
γ1 = `2/Λ1 length scale ratio introduced in Equation (76)
γ2 = Λ2/Λ1 length scale ratio introduced in Equation (76)
σT molecular thermal diffusivity
εijk alternating tensor
ε local turbulent dissipation rate
θ fluctuating temperature

κ = − 1
ρ

(
∂ρ
∂T

)
p

coefficient of thermal expansion

`1 length scale introduced in Equation (10)
`2 length scale introduced in Equation (11)
Λ1 dissipation length scale introduced in Equation (12)
Λ2 dissipation length scale introduced in Equation (73)
ρ fluid density
ν fluid kinematic viscosity
νt eddy viscosity or turbulent kinematic viscosity
τ turbulent shear stress
Ω rotational speed of co-ordinate system about z-axis
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