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Abstract: In practical engineering, it is a cost-consuming problem to consider the time-variant
reliability of both random variables and interval variables, which usually requires a lot of calculation.
Therefore, a time-variant reliability analysis approach with hybrid uncertain variables is proposed
in this paper. In the design period, the stochastic process is discretized into random variables.
Simultaneously, the original random variables and the discrete random variables are converted into
independent normal variables, and the interval variables are changed into standard variables. Then it
is transformed into a hybrid reliability problem of static series system. At different times, the limited
state functions are linearized at the most probable point (MPP) and at the most unfavorable point
(MUP). The transformed static system reliability problem with hybrid uncertain variables can be
solved effectively by introducing random variables. To solve the double-loop nested optimization in
the hybrid reliability calculation, an effective iterative method is proposed. Two numerical examples
and an engineering example demonstrate the validity of the present approach.

Keywords: stochastic process; interval variable; time-variant reliability; hybrid model

1. Introduction

Due to structural material performance degradation, changing working environment,
time-variant load effects, etc., the reliability of the structure exhibits time-variant proper-
ties [1–6]. Over the past decades, different time-variant reliability analysis methods have
been developed including first-passage approaches, numerical simulation approaches,
extreme value approaches and quasi-static approaches. The first-passage methods based
on out-crossing events [7] have been developed. The representative methods are the PHI2
method [8], improved PHI2 method [9] and joint out-crossing rate method [10,11]. Al-
though many first-passage methods [10,12,13] aimed at accuracy and efficiency have been
developed for two decades, it is generally hard to achieve the first-time out-crossing rate
due to complicated mathematical characteristics. Different numerical simulation methods
have been developed including Monte Carlo methods [14] and their improved versions,
namely important sampling methods [15,16] and subset methods [17–19]. Although the
numerical simulation method is accurate, it demands huge computational cost. The ex-
tremum method [20–23] mainly focuses on the worst scenario over the time scale, in which
surrogate model or probability distribution are used to describe the uncertainty of response
extremum for time-variant problem. In some cases, the extreme value distribution may be
subject to multi-modal or highly non-linear distribution, and the realistic application of the
extreme value method is hindered. Recently, the quasi-static methods have been developed
to improve efficiency, such as the stochastic process discretization approach [24] and the
envelope method [25]. These methods translate the estimation of time-dependent failure
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probability into the estimation of time-independent failure probability. The stochastic
process discretization approach is considered in this study. Gong and Zhao [26] proposed a
structural reliability analysis method considering the change of resistance. Jiang et al. [24]
developed a method for solving time-variant reliability based on process discretization
(TRPD). The idea is to discretize the stochastic process and obtain several random variables,
so that the time-variant reliability problem can be transformed into the time-invariant
reliability problem, thus avoiding the solution of the crossover rate. Then the method is
extended to the reliability analysis of time-variant systems [27]. Jiang et al. [28] proposed
the improved TRPD, in which time invariant reliability analysis is only performed at the
component level, and no new random variables are needed. It makes the solving process
more concise and clearer, and effectively saves the calculation cost. Cazuguel et al. [29]
transformed the time-variant reliability model into the static reliability model by expressing
the Gaussian process as multiple independent standard normal distributions. Gong and
Frangopol [30] discretized the time interval considered into many uniformly distributed
time moments. At each moment, the first-order reliability analysis method (FORM) is used
to calculate the instantaneous reliability, and finally the time-variant reliability is calculated
by using the multivariate normal distribution function.

The above stochastic process discretization approach only deals with random vari-
ables of probability distribution. However, for short enough sample data in engineering,
the precise distribution of uncertain parameters is difficult to obtain, and the range of
uncertain parameters is often easy to achieve. Interval is suitable to describe such uncer-
tain variables [31–35]. Although the time-variant reliability method based on the discrete
stochastic process method has made some progress, the time-variant reliability method
based on random parameters and interval parameters is still in its infancy [2], and there are
still some technical problems to be solved. First, general forms of time-variant reliability
analysis issues with mixed variables are still lacking. Special cases of mixed time-variant
reliability have been studied by Shi [36], in which the correlation at each moment has
not been considered. Second, the reliability analysis is a multi-level nested optimization
problem at each moment, and efficiency is difficult to be guaranteed. Therefore, it is an
important engineering significance to study effective time-variant reliability methods.

A reliability analysis method of the time-variant method with stochastic process
discretization is presented in this paper to tackle the above issue. The remaining structure
of this paper is organized as follows. Section 2 represents the problem of general time-
variant reliability. A general time-variant reliability model with random variables and
interval variables and its effective solution algorithm are provided in Section 3. An analysis
of the examples is given in Section 4. Section 5 is the conclusion.

2. Problem of General Time-Variant Reliability Model

Time-variant reliability of structures refers to the possibility of completing prede-
termined functions within a specified time and under specified conditions for structures
subjected to dynamic uncertainties. For a specific structure whose limit-state function is
g(X(t), Y, t), the probability of structural reliability within the time period [0, T] can be
defined as:

Ps(T) = Prob{∀t ∈ [0, T]|g(X(t), Y, t) > 0} (1)

where Prob stands for probability operation, t is the time, T is the design lifetime, X(t) =
[X1(t), X2(t), . . . , Xn(t)] is the n-dimensional stochastic process vector, and Y = [Y1, Y2, . . . , Yh]
is the h-dimensional random vector. The out-crossing rate method is the most commonly used
method to solve time-variant reliability problems. But sometimes it is difficult to calculate the
crossing rate accurately and effectively.

The time-variant reliability analysis method based on stochastic process discretization
avoids the calculation of out-crossing rate and simplifies the solving process of time-
variant reliability. According to the method in literature [26,27], the design lifetime T
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is discretized into m equal periods with each time step size ∇t = T
m . According to the

reliability calculation theory of series system, Equation (1) can be changed into:

Ps(T) =
{

m
∩

i=1

[
g(Xi, Y, ti) > 0, ti = (i− 1

2
)∆t, ∆t =

T
m

]}
(2)

where Xi= [X1(ti),X2(ti), . . . , Xn(ti )]
T = (Xi,1, Xi,2, . . . , Xi,n), i= 1, 2, . . . , m,

(Xi,1, Xi,2, . . . , Xi,n), i= 1, 2, . . . , m, and (XT
1 , XT

2 , . . . , XT
m) is m × n dimensional random vari-

able obtained by the discrete process X(t). Obviously, Equation (2) is a time-variant reliability
problem with only random variables. If all random variables can provide accurate probability
distribution, the reliability calculation can be carried out by using the conventional probabil-
ity model.

3. Problem of General Time-Variant Reliability Model with Random and
Interval Variables

Due to the lack of accurate probability distribution of uncertain parameters in the
time-variant reliability problem, the interval ranges of uncertain parameters are relatively
easy to be given. Therefore, a time-variant reliability analysis model for random variables
and interval variables is constructed. The limit-state function of hybrid uncertain variables
can be formulated as

Ps(T) = Prob{∀t ∈ [0, T]|g(X(t), Y, q, t) > 0} (3)

where q = [q1, q2, . . . , ql ] is the l-dimensional interval vector. The corresponding interval
vector can be defined as

qI ∈ [qL, qR],qi ∈ [qL
i , qR

i ], i = 1, 2, . . . , l (4)

where superscript I, L and R represent interval, upper and lower ranges of interval, respectively.

Ps(T) =
{

m
∩

i=1

[
g(Xi, Y, q, ti) > 0, ti = (i− 1

2
)∆t, ∆t =

T
m

]}
(5)

3.1. Normalization of Random Variables

In the process of time-variant reliability analysis, the Nataf transformation [37] is first
adopted to transform the random variable (X, Y) at time ti into the standard normal space:

[Ui;ρU] = Nata f [Xi;ρX] (6)

(V;ρV) = Nata f (Y;ρY) (7)

where Nataf (·) represents the Nataf transformation. ρX and ρY are the correlation coefficient
matrices of the random variable Xi and Y, respectively. ρU and ρV are the correlation
coefficient matrices of the standard normal variable U and V, respectively.

Let the covariance of the random variable U= (U1, U2, . . . , Um)T be ρU= [ρUi ρUj

]
m×m

,

where i = 1, 2, . . . , m, j = 1, 2, . . . , m. The diagonal element is the variance σ2
Ui

of the
variable Ui, the non-diagonal element is the covariance CU= Cov(Ui, Uj) of the variable Ui
and Uj, and the CU= Cov(Ui, Uj) is a symmetric positive definite matrix of order n, which
can be expressed as follows:

CU = ρU =


Cov(U1, U1) Cov(U2, U1) · · · Cov(Um, U1)
Cov(U1, U2) Cov(U2, U2) · · · Cov(Um, U2)

...
...

...

Cov(U1, Um) Cov(U2, Um) · · · Cov(Um, Um)

 (8)
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The above m-order symmetric positive definite matrix CU has m linearly independent
eigenvectors α1, α2, . . . , αm. Let the linear transformation matrix be A = [α1, α2, . . . , αm],
then A−1CUA = Λ. Λ denotes an N-order diagonal matrix whose diagonal element is the
eigenvalue λi, i = 1, . . . , m of the orthogonal matrix A. Relevant normal random variable U
can be changed into independent normal random variable P by the method of orthogonal
transformation [37].

U = AP (9)

The random vector U is changed into a linearly independent random vector P. It is
known from the matrix theory that A−1 = AT , and Equation (9) can be written as

P = ATU (10)

Superscript T indicates the transpose of the matrix.
Through the orthogonal transformation of Equation (10), the covariance matrix CP can

be transformed into the following form

CP= Cov(Pi, Pj)= Cov(P, PT)= Cov(ATU, UTA) = ATCov(U, UT)A = ATCUA (11)

Similarly, the correlated random variable V can be transformed into the uncorrelated
random variable Q by orthogonal transformation.

Q = BTV (12)

where B is a linear transformation matrix.

3.2. Normalization of Interval Variables

The interval variables q can be expressed as

qi ∈ qI
i = [qL

i , qR
i ] = [qC

i − qW
i , qC

i + qW
i ], i = 1, 2, . . . , l (13)

where superscript C and W are the midpoint and radius of the interval, respectively.

qC
i =

qL
i + qR

i
2

, qw
i =

qR
i − qL

i
2

, i = 1, 2, . . . , l (14)

The interval is normalized

qi = qC
i + δiqR

i , i = 1, 2, . . . , l (15)

δi(i = 1, 2, . . . , l) is a standardized interval variable. The uncertainty domain
Cδ = {δ| δi ∈ [−1, 1], i = 1, 2, . . . , l} becomes a standard multi-dimensional cube, and
the center coincides with the origin.

3.3. Solution of Time-Invariant Reliability Problem

After the normalized transformation of the above hybrid uncertain variables, at the
time ti, the limit-state function g(Xi, Y, q, ti) in the original uncertainty variable space is
mapped to its standardized form G(Pi, Q,δ, ti).

Because of involving random variables and interval variables, the limit-state equation
of a structure G(Pi, Q,δ, ti) = 0 forms a critical region of a strip. Thus, the entire standard
space is divided into three parts: the safety zone, the critical zone and the failure zone.
Schematic diagram for two random variables (P, Q) in two-dimensional standard space is
shown in Figure 1. Therefore, we define the reliability of the structure in the mixed model:
the probability that the structure can perform at least the predetermined function of the
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structure for any possible implementation of the interval parameter at a certain time. The
mathematical formula is expressed as

Ph(T) =
{

m
∩

i=1

[
G = G(Pi, Q,δ, ti) > 0, ti = (i− 1

2
)∆t, ∆t =

T
m

]}
(16)

where subscript h represents the mixed model, G = min
δ

(Pi, Q,δ, ti) and G= 0 represents

the critical failure of the structure.
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As an extension of the probabilistic reliability index, the mixed reliability index βh
can be defined as the shortest distance from the origin to the most probable failure surface
G(P, Q) = 0 in the standard space. Mathematically, it is the solution to the following
optimization problem:

βh= min ‖(Pi
T , Qi

T)
T‖

s.t. G(Pi, Q,δ∗, ti)= 0
(17)

where δ∗ is the most unfavorable point (MUP), which can be obtained through the follow-
ing optimization:

min
δ

G(Pi, Q,δ, ti)

s.t. δT
i δi ≤ 1(i = 1, 2, . . . , L)

(18)

Equations (17) and (18) that define the hybrid reliability index are nested optimization
problems. The most probable point (MPP) Pi, Q is obtained in the outer loop optimization,
while the most unfavorable point (MUP) δ∗ is achieved in the inner loop optimization. The
nested optimization problem in Equations (17) and (18) are solved by decoupling method.
In turn, the inner and outer optimization problems can be solved according to the idea of
the two-layer method.

In each iteration, MPP can be expressed as following:
βk+1 =

G(Pk
i ,Qk

i ,δk+1)−(∇G(Pk
i ,Qk

i ,δk+1))
T

Uk

‖∇G(Pk
i ,Qk

i ,δk+1)‖

Pk+1
i , Qk+1

i = −βk+1 ∇G(Pk
i ,Qk

i ,δk+1)

‖∇G(Pk
i ,Qk

i ,δk+1)‖

(19)
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In the above algorithm, δk+1 is a fixed value. Once MPP points are obtained, interval
variables δk+1 can be obtained through the following optimization.

min
δ

G(Pk+1
i , Qk+1,δ, ti)

s.t.δT
i δi ≤ 1(i = 1, 2, . . . , L)

(20)

In each iteration of MPP search, standardized interval variable δ is fixed. MPP
algorithm updates the random variable, and optimizes the minimum limit-state function
when random variable (P, Q) is fixed. The MUP δ∗ can be obtained by Equation (20).

For the convenience of analysis, the linear expansion of the static limit-state equations
is carried out at the MPP and MUP δ∗k .

Ph(T) =

 m
∩

i=1

 n

∑
j=1

∂Gi
∂Pi,j

∣∣∣∣∣
Pi,j

(Pi,j − Pi,j) +
h

∑
k=1

∂Gi
∂Qk

∣∣∣∣
Qk

(Qk −Qk) +
L

∑
l=1

∂Gi
∂δl

∣∣∣∣
δ∗l

(δl − δ∗l ) > 0

 (21)

Equation (21) can be converted to the following form:

Ph(T) =

 m
∩

i=1

 n

∑
j=1

∂Gi
∂Pi,j

∣∣∣∣∣
Pi,j

(−Pi,j) +
h

∑
k=1

∂Gi
∂Qk

∣∣∣∣
Qi,k

(Qk −Qi,k) +
L

∑
l=1

∂Gi
∂δl

∣∣∣∣
δ∗i,l

(δl − δ∗i,l) > −
n

∑
j=1

∂Gi
∂Pi,j

∣∣∣∣∣
Pi,j

Pi,j

 (22)

A new random vector ξ = (ξ1, . . . , ξm)
T is introduced, which can be expressed as:

ξi = −
n

∑
j=1

∂Gi
∂Pi,j

∣∣∣∣∣
Pi,j

Pi,j,i = 1, 2, · · · , m (23)

Since Pi,j represents a standard normal random variable, the random vector ξ is the
m-dimensional normal distribution. According to the properties of mean and covariance
matrix of random vectors, we can define mean vector µ and covariance matrix C as:

(µξ)i = −
n

∑
j=1

∂G′i
∂Pi,j

∣∣∣∣∣
Pi,j

µPi,j = 0, i = 1, 2, · · · , m (24)

(Cξ)i,v =
n

∑
k=1

n

∑
j=1

∂G′i
∂Pi,j

∣∣∣∣∣
Pi,j

∂G′v
∂Pv,k

∣∣∣∣
Pv,k

CP((i− 1)n + j, (v− 1)n + k), i, v = 1, 2, . . . , m (25)

where µPi,j is the mean of µPi,j , and (i− 1)n + j and (v− 1)n + k in parentheses represent
the numbers of rows and columns in the matrix, respectively. In order to understand the
construction of CP, this paper gives the specific form of the matrix in four simple cases (See
reference [24] for details). Integrating the m-dimensional normal distribution function, we
change Equation (22) into the following expression:

Ph(T) =
∫ +∞

0

∫ +∞
0 · · ·

∫ +∞
0 φm

{[
n
∑

j=1

∂Gi
∂Pi,j

∣∣∣
Pi,j
(−Pi,j) +

h
∑

k=1

∂Gi
∂Qk

∣∣∣
Qi,k

(Qk −Qi,k) +
L
∑

l=1

∂Gi
∂δl

∣∣∣
δ∗i,l
(δl − δ∗i,l)

]
, µθ , Cθ

}
× fQ(Q)dQ

(26)

φm is the probability distribution function of m-dimensional normal distribution.
fQ(Q) denotes the joint probability density function of the random vector Q. Since Equation
(26) is a multi-dimensional integration problem, the numerical solution requires a large
amount of calculation. Therefore, this paper applies a new random variable E and converts
the formula Equation (26) into the following form.
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Ph(T) =
s
· · ·
∫
Ω

fE(e) fQ(Q)dQde

= Prob

{
F−1

E

{
φm

{[
n
∑

j=1

∂Gi
∂Pi,j

∣∣∣
Pi,j
(−Pi,j) +

h
∑

k=1

∂Gi
∂Qk

∣∣∣
Qi,k

(Qk −Qi,k) +
L
∑

l=1

∂Gi
∂δl

∣∣∣
δ∗i,l
(δl − δ∗i,l)

]
, µθ , Cθ

}}
− E > 0

} (27)

where Ω denotes the integral region, which can be expressed as:

Ω =

E, Q

∣∣∣∣∣∣E < F−1
E

φm


 n

∑
j=1

∂Gi
∂Pi,j

∣∣∣∣∣
Pi,j

(−Pi,j) +
h

∑
k=1

∂Gi
∂Qk

∣∣∣∣
Qi,k

(Qk −Qi,k) +
L

∑
l=1

∂Gi
∂δl

∣∣∣∣
δ∗i,l

(δl − δ∗i,l)

, µθ , Cθ



 (28)

FE(e) and fE(e) denote the probability distribution function and the probability density
function of the random variable E, respectively; F−1

E (·) is the inverse function of FE(·).
Equation (28) is a static reliability analysis model with new limit-state equations.

G′(Q, E, δ) = F−1
E

φm


 n

∑
j=1

∂Gi
∂Pi,j

∣∣∣∣∣
Pi,j

(−Pi,j) +
h

∑
k=1

∂Gi
∂Qk

∣∣∣∣
Qi,k

(Qk −Qi,k) +
L

∑
l=1

∂Gi
∂δl

∣∣∣∣
δ∗i,l

(δl − δ∗i,l)

, µθ , Cθ


− E (29)

From Equation (29), we can see that the ultimate expression has nothing to do with
the specific distribution of E. For the convenience of calculation, we can choose a normal
distribution.

Detailed steps of obtaining MPP and MUP are as follows:

(1) Input initial start points P(0)
i , Q(0) and δ(0); set the number of initial iterations k = 0.

(2) Probability analysis is applied, then MPP points P(k)
i,MPP and Q(k)

MPP are searched by

FORM method, and interval variables δ(k) are set to constant values.
(3) Interval analysis is carried out and the MUP δ∗ can be obtained through the optimiza-

tion problem of Equation (20). The value of the random variable is achieved from the
above probability analysis.

(4) Examine convergence. If
∣∣∣G(P(k)

i , Q(k),δ(k), ti)
∣∣∣ ≤ ε1 and ‖(Pi

T , QT)
T − (Pi

T , QT)
T‖ ≤

ε2 (ε1 and ε2 are small positive numbers) go to step 5, otherwise, k = k + 1 go to step (2)
(5) Achieve the MPP Pk+1

i , Qk+1 and MUP δ∗.

4. Numerical Examples

The accuracy and effectiveness of this method are verified by Monte Carlo method.
The calculation steps of Monte Carlo method are as follows: (1) In outer loop, random
variable sample Y is generated, while using the EOLE model [38] to generate stochastic
process samples X(t). (2) In inner loop, at each sample, the optimal solution δ* resulting in
the minimum response of the limit-state function is obtained by the optimization method.
(3) The obtained sample and δ* are used to calculate value of the limit-state function. If
min G(X(t),Y,δ∗, t) ≤ 0, t ∈ [0, T], the number of failures n f = n f + 1. (4) Repeat the above
steps until the total sample size ns is reached. Thus, the cumulative failure probability
Pf =

n f
ns

is obtained.

4.1. Steel Beam

The simply supported steel beam structure [23,24,39] has a span of L = 5m and
a rectangular section of b0 × h0 as shown in Figure 2. It bears uniform load P, and its
middle point is affected by a concentrated dynamic load Q(t). The uniform load P can be
expressed as P = ρstb0h0, where ρst = 78,500 N/m3 is the steel force density. Assuming that
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the corroded part will lose mechanical strength in time, the change rule of the remaining
section area A(t) can be expressed as:

A(t) = b(t)× h(t) (30)

where b(t)= b0 − κt, h(t)= h0 − κt, κ = 0.03mm/year. Thus, on the basis of the strength
failure criterion, the limited state function is established as follows:

G(X, Y(t)) =
b(t)h2(t)

4
σ− (

Q(t)L
4

+
ρstb0h0L2

8
) (31)

where σ represents the material yield stress. The initial dimensions of the beam section b0
and h0 and the material yield stress σ are regarded as random variables, and the dynamic
load F(t) is treated as a stationary Gaussian process. Tables 1 and 2 respectively list the
distribution of specific random parameters and the range of interval parameters.
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Table 1. Distribution of random parameters.

Parameters Distribution Type Mean Value Coefficient of Variation Autocorrelation Coefficient

Yield stress σ (MPa) Lognormal 160 10 NA
Beam width b0 (m) Lognormal 0.2 5 NA
Beam height h0 (m) Lognormal 0.04 10 NA

Stochastic load F(t) (N) Gauss process 3500 20 exp
[
−(3τ)2

]

Table 2. Interval parameters.

Parameters Nominal Value Lower Bound Upper Bound

Beam length L (m) 5 4.5 5.5
Material density ρst (N/m3) 78,500 74,575 82,425

Figure 3 shows that the time-variant reliability index of the steel beam structure
continuously decayed as the design period increased. The algorithm proposed calls the
limit-state equations 540 times, 1055 times and 2170 times respectively, and obtains stable
calculation results. The Monte Carlo sample size is set to 100,000. The limit-state equation
is called 74,441,300 times by using the Monte Carlo method. The proposed approach shows
high calculation efficiency. The calculation error can be expressed as the difference between
the current method and the Monte Carlo method and divided by the Monte Carlo method.
As can be seen from Table 3, with the decrease of the time step, the accuracy of calculation
becomes higher, and the reliability index gradually approaches the accurate value. When
∆t = 2 years, the maximum error is 24.5%. When ∆t =1 year, the maximum error is 15.6%.
When ∆t =0.5 year, the maximum error is 6.67%. Thus, the calculation result is accurate
and meets the engineering needs.
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Table 3. Reliability index in different time step.

1 2 3 4 5 6 7 8 9 10

Monte carlo method 2.22 2.05 1.95 1.88 1.82 1.78 1.74 1.70 1.66 1.63
Case1 2.56 2.47 2.38 2.29 2.24 2.18 2.14 2.10 2.06 2.03

Deviation (%) 15.3 20.4 22.1 21.8 23.1 22.5 23.0 23.5 24.1 24.5
Case2 2.48 2.30 2.20 2.12 2.07 2.02 1.98 1.94 1.91 1.88

Deviation (%) 11.7 12.2 12.8 12.8 13.7 13.5 13.8 14.1 15.6 15.3
Case3 2.30 2.13 2.08 2.00 1.94 1.88 1.83 1.78 1.74 1.70

Deviation (%) 3.60 3.90 6.67 6.38 6.59 5.62 5.17 4.71 4.82 4.29

4.2. A Cantilever Tube Structure

The structure of a tubular cantilever beam [24] is shown in Figure 4, which is subjected
to external forces Q(t), F, P and torque U(t). F and P are permanent loads; Q(t) and U(t) are
dynamic loads. According to [24], material strength R decays with time due to material
degradation, and its decay rule is assumed to be R(t) = R0(1− 0.01t), where R0 is the
initial yield strength.

g(t) = R(t)− σmax(t) (32)

In the formula, σmax(t) is calculated as follows:

σmax(t) =
√

σ2
x(t) + 3τ2

zx (33)

σx(t) =
P + F sin θ1 + Q(t) sin θ2

A
+

M(t)c
I

(34)

M(t) = FL1 cos θ1 + Q(t)L2 cos θ2 (35)

A =
π

4

[
d2 − (d− 2h)2

]
(36)

c = d/2 (37)
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I =
π

64

[
d4 − (d− 2t)4

]
(38)

τzx =
U(t)d

4I
(39)

In this problem, the initial yield strength R0, the size parameters h and d, and the
loads F and P are seen as random variables. The dynamic load Q(t) and U(t) are treated
as Gaussian random processes. Table 4 lists the parameters’ distributions. As shown in
Table 5, the L1 and L2 are treated as interval variables.
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Table 4. Random parameter distributions of tubular cantilever structure.

Parameter Mean Standard Deviation Type of Distribution Autocorrelation Coefficient Function

R0 (Mpa) 550 55 Normal NA
Q(t) (N) 1800 180 Gaussian process sin(0.3τ)/0.3τ

U(t) (Nm) 1900 190 Gaussian process exp(−0.1τ)
F (N) 1800 180 Normal NA
P (N) 1000 100 Type I extreme value NA

d (mm) 42 0.5 Normal NA
h (mm) 5 0.1 Normal NA

Table 5. Interval parameter.

Parameter Interval

L1 [0.11, 0.13] m
L2 [0.05, 0.07] m

Three cases are considered, that is, ∆t = 1 year, ∆t = 0.5 year and ∆t = 1/3 year. We
adopt this method and Monte Carlo to solve the reliability. The random sample number of
Monte Carlo is set to 100,000. Table 6 and Figure 5 show the calculation results. It can be
observed that when ∆t = 1 year, ∆t = 0.5 year and ∆t = 1/3 year, the maximum errors are
25.4%, 9.6% and 5.3% respectively. It can be found that with the decrease of the time step,
the accuracy of reliability solution is gradually improved. In terms of efficiency, Monte
Carlo needs to call the limit-state function 89,175,543 times, while this method calls the
limit-state function 485, 960 and 1340 times, respectively.
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Table 6. The reliability indices of different time steps.

Time/Year 1 2 3 4 5

Monte Carlo method 2.64 2.45 2.30 2.19 2.09
Case1 2.96 2.85 2.76 2.68 2.62

Deviation (%) 12.1 16.3 20.0 22.4 25.4
Case2 2.83 2.67 2.48 2.40 2.28

Deviation (%) 7.2 9.0 7.8 9.6 9.1
Case3 2.78 2.54 2.42 2.27 2.15

Deviation (%) 5.3 3.7 5.2 3.7 2.9
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4.3. A Vehicle Frame

Consider the frame structure of a commercial vehicle as shown in Figure 6, which
consists of two longitudinal beams and multiple transverse beams. The frame is the base of
the whole car. Most parts and assemblies of the car are fixed by the frame. These connecting
parts produce loads on the frame. The static finite element model of the frame is obtained
by simplifying various constraints and structural loads. The maximum displacement in
Y direction after frame deformation can represent its stiffness, which is an evaluation
standard of vehicle performance. Therefore, the limit-state function can be expressed
as follows:

g(th, E, ρ, Q1(t), t) = dm(t)− d(th, E, ρ, Q1(t), t) (40)

where dm(t) = d0e−0.01t denotes maximum allowable vertical displacement of structure,
d0 represents the maximum allowable initial displacement. d(th, E, ρ, Q1(t), t) is the maxi-
mum displacement calculated by finite element software. The thickness th1-th5 of the key
components of the frame are random variables, Q1(t) is time-variant load, and the density ρ

and elastic modulus E of the material are interval variables. Tables 7 and 8 list the random
variables and interval variables of the frame, respectively.
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Table 7. Distribution of random parameters of frame.

Parameter Type of Distribution Mean Coefficient of Variation (%) Autocorrelation Coefficient Function

D0/mm Type I extreme 3.2 10 NA
th1/mm Normal 5 10 NA
th2/mm Normal 5 10 NA
th3/mm Normal 5 10 NA
th4/mm Normal 5 10 NA
th5/mm Normal 5 10 NA
Q1(t)/N Gaussian process 2000 10 exp[−(2.5τ)2]

Table 8. Interval parameters of frame.

Parameter Interval

E1/GPa [189,231]
ρ/kg ×m−3 [7.41 × 103, 8.19 × 103]

The finite element model of the frame consists of 558,178 shell elements and 297,484 nodes
in Figure 6. The limit-state function is constructed through the Kriging model to realize
parameterization and improve the calculation efficiency of reliability analysis. Table 9 and
Figures 7 and 8 show the calculation results. It can be found that when considering the stiffness
failure, the reliability of the frame is on the decline. When T = 1, the reliability index is 3.21;
when T = 10, the reliability index is 2.33. That means the probability of failure increases. The
failure probability is 0.066% in the first year and 0.99% in the tenth year.
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Table 9. Reliability analysis results of automobile frame structure.

Time/Year 1 2 3 4 5 6 7 8 9 10

Propose method 3.21 3.12 3.04 2.95 2.82 2.74 2.66 2.51 2.46 2.33
Failure probability(10−3) 66 90 118 159 240 307 391 604 695 990
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5. Conclusions

A time-variant reliability analysis method considering interval variables and stochastic
processes is proposed in this paper. This method can handle time-variant reliability calcu-
lation when some structural parameters cannot obtain accurate probability distribution
due to insufficient samples. By discretizing the stochastic process in time, the time-variant
reliability problem is changed into a static hybrid reliability problem. The limit-state
function at each time point is expanded at MPP and MUP points. This method avoids
the difficulty in solving the crossing rate problem and is easy to understand conceptually.
The efficient solution format greatly simplifies the multi-layer nested solution process of
time-variant reliability.
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The results of numerical example analysis show that the structure’s reliability will
not be a fixed value due to the degradation of materials and dynamic uncertain loads but
will gradually decrease with the increase of design reference period. Therefore, to ensure
the performance of the structure in the whole service period, it is necessary to carry out
time-variant reliability analysis of the structure. As the size of time step decreases, the
analysis results of the present method approach those of Monte Carlo method. Besides,
the approach has high computational efficiency and can satisfy the needs of complex
engineering problems. However, this method is mainly applied to the case that the load
changes slowly in the time-variant stochastic process. For the dynamic reliability problem
that the stochastic process changes violently, the crossing rate method can be used for
reliability analysis.

In the future, it is necessary to develop the mixed time-variant reliability of random
variables and other uncertain variables, such as fuzzy variables and evidence variables.
The hybrid time-varying reliability optimization method is further extended, such as
multi-disciplinary reliability design optimization, multi-objective reliability optimization
and so on.
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