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Abstract: In the setting of fuzzy metric spaces (FMSs), a global optimization problem (GOP) obtaining
the distance between two subsets of an FMS is solved by a tripled fixed-point (FP) technique here.
Also, fuzzy weak tripled contractions (WTCs) for that are given. This problem was known before
in metric space (MS) as a proximity point problem (PPP). The result is correct for each continuous
τ−norms related to the FMS. Furthermore, a non-trivial example to illustrate the main theorem
is discussed.
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1. Introduction and Preliminaries

During the last decade, the PPP has been discussed as it means determining the
distance between two subsets of the MS. In optimization, this problem is mainly considered
and it is treated by FP analysis by viewing the problem as that of finding an optimal
approximate solution of an FP equation, this problem was known as a GOP. Research
interests played a prominent role in finding a solution to such kinds of problems such as
the papers [1–8].

The authors in [9] are the first ones to use the concept of non-self-coupled mappings
to be used in these problems, they followed the important results of [10]. Separately,
Choudhury and Maity [11], obtained coupled proximity points in general FMSs.

The goal of this work is to consider the global GOP of obtaining the distance between
two subsets of an FMS and solve it by FP methodology through the determination of two
different pairs of points each of which determines the fuzzy distance for which we use a
tripled mapping from one set to the other.

In 1965, fuzzy mathematics was initiated by Zadeh [12]. After that, the fuzzy ideas
appeared in many branches of mathematics through the work of the researchers over the
years. In particular, FMSs [13] have been studied extensively by many authors in many
mathematical disciplines because it has a naturally defined Hausdorff topology which is in
a large way the cause for the successful improvement of metric FP theory in these spaces,
some examples of these works were provided by [14–17].

PPP in a MS is described as follows: Assume that Ξ and Θ are two subsets of a
MS (Λ, d). Then d(Ξ, Θ) = inf{d(ξ, ζ) : ξ ∈ Ξ, ζ ∈ Θ} is called a distance between Ξ
and Θ. One way of achieving d(Ξ, Θ) with a mapping a : Ξ → Θ and then to seek for
min{d(ϑ,aϑ), ϑ ∈ Ξ}. A point ϑ̃ ∈ Ξ is called the best proximity point of a if d(ϑ̃,aϑ̃) =
d(Ξ, Θ). In optimization, this point is a solution to a GOP.

The problem has a fixed-point approach which we adopt here. It seeks to find an
approximate solution to the equation ϑ = aϑ in the optimal way where the optimal
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approximate solution ϑ̃ verifies d(ϑ̃,aϑ̃) = d(Ξ, Θ). The solution of the FP equation ϑ = aϑ
do not have an exact solution if Ξ and Θ are separately (Ξ ∩ Θ = ∅). This is actually
our concern.

This problem has been turned to the FMS by several researchers such as [18–20]. As usual
in a MS, the problem is solved by applying different types of contractions like, for instance,
Choudhury and Maity [3], Jleli and Samet [4], Samet et al. [5] and Raj et al. [7,8]. Here,
we proposed an application of a fuzzy WTC for the above problem. Coupled FP results
has experienced rapid development in the contemporary time through works of [21–27]. In
particular, the corresponding fuzzy coupled FP and related results are presented in [14,22].

In Hilbert spaces, the concept of weak contraction is an extension of Banach’s contrac-
tion principle which was initiated by Alber et al. [28]. It can be said that a weak contraction
lies between a contraction and a non-expansive contraction. By many works FP results
involving weak contractions have been considered, for more details see [22,29–32].

In 2011, a tripled FP result has been introduced by Berinde and Borcut [24] as an
extension of coupled FP result in partially ordered metric spaces, under this space they
presented exciting results about tripled FP consequences. For more illustrations about the
contributions of researchers in this line, see [33–39]. We use a WTC in this manuscript for
which two control functions are applied. Also, a fuzzy Q−property has been used in FMSs
which is important a fuzzified geometric concept of Hilbert space suitable for FMSs.

Now, we give some essential mathematical notions of our discussion.

Definition 1. [40] A binary operation ? : [0, 1]2 → [0, 1] is called a τ−norm if the properties
below are verified:

• ? is commutative and associative;
• for all ϑ ∈ [0, 1], ϑ ? 1 = ϑ;
• for each ϑ1, ϑ2, ϑ3, ϑ4 ∈ [0, 1] so that ϑ1 ≤ ϑ3 and ϑ2 ≤ ϑ4, then ϑ1 ? ϑ2 ≤ ϑ3 ? ϑ4.

Familiar examples of continuous t−norms are ϑ1 ? ϑ2 = min{ϑ1, ϑ2}, ϑ1 ? ϑ2 =
ϑ1ϑ2

min{ϑ1,ϑ2,ρ} for ρ ∈ (0, 1), ϑ1 ? ϑ2 = ϑ1ϑ2 and ϑ1 ? ϑ2 = max{ϑ1 + ϑ2 − 1, 0}.
An FMS is presented by George and Veeramani [13] as follows:

Definition 2. Let Λ 6= ∅ be an arbitrary set, ? be a continuous τ−norm and ∆ : Λ × Λ ×
[0, ∞) → [0, 1] be a fuzzy set. We say that (Λ, ∆, ?) is an FMS if the function ∆ verify the
hypotheses below, for each ϑ1, ϑ2, ϑ3 ∈ Λ, and τ, µ > 0 :

itemize

(fms 1) ∆(ϑ1, ϑ2, τ) > 0,

(fms 2) ∆(ϑ1, ϑ2, τ) = 1⇔ ϑ1 = ϑ2,

(fms 3) ∆(ϑ1, ϑ2, τ) = ∆(ϑ2, ϑ1, τ),

(fms 4) ∆(ϑ1, ϑ2, .) : (0, ∞)→ [0, 1] is left continuous,

(fms 5) ∆(ϑ1, ϑ2, τ) ? ∆(ϑ2, ϑ3, µ) ≤ ∆(ϑ1, ϑ3, τ + µ). itemize

In the below, we will give some topological properties for an FMS in the limit of
our requirements.

Example 1. [13] Assume that Λ = R and for all ϑ1, ϑ2 ∈ R, ϑ1 ? ϑ2 = ϑ1ϑ2. Consider for
τ ∈ (0, ∞),

∆(ϑ1, ϑ2, τ) = e−
|ϑ1−ϑ2|

τ , ∀ϑ1, ϑ2 ∈ Λ.

Then (Λ, ∆, ?) is an FMS.

It is noted that A MS (Λ, d) can be described as an FMS (Λ, ∆, ?) with ϑ1 ? ϑ2 =
min{ϑ1, ϑ2} and ∆(ϑ1, ϑ2, τ) = τ

τ+d(ϑ1,ϑ2)
.
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Definition 3. [13] Suppose that (Λ, ∆, ?) is an FMS, a sequence {ϑv} in Λ is called:

• Convergent to ϑ ∈ Λ, and we write limv→∞ ϑv = ϑ, if for every ε > 0, τ > 0, there is
v0 ∈ N so that ∆(ϑv, ϑ, τ) > 1− ε for all v ≥ v0.

• A Cauchy sequence if for every ε > 0, τ > 0, there is v0 ∈ N so that ∆(ϑv, ϑu, τ) > 1− ε
for all v, u ≥ v0. If every Cauchy sequence is convergent, then an FMS is called complete.

The subsequent results below are very important in the sequel.

Definition 4. [19] Suppose that (Λ, ∆, ?) is an FMS, ∆(ϑ, Ξ, τ) is a fuzzy distance of a point
ϑ ∈ Λ from a non-empty subset Ξ of Λ, which defined as

∆(ϑ, Ξ, τ) = sup
r∈Ξ

∆(ϑ, r, τ), ∀τ > 0,

and ∆(Ξ, Θ, τ) is a fuzzy distance between two non-empty subsets Ξ and Θ of Λ, which is defined as

∆(Ξ, Θ, τ) = sup{∆(s, r, τ), s ∈ Ξ, r ∈ Θ, } ∀τ > 0.

Assume that Ξ and Θ are two non-empty disjoint subsets of an FMS (Λ, ∆, ?), we have

Ξ0 = {ϑ ∈ Ξ, ∃θ ∈ Θ : ∆(ϑ, θ, τ) = ∆(Ξ, Θ, τ), ∀τ > 0},
Θ0 = {θ ∈ Θ, ∃ϑ ∈ Ξ, : ∆(θ, ϑ, τ) = ∆(Ξ, Θ, τ), ∀τ > 0}.

Definition 5. [19] Assume that (Λ, ∆, ?) is an FMS and Ξ and Θ are two non-empty subsets of
Λ. A point ϑ∗ ∈ Ξ is said to be a fuzzy best proximity point of the mapping a : Ξ → Θ if the
stipulation below holds for all τ > 0,

∆(ϑ∗, Ξϑ∗, τ) = ∆(Ξ, Θ, τ).

Definition 6. [8] Assume that (Ξ, Θ) is a pair of non-empty subsets of an FMS (Λ, ∆, ?). The pair
(Ξ, Θ) has a fuzzy Q−property iff ∆(ϑ1, θ1, τ) = ∆(Ξ, Θ, τ) and ∆(ϑ2, θ2, τ) = ∆(Ξ, Θ, τ),
for all τ > 0, implies for ϑ1, ϑ2 ∈ Ξ, θ1, θ2 ∈ Θ that ∆(ϑ1, θ1, τ) = ∆(ϑ2, θ2, τ), for all τ > 0.

Lemma 1. [41] Assume that (Λ, ∆, ?) is an FMS. Then for all ϑ, θ ∈ Λ, ∆(ϑ, θ, .) is nondecreasing.

Lemma 2. [42] ∆ is a continuous function on Λ×Λ× (0, ∞).

Lemma 3. [17] Assume that {jv}, {dv} and {rv} are sequences in Λ so that jv → j and rv → r
as v→ ∞. If ? is a continuous τ−norm, then

lim
a→∞

(ja ? da ? ra) = j ? lim
a→∞

da ? r,

and
lim
a→∞

(ja ? da ? ra) = j ? lim
a→∞

da ? r.

Lemma 4. [17] Assume that a sequence of functions {η(a, .) : (0, ∞) → (0, 1], a ≥ 0} is
monotone increasing and continuous for each a ≥ 0. Then lima→∞η(a, τ) is a left continuous
function in τ and lim

a→∞
η(a, τ) is a right continuous function in τ.

Definition 7. [33] Assume that Ξ 6= ∅ is a subset of a MS (Λ, d) and a : Ξ3 → Ξ (where
Ξ3 = Ξ × Ξ × Ξ) is a given mapping. A trio (ϑ, θ, κ) ∈ Ξ3 is called a tripled FP of a if
ϑ = a(ϑ, θ, κ), θ = a(θ, κ, ϑ) and κ = a(κ, ϑ, θ).

2. Main Results

We begin this section with the definition below.
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Definition 8. Assume that (Ξ, Θ) is a pair of non-empty subsets of a FMS (Λ, ∆, ?). We say
that (ϑ, θ, κ) ∈ Ξ3 is a tripled best proximity point of the mapping a : Ξ3 → Θ if it verifies the
stipulation that for all τ > 0,

∆(ϑ,a(ϑ, θ, κ), τ) = ∆(θ,a(θ, κ, ϑ), τ) = ∆(κ,a(κ, ϑ, θ), τ) = ∆(Ξ, Θ, τ).

It is clear that if Ξ = Θ, a tripled best proximity point reduces to a tripled FP.

Theorem 1. Let (Λ, ∆, ?) be a complete FMS, where ? is an arbitrary continuous τ−norm.
Assume that a : Ξ3 → Θ is a continuous mapping that verifies the hypotheses below:

(a) a(Ξ3
0) ⊆ Θ0,

(b) the pair (Ξ, Θ) verifies fuzzy Q−property,
(c) for each ϑ, θ, κ, ϑ∗, θ∗, κ∗ ∈ Λ,

Ω

 ∆(a(ϑ, θ, κ),a(ϑ∗, θ∗, κ∗), τ)
?∆(a(θ, κ, ϑ),a(θ∗, κ∗, ϑ∗), τ)
?∆(a(κ, ϑ, θ),a(κ∗, ϑ∗, θ∗), τ)


≤ Ω(∆(ϑ, ϑ∗, τ) ? ∆(θ, θ∗, τ) ? ∆(κ, κ∗, τ))

−Υ(∆(ϑ, ϑ∗, τ) ? ∆(θ, θ∗, τ) ? ∆(κ, κ∗, τ)), (1)

where Ω, Υ : (0, 1]→ [0, ∞) are two functions so that
(i) Ω is monotone decreasing and continuous with Ω(ρ) = 0 iff ρ = 1,
(ii) Υ is lower semi-continuous with Υ(ρ) = 0 iff ρ = 1.
Assume that there are ϑ0, θ0, κ0, ϑ1, θ1, κ1 ∈ Ξ0 so that ∆(ϑ1,a(ϑ0, θ0, κ0), τ) = ∆(Ξ, Θ, τ),

∆(θ1,a(θ0, κ0, ϑ0), τ) = ∆(Ξ, Θ, τ) and ∆(κ1,a(κ0, ϑ0, θ0), τ) = ∆(Ξ, Θ, τ), for all τ > 0.
Then there exists ϑ, θ, κ ∈ Ξ0 so that ∆(ϑ,a(ϑ, θ, κ), τ) = ∆(Ξ, Θ, τ), ∆(θ,a(θ, κ, ϑ), τ) =
∆(Ξ, Θ, τ) and ∆(κ,a(κ, ϑ, θ), τ) = ∆(Ξ, Θ, τ).

Proof. By the last hypothesis of the theorem and since a(Ξ3
0) ⊆ Θ0, there are ϑ1, θ1, κ1,

ϑ2, θ2, κ2 ∈ Ξ0 so that for all τ > 0,
∆(ϑ2,a(ϑ1, θ1, κ1), τ) = ∆(Ξ, Θ, τ),

∆(θ2,a(θ1, κ1, ϑ1), τ) = ∆(Ξ, Θ, τ), and
∆(κ2,a(κ1, ϑ1, θ1), τ) = ∆(Ξ, Θ, τ).

(2)

From (2) and fuzzy Q−property, we get for all τ > 0,
∆(ϑ1, ϑ2, τ) = ∆(a(ϑ0, θ0, κ0),a(ϑ1, θ1, κ1), τ),

∆(θ1, θ2, τ) = ∆(a(θ0, κ0, ϑ0),a(θ1, κ1, ϑ1), τ), and
∆(κ1, κ2, τ) = ∆(a(κ0, ϑ0, θ0),a(κ1, ϑ1, θ1), τ).

(3)

Since a(Ξ3
0) ⊆ Θ0, there exists ϑ3, θ3, κ3 ∈ Ξ0 so that for all τ > 0,

∆(ϑ3,a(ϑ2, θ2, κ2), τ) = ∆(Ξ, Θ, τ),
∆(θ3,a(θ2, κ2, ϑ2), τ) = ∆(Ξ, Θ, τ), and

∆(κ3,a(κ2, ϑ2, θ2), τ) = ∆(Ξ, Θ, τ).
(4)

It follows from (2), (4) and fuzzy Q−property that for all τ > 0,
∆(ϑ2, ϑ3, τ) = ∆(a(ϑ1, θ1, κ1),a(ϑ2, θ2, κ2), τ),

∆(θ2, θ3, τ) = ∆(a(θ1, κ1, ϑ1),a(θ2, κ2, ϑ2), τ), and
∆(κ2, κ3, τ) = ∆(a(κ1, ϑ1, θ1),a(κ2, ϑ2, θ2), τ).

(5)
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By induction, we can write for all τ > 0 and all v > 1,
∆(ϑv,a(ϑv−1, θv−1, κv−1), τ) = ∆(Ξ, Θ, τ),

∆(θv,a(θv−1, κv−1, ϑv−1), τ) = ∆(Ξ, Θ, τ), and
∆(κv,a(κv−1, ϑv−1, θv−1), τ) = ∆(Ξ, Θ, τ).

(6)

Similarly, 
∆(ϑv+1,a(ϑv, θv, κv), τ) = ∆(Ξ, Θ, τ),

∆(θv+1,a(θv, κv, ϑv), τ) = ∆(Ξ, Θ, τ), and
∆(κv+1,a(κv, ϑv, θv), τ) = ∆(Ξ, Θ, τ).

(7)

Again, by (6), (7) and fuzzy Q−property, one can write for all τ > 0, and all v > 1,
∆(ϑv, ϑv+1, τ) = ∆(a(ϑv−1, θv−1, κv−1),a(ϑv, θv, κv), τ),

∆(θv, θv+1, τ) = ∆(a(θv−1, κv−1, ϑv−1),a(θv, κv, ϑv), τ), and
∆(κv, κv+1, τ) = ∆(a(κv−1, ϑv−1, θv−1),a(κv, ϑv, θv), τ).

(8)

Set for all τ > 0, and all v ≥ 0,

fv(τ) = ∆(ϑv, ϑv+1, τ) ? ∆(θv, θv+1, τ) ? ∆(κv, κv+1, τ). (9)

Letting ϑ = ϑv−1, θ = θv−1, κ = κv−1 and ϑ∗ = ϑv, θ∗ = θv, κ∗ = κv in (1) and by (8),
one can write for all τ > 0 and all v > 1,

Ω

 ∆(a(ϑv−1, θv−1, κv−1),a(ϑv, θv, κv), τ)
?∆(a(θv−1, κv−1, ϑv−1),a(θv, κv, ϑv), τ)
?∆(a(κv−1, ϑv−1, θv−1),a(κv, ϑv, θv), τ)


≤ Ω(∆(ϑv−1, ϑv, τ) ? ∆(θv−1, θv, τ) ? ∆(κv−1, κv, τ))

−Υ(∆(ϑv−1, ϑv, τ) ? ∆(θv−1, θv, τ) ? ∆(κv−1, κv, τ)),

also, one can write

Ω(∆(ϑv, ϑv+1, τ) ? ∆(θv, θv+1, τ) ? ∆(κv, κv+1, τ))

≤ Ω(∆(ϑv−1, ϑv, τ) ? ∆(θv−1, θv, τ) ? ∆(κv−1, κv, τ))

−Υ(∆(ϑv−1, ϑv, τ) ? ∆(θv−1, θv, τ) ? ∆(κv−1, κv, τ)).

Applying (9), we have

Ω(fv(τ)) ≤ Ω(fv−1(τ))− Υ(fv−1(τ)) ≤ Ω(fv−1(τ)) (10)

Because Ω is a monotone decreasing function, we get fv(τ) ≥ fv−1(τ) for all v ≥ 1.
Thus, we conclude that for all τ > 0, {fv(τ)}v≥0 is an increasing sequence in [0, 1], this
implies that limv→∞ fv(τ) = λ(τ) (say)≤ 1. We want to prove that for all τ > 0, λ(τ) = 1.
If there is τ0 > 0 so that λ(τ0) < 1, then letting v → ∞ for τ = τ0 in (10), we have
Ω(λ(τ0)) ≤ Ω(λ(τ0))− Υ(λ(τ0)), which is a contradiction because Υ(λ(τ0)) 6= 0. Hence
λ(τ) = 1, for each τ > 0. This implies that for all τ > 0,

lim
v→∞

fv(τ) = lim
v→∞

∆(ϑv, ϑv+1, τ) ? ∆(θv, θv+1, τ) ? ∆(κv, κv+1, τ) = 1. (11)

Next, we claim that {ϑv}, {θv}, and {κv} are Cauchy sequences. Suppose the contrary,
there are ε, ` > 0 with ` ∈ (0, 1) so that for every integer a, there exist two integers γ(a)
and β(a) so that β(a) ≥ γ(a) ≥ a and for all a either

∆(ϑγ(a), ϑβ(a), ε) ≤ 1− `,
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when the sequence {ϑv} is not a Cauchy, or for all a,

∆(θγ(a), θβ(a), ε) ≤ 1− `,

when the sequence {θv} is not a Cauchy, or for all a,

∆(κγ(a), κβ(a), ε) ≤ 1− `,

when the sequence {κv} is not a Cauchy. Therefore, based on the above three non-Cauchy
sequences, we can write for all a,

za(ε) = ∆(ϑγ(a), ϑβ(a), ε) ? ∆(θγ(a), θβ(a), ε) ? ∆(κγ(a), κβ(a), ε) ≤ 1− `. (12)

By considering β(a) is the smallest integer exceeding γ(a) such that (12) holds, one can
obtain, for all a > 0,

∆(ϑγ(a), ϑβ(a)−1, ε) ? ∆(θγ(a), θβ(a)−1, ε) ? ∆(κγ(a), κβ(a)−1, ε) > 1− `. (13)

By the triangle inequality for each ג with 0 < ג < ε
2 , for all a > 0, we can write

1− ` ≥ za(ε) = ∆(ϑγ(a), ϑβ(a), ε) ? ∆(θγ(a), θβ(a), ε) ? ∆(κγ(a), κβ(a), ε)

≥ ∆(ϑγ(a), ϑγ(a)+1, (ג ? ∆(ϑγ(a)+1, ϑβ(a)+1, ε− (ג2 ? ∆(ϑβ(a)+1, ϑβ(a), (ג
?∆(θγ(a), θγ(a)+1, (ג ? ∆(θγ(a)+1, θβ(a)+1, ε− (ג2 ? ∆(θβ(a)+1, θβ(a), (ג
?∆(κγ(a), κγ(a)+1, (ג ? ∆(κγ(a)+1, κβ(a)+1, ε− (ג2 ? ∆(κβ(a)+1, κβ(a), (ג
=
(

∆(ϑγ(a), ϑγ(a)+1, (ג ? ∆(θγ(a), θγ(a)+1, (ג ? ∆(κγ(a), κγ(a)+1, (ג
)

?
(

∆(ϑγ(a)+1, ϑβ(a)+1, ε− (ג2 ? ∆(θγ(a)+1, θβ(a)+1, ε− (ג2 ? ∆(κγ(a)+1, κβ(a)+1, ε− (ג2
)

?
(

∆(ϑβ(a)+1, ϑβ(a), (ג ? ∆(θβ(a)+1, θβ(a), (ג ? ∆(κβ(a)+1, κβ(a), (ג
)

.

(14)

Let ∇1(τ), for τ > 0 be a function defined by

∇1(τ) = lim
a→∞

(
∆(ϑγ(a)+1, ϑβ(a)+1, τ) ? ∆(θγ(a)+1, θβ(a)+1, τ) ? ∆(κγ(a)+1, κβ(a)+1, τ)

)
. (15)

Considering lim sup on both sides of (14), by (11), using the continuity property of ?,
and by Lemma 3, we have

1− ` ≥ za(ε)

≥ 1 ? lim
a→∞

 ∆(ϑγ(a)+1, ϑβ(a)+1, ε− (ג2
?∆(θγ(a)+1, θβ(a)+1, ε− (ג2
?∆(κγ(a)+1, κβ(a)+1, ε− (ג2

 ? 1 (16)

= lim
a→∞

 ∆(ϑγ(a)+1, ϑβ(a)+1, ε− (ג2
?∆(θγ(a)+1, θβ(a)+1, ε− (ג2
?∆(κγ(a)+1, κβ(a)+1, ε− (ג2

 = ∇1(ε− .(ג2

Because ∆ is continuous, bounded with range [0, 1], and monotone increasing in the
third variable τ and nondecreasing (Lemma 1), it follows from Lemma 4 that ∇1 defined
in (15) is continuous from the left. Taking the limit as →ג 0 in (17) and using (12), we get

∇1(ε) = lim
a→∞

(
∆(ϑγ(a)+1, ϑβ(a)+1, ε) ? ∆(θγ(a)+1, θβ(a)+1, ε) ? ∆(κγ(a)+1, κβ(a)+1, ε)

)
≤ 1− `. (17)

Consider ∇2(τ), for τ > 0 is a function defined by

∇2(τ) = lim
a→∞

(
∆(ϑγ(a)+1, ϑβ(a)+1, τ) ? ∆(θγ(a)+1, θβ(a)+1, τ) ? ∆(κγ(a)+1, κβ(a)+1, τ)

)
. (18)
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Again, for any ג > 0, for all integer a, one can write

∆(ϑγ(a)+1, ϑβ(a)+1, ε + (ג3 ? ∆(θγ(a)+1, θβ(a)+1, ε + (ג3 ? ∆(κγ(a)+1, κβ(a)+1, ε + (ג3
≥
(

∆(ϑγ(a)+1, ϑγ(a), (ג ? ∆(θγ(a)+1, θγ(a), (ג ? ∆(κγ(a)+1, κγ(a), (ג
)

?
(

∆(ϑγ(a), ϑβ(a)−1, ε) ? ∆(θγ(a), θβ(a)−1, ε) ? ∆(κγ(a), κβ(a)−1, ε)
)

?
(

∆(ϑβ(a)−1, ϑβ(a), (ג ? ∆(θβ(a)−1, θβ(a), (ג ? ∆(κβ(a)−1, κβ(a), (ג
)

?
(

∆(ϑβ(a), ϑβ(a)+1, (ג ? ∆(ϑβ(a), ϑβ(a)+1, (ג ? ∆(ϑβ(a), ϑβ(a)+1, (ג
)

.

(19)

Passing lim inf as a→ ∞ in (19), apply (11) and (13), we have

lim
a→∞

 ∆(ϑγ(a)+1, ϑβ(a)+1, ε + (ג3
?∆(θγ(a)+1, θβ(a)+1, ε + (ג3
?∆(κγ(a)+1, κβ(a)+1, ε + (ג3

 ≥ 1 ? (1− `) ? 1 ? 1 = (1− `),

that is,

(ג3)2∇ = lim
a→∞

 ∆(ϑγ(a)+1, ϑβ(a)+1, ε + (ג3
?∆(θγ(a)+1, θβ(a)+1, ε + (ג3
?∆(κγ(a)+1, κβ(a)+1, ε + (ג3

 ≥ 1− `. (20)

Since ∆ is continuous, bounded with range [0, 1], and monotone increasing in the third
variable τ and nondecreasing (Lemma 1), it follows from Lemma 4 that ∇2 defined in (18)
is continuous from the right. Taking the limit as →ג 0 in (20), we have

∇2(ε) = lim
a→∞

 ∆(ϑγ(a)+1, ϑβ(a)+1, ε)

?∆(θγ(a)+1, θβ(a)+1, ε)

?∆(κγ(a)+1, κβ(a)+1, ε)

 ≥ 1− `. (21)

Combining (17) and (21), we obtain that

lim
a→∞

∆(ϑγ(a)+1, ϑβ(a)+1, ε) ? ∆(θγ(a)+1, θβ(a)+1, ε) ? ∆(κγ(a)+1, κβ(a)+1, ε) = 1− `. (22)

As well, by (12), we get

lim
a→∞

(
∆(ϑγ(a), ϑβ(a), ε) ? ∆(θγ(a), θβ(a), ε) ? ∆(κγ(a), κβ(a), ε)

)
≤ 1− `. (23)

Assume that ∇3(τ), for τ > 0 is a function given by

∇3(τ) = lim
a→∞

(
∆(ϑγ(a), ϑβ(a), τ) ? ∆(θγ(a), θβ(a), τ) ? ∆(κγ(a), κβ(a), τ)

)
. (24)

For ג > 0, one can write

∆(ϑγ(a), ϑβ(a), ε + (ג2 ? ∆(θγ(a), θβ(a), ε + (ג2 ? ∆(κγ(a), κβ(a), ε + (ג2

≥
(

∆(ϑγ(a), ϑγ(a)+1, (ג ? ∆(θγ(a), θγ(a)+1, (ג ? ∆(κγ(a), κγ(a)+1, (ג
)

?
(

∆(ϑγ(a)+1, ϑβ(a)+1, ε) ? ∆(θγ(a)+1, θβ(a)+1, ε) ? ∆(κγ(a)+1, κβ(a)+1, ε)
)

?
(

∆(ϑβ(a)+1, ϑβ(a), (ג ?
(

∆(θβ(a)+1, θβ(a), ג
)
?
(

∆(κβ(a)+1, κβ(a), ג
))

.
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Taking lim inf as a→ ∞ in both sides of the above inequality and apply (11), (22) and
Lemma 3, we conclude that

lim
a→∞

(
∆(ϑγ(a), ϑβ(a), ε + (ג2 ? ∆(θγ(a), θβ(a), ε + (ג2 ? ∆(κγ(a), κβ(a), ε + (ג2

)
≥ 1 ? lim

a→∞

(
∆(ϑγ(a)+1, ϑβ(a)+1, ε) ? ∆(θγ(a)+1, θβ(a)+1, ε) ? ∆(κγ(a)+1, κβ(a)+1, ε)

)
? 1

= 1− `.

It follows from (24) that

∇3(ε + (ג2 = lim
a→∞

 ∆(ϑγ(a), ϑβ(a), ε + (ג2
?∆(θγ(a), θβ(a), ε + (ג2
?∆(κγ(a), κβ(a), ε + (ג2

 ≥ 1− `. (25)

Because ∆ is continuous, bounded with range [0, 1], and monotone increasing in the
third variable τ and nondecreasing (Lemma 1), it follows from Lemma 4 that ∇3 defined
in (24) is continuous from the right. Passing the limit as →ג 0 in (25), we get

∇3(ε) = lim
a→∞

(
∆(ϑγ(a), ϑβ(a), ε) ? ∆(θγ(a), θβ(a), ε) ? ∆(κγ(a), κβ(a), ε)

)
≥ 1− `. (26)

Combining (23) and (26), we get

lim
a→∞

(
∆(ϑγ(a), ϑβ(a), ε) ? ∆(θγ(a), θβ(a), ε) ? ∆(κγ(a), κβ(a), ε)

)
= 1− `. (27)

Now, setting ϑ = ϑβ(a), θ = θβ(a), κ = κβ(a) and ϑ∗ = ϑγ(a), θ∗ = θγ(a), κ∗ = κγ(a) in (1),
we get

Ω


∆
(
a(ϑβ(a), θβ(a), κβ(a)),a(ϑγ(a), θγ(a), κγ(a)), ε

)
?∆
(
a(θβ(a), κβ(a), ϑβ(a)),a(θγ(a), κγ(a), ϑγ(a)), ε

)
?∆
(
a(κβ(a), ϑβ(a), θβ(a)),a(κγ(a), ϑγ(a), θγ(a)), ε

)


≤ Ω
(

∆(ϑβ(a), ϑγ(a), τ) ? ∆
(

θβ(a), θγ(a), τ
)
? ∆
(

κβ(a), κγ(a), ε
))

−Υ
(

∆(ϑβ(a), ϑγ(a), τ) ? ∆
(

θβ(a), θγ(a), τ
)
? ∆
(

κβ(a), κγ(a), ε
))

.

As a→ ∞ in the above inequality, and by(22) and (27), one can write

Ω(1− `) ≤ Ω(1− `)− Υ(1− `),

this is a contradiction because Υ(1− `) 6= 0. Therefore, {ϑv}, {θv}, and {κv} are Cauchy
sequences. The completeness of Λ leads to there are ϑ, θ, κ ∈ Λ so that

lim
v→∞

ϑv = ϑ, lim
v→∞

θv = θ and lim
v→∞

κv = κ. (28)

The continuity of the mapping a and (7) implies that for v > 1,
limv→∞ ∆(ϑv+1,a(ϑv, θv, κv), τ) = ∆(Ξ, Θ, τ),

limv→∞ ∆(θv+1,a(θv, κv, ϑv), τ) = ∆(Ξ, Θ, τ), and
limv→∞ ∆(κv+1,a(κv, ϑv, θv), τ) = ∆(Ξ, Θ, τ).
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Or, equivalently
∆(limv→∞ ϑv+1,a(limv→∞ ϑv, limv→∞ θv, limv→∞ κv), τ) = ∆(Ξ, Θ, τ),

∆(limv→∞ θv+1,a(limv→∞ θv, limv→∞ κv, limv→∞ ϑv), τ) = ∆(Ξ, Θ, τ), and
∆(limv→∞ κv+1,a(limv→∞ κv, limv→∞ ϑv, limv→∞ θv), τ) = ∆(Ξ, Θ, τ).

Therefore, ∆(ϑ,a(ϑ, θ, κ), τ) = ∆(Ξ, Θ, τ), ∆(θ,a(θ, κ, ϑ), τ) = ∆(Ξ, Θ, τ) and ∆(κ,a
(κ, ϑ, θ), τ) = ∆(Ξ, Θ, τ). This leads to (ϑ, θ, κ) is a best proximity point of Ω and this finishes
the proof.

Remark 1. The results of Saha et al. [22] for coupled fixed-point results can be obtained here
without partial order on the space, if we put Λ = Ξ = Θ in Theorem 1.

Corollary 1. Let (Λ, ∆, ?) be a complete FMS, where ? is an arbitrary continuous τ−norm.
Assume that a : Ξ3 → Θ is a continuous mapping that verifies the hypotheses below:

(i) a(Ξ3
0) ⊆ Θ0;

(ii) the pair (Ξ, Θ) verifies fuzzy Q−property;
(iii) for each ϑ, θ, κ, ϑ∗, θ∗, κ∗ ∈ Λ, ∆(a(ϑ, θ, κ),a(ϑ∗, θ∗, κ∗), τ)

?∆(a(θ, κ, ϑ),a(θ∗, κ∗, ϑ∗), τ)
?∆(a(κ, ϑ, θ),a(κ∗, ϑ∗, θ∗), τ)


≤ α(∆(ϑ, ϑ∗, τ) ? ∆(θ, θ∗, τ) ? ∆(κ, κ∗, τ)),

where α ∈ (0, 1). If there are ϑ0, θ0, κ0, ϑ1, θ1, κ1 ∈ Ξ0 so that ∆(ϑ1,a(ϑ0, θ0, κ0), τ) = ∆(Ξ, Θ, τ),
∆(θ1,a(θ0, κ0, ϑ0), τ) = ∆(Ξ, Θ, τ) and ∆(κ1,a(κ0, ϑ0, θ0), τ) = ∆(Ξ, Θ, τ), for all τ >
0. Then there is ϑ, θ, κ ∈ Ξ0 so that ∆(ϑ,a(ϑ, θ, κ), τ) = ∆(Ξ, Θ, τ), ∆(θ,a(θ, κ, ϑ), τ) =
∆(Ξ, Θ, τ) and ∆(κ,a(κ, ϑ, θ), τ) = ∆(Ξ, Θ, τ).

Proof. Only take Ω(e) = e and Υ(e) = e− αe in Theorem 1 for all e ≥ 0.

Now, we introduce a non-trivial example to support the results of Theorem 1.

Example 2. Assume that ? is a minimum τ−norm and Λ = R3 with fuzzy metric

∆((ϑ, θ, κ), (ϑ∗, θ∗, κ∗), τ) =
τ

τ + |ϑ− ϑ∗|+ |θ − θ∗|+ |κ − κ∗| .

Suppose that Ξ and Θ are two subsets of Λ defined by

Ξ = {(0, ϑ) : 0 ≤ ϑ < ∞},
Θ = {(1, ϑ) : 0 ≤ ϑ < ∞}.

Let ϑ̂, θ̂, κ̂, ϑ̂∗, θ̂∗, κ̂∗ ∈ Ξ, where ϑ̂ = (0, ϑ), θ̂ = (0, θ), κ̂ = (0, κ), ϑ̂∗ = (0, ϑ∗), θ̂∗ =
(0, θ∗), κ̂∗ = (0, κ), ϑ, θ, κ, ϑ∗, θ∗, κ∗ ≥ 0.

Define the mapping a : Ξ3 → Θ as a
(

ϑ̂, θ̂, κ̂
)

=
(

1, 1, ln(1 + ϑ+θ+κ
6 )

)
. Also, we will

choose the functions Ω, Υ : (0, 1]→ [0, ∞) as Ω(κ) = 1−κ
κ and Υ(κ) = 1−κ

2κ .
At the first, we verify the fuzzy Q−property for the pair (Ξ, Θ). Here for all τ > 0,

∆(Ξ, Θ, τ) = τ
1+τ .

Also, Ξ0 = Ξ, Θ0 = Θ and a(Ξ3
0) ⊆ Θ0. Assume that ϑ∗1 = (0, ϑ1), ϑ∗2 = (0, ϑ2) ∈ Ξ and

θ∗1 = (1, θ1), θ∗2 = (1, θ2) ∈ Θ, with

∆(ϑ∗1 , θ∗1 , τ) = ∆(Ξ, Θ, τ) and (29)

∆(ϑ∗2 , θ∗2 , τ) = ∆(Ξ, Θ, τ), (30)
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for all τ > 0. From (29) and (30), we have

τ

τ + 1 + |ϑ1 − θ1|
=

τ

1 + τ
=⇒ ϑ1 = θ1 and

τ

τ + 1 + |ϑ2 − θ2|
=

τ

1 + τ
=⇒ ϑ2 = θ2,

respectively. Therefore, for all τ > 0

∆(ϑ∗1 , θ∗1 , τ) =
τ

1 + |ϑ1 − ϑ2|
=

τ

1 + |θ1 − θ2|
= ∆(ϑ∗2 , θ∗2 , τ).

Next, for all τ > 0, as ? is minimum τ−norm,

Ω


∆
(
a(ϑ̂, θ̂, κ̂),a(ϑ̂∗, θ̂∗, κ̂∗), τ

)
?∆
(
a(θ̂, κ̂, ϑ̂),a(θ̂∗, κ̂∗, ϑ̂∗), τ

)
?∆
(
a(κ̂, ϑ̂, θ̂),a(κ̂∗, ϑ̂∗, θ̂∗), τ

)


≤ Ω


∆
((

1, 1, ln(1 + ϑ+θ+κ
6 )

)
,
(

1, 1, ln(1 + ϑ∗+θ∗+κ∗
6 )

)
, τ
)

?∆
((

1, 1, ln(1 + θ+κ+ϑ
6 )

)
,
(

1, 1, ln(1 + θ∗+κ∗+ϑ∗
6 )

)
, τ
)

?∆
((

1, 1, ln(1 + κ+ϑ+θ
6 )

)
,
(

1, 1, ln(1 + κ∗+ϑ∗+θ∗
6 )

)
, τ
)


= Ω
(

∆
((

1, 1, ln(1 +
ϑ + θ + κ

6
)

)
,
(

1, 1, ln(1 +
ϑ∗ + θ∗ + κ∗

6
)

)
, τ

))

= Ω

 τ

τ +
∣∣∣ln(1 + ϑ+θ+κ

6 )− ln(1 + ϑ∗+θ∗+κ∗
6 )

∣∣∣


=

∣∣∣ln(1 + ϑ+θ+κ
6 )− ln(1 + ϑ∗+θ∗+κ∗

6 )
∣∣∣

τ
.

Now, we consider the two cases below:
Case (I). If ϑ + θ + κ ≥ ϑ∗ + θ∗ + κ∗, then∣∣∣ln(1 + ϑ+θ+κ

6 )− ln(1 + ϑ∗+θ∗+κ∗
6 )

∣∣∣
τ

=
ln( 1+ ϑ+θ+κ

6
1+ ϑ∗+θ∗+κ∗

6
)

τ

=
ln(1 +

(ϑ−ϑ∗)+(θ−θ∗)+(κ−κ∗)
6

1+ ϑ∗+θ∗+κ∗
6

)

τ

≤
ln(1 + (ϑ−ϑ∗)+(θ−θ∗)+(κ−κ∗)

6 )

τ
as ln(1 + θ) is increasing function

≤ (ϑ− ϑ∗) + (θ − θ∗) + (κ − κ∗)

6τ

≤ |ϑ− ϑ∗|+ |θ − θ∗|+ |κ − κ∗|
6τ

≤ Ξ
2τ

, where Ξ = max{|ϑ− ϑ∗|, |θ − θ∗|, |κ − κ∗|}.
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Case (II). If ϑ + θ + κ < ϑ∗ + θ∗ + κ∗, then∣∣∣ln(1 + ϑ+θ+κ
6 )− ln(1 + ϑ∗+θ∗+κ∗

6 )
∣∣∣

τ
=

ln( 1+ ϑ∗+θ∗+κ∗
6

1+ ϑ+θ+κ
6

)

τ

=
ln(1 +

(ϑ∗−ϑ)+(θ∗−θ)+(κ∗−κ)
6

1+ ϑ+θ+κ
6

)

τ

≤
ln(1 + (ϑ∗−ϑ)+(θ∗−θ)+(κ∗−κ)

6 )

τ
≤ (ϑ∗ − ϑ) + (θ∗ − θ) + (κ∗ − κ)

≤ |ϑ∗ − ϑ|+ |θ∗ − θ|+ |κ∗ − κ|
6τ

≤ Ξ
2τ

.

Hence,

Ω


∆
(
a(ϑ̂, θ̂, κ̂),a(ϑ̂∗, θ̂∗, κ̂∗), τ

)
?∆
(
a(θ̂, κ̂, ϑ̂),a(θ̂∗, κ̂∗, ϑ̂∗), τ

)
?∆
(
a(κ̂, ϑ̂, θ̂),a(κ̂∗, ϑ̂∗, θ̂∗), τ

)
 ≤ Ξ

2τ
,

where Ξ = max{|ϑ− ϑ∗|, |θ − θ∗|, |κ − κ∗|}.
Finally, for all τ > 0,

Ω
(

∆
(

ϑ̂, ϑ̂∗, τ
)
? ∆
(

θ̂, θ̂∗, τ
)
? ∆
(
κ̂, κ̂∗, τ

))
−Υ
(

∆
(

ϑ̂, ϑ̂∗, τ
)
? ∆
(

θ̂, θ̂∗, τ
)
? ∆
(
κ̂, κ̂∗, τ

))
= Ω

(
τ

τ + |ϑ− ϑ∗| ?
τ

τ + |θ − θ∗| ?
τ

τ + |κ − κ∗|

)
−Υ
(

τ

τ + |ϑ− ϑ∗| ?
τ

τ + |θ − θ∗| ?
τ

τ + |κ − κ∗|

)
=

Ξ
τ
− Ξ

2τ
=

Ξ
τ

,

where Ξ = max{|ϑ− ϑ∗|, |θ − θ∗|, |κ − κ∗|}. Hence for all τ > 0,

Ω


∆
(
a(ϑ̂, θ̂, κ̂),a(ϑ̂∗, θ̂∗, κ̂∗), τ

)
?∆
(
a(θ̂, κ̂, ϑ̂),a(θ̂∗, κ̂∗, ϑ̂∗), τ

)
?∆
(
a(κ̂, ϑ̂, θ̂),a(κ̂∗, ϑ̂∗, θ̂∗), τ

)


≤ Ω
(

∆
(

ϑ̂, ϑ̂∗, τ
)
? ∆
(

θ̂, θ̂∗, τ
)
? ∆
(
κ̂, κ̂∗, τ

))
−Υ
(

∆
(

ϑ̂, ϑ̂∗, τ
)
? ∆
(

θ̂, θ̂∗, τ
)
? ∆
(
κ̂, κ̂∗, τ

))
.

Thus, all requirements of Theorem 1 are fulfilled. So a has a tripled best proximity point. It is
noted that (0, 0, 0) is one such point.

3. Conclusions

The aim of this manuscript is to consider the global GOP of obtaining the distance
between two subsets of an FMS and solve it by FP techniques through the determination of
two different pairs of points each of which determines the fuzzy distance for which we use
a tripled mapping from one set to the other.
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