
symmetryS S

Article

A Generic Model for Identifying QoS Parameters Interrelations
in Cloud Services Selection Ontology during Runtime

Babu Rajendiran * and Jayashree Kanniappan

����������
�������

Citation: Rajendiran, B.;

Kanniappan, J. A Generic Model for

Identifying QoS Parameters

Interrelations in Cloud Services

Selection Ontology during Runtime.

Symmetry 2021, 13, 563. https://

doi.org/10.3390/sym13040563

Academic Editor: José Carlos

R. Alcantud

Received: 17 February 2021

Accepted: 25 March 2021

Published: 29 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of CSE, Rajalakashmi Engineering College, Anna University, Chennai 602105, India;
jayashree.k@rajalakshmi.edu.in
* Correspondence: babu.r@rajalakshmi.edu.in

Abstract: Nowadays, many business organizations are operating on the cloud environment in order
to diminish their operating costs and to select the best service from many cloud providers. The
increasing number of Cloud Services available on the market encourages the cloud consumer to
be conscious in selecting the most apt Cloud Service Provider that satisfies functionality, as well as
QoS parameters. Many disciplines of computer-based applications use standardized ontology to
represent information in their fields that indicate the necessity of an ontology-based representation.
The proposed generic model can help service consumers to identify QoS parameters interrelations
in the cloud services selection ontology during run-time, and for service providers to enhance their
business by interpreting the various relations. The ontology has been developed using the intended
attributes of QoS from various service providers. A generic model has been developed and it is tested
with the developed ontology.

Keywords: cloud services; cloud service provider; quality of service; ontology

1. Introduction

Cloud Computing (CC) has become a large technology caterer for infrastructure, plat-
forms, or software as a service. The flexible and scalable pay-per-use model, virtualization
of resources, and significant cost reduction makes CC a widely accepted paradigm [1].
There is an enormous number of Cloud Service Providers (CSPs) providing a variety of
Cloud Services (CSs), with varied Quality of Service (QoS) attributes, available on the
market. The service portrayals look like functional descriptions and treats CS attributes
that are independent of one another; this conveys that accurate decisions cannot be made
with this minimum descriptive information. Most of the existing Cloud Service Selec-
tion (CSS) techniques fail to interrelate and identify interdependencies among various CS
attributes, and miss showcasing their close correlation by identifying how one attribute
impacts another attribute, as well as the level of impact. This makes the selection of optimal
CSs offered by CSPs, that suit the requirements of cloud consumers, among plenty of
alternatives available on the market, a challenging task. However, as more and more CSPs
are available to users, maximizing profits has become a big challenge for CSPs [2].

To impart technical descriptions of CSs provided by CSPs, a formal method that
considers different QoS attributes and their interrelations is required; ontology is used
to deal with this problem. Ontology provides semantic information by exploring the
meanings of different attributes and identifies relationships between those attributes.

In this paper, we have identified several attributes contributing to the Infrastructure as
a Service (IaaS) selection with reference to the Service Measurement Index (SMI) consortium,
and have developed a QoSOnto-CSS ontology to recognize relations among the attributes
and proposed a generic CSS Onto archetype. The proposed model can be used in all
domains where identifying interrelations among attributes is essential; that makes this
archetype a generic one that suits all service users and service providers.

Symmetry 2021, 13, 563. https://doi.org/10.3390/sym13040563 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13040563
https://doi.org/10.3390/sym13040563
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13040563
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/4/563?type=check_update&version=1

Symmetry 2021, 13, 563 2 of 18

The remaining sections of this paper are systematized as follows. Section 2 provides
a detailed study on existing methodologies—their merits and concerns to be addressed.
Section 3 details the proposed archetype for CSS, whereas Section 4 illustrates the proposed
ontology. Implementation and results are discussed in Section 5. The paper is concluded in
Section 6 with the scope for possible future enhancement.

2. Related Work

Ontology represents the knowledge about specific domains in a hierarchical manner,
in which each level demonstrates the characteristics of a particular concept. Ontology
can be used to realize interoperability, to enable interaction among software systems,
and to help in human-to-human communication [3,4]. Cloud computing possess two
major rulers, namely provider and consumer, imbibed in it. Cloud computing technology
literature focuses on resources and services descriptions of cloud, as well as the discovery
and selection of cloud services, cloud security and interoperability. Ontologies can be
developed for any of these application contexts [5]. Mihaela Oprea developed an ontology
for the educational domain that supports the courses, Formal Languages and Compilers,
to plot knowledge representation in a much better way. This OntoFormalLanguages-
Compilers-1 ontology has been taught to undergraduate computer science students at the
Petroleum-Gas University of Ploiesti [6].

Mohammed et al. [7] developed a service selection ontology for PaaS users by ana-
lyzing service description documents and Web Service Description Documents (WSDD)
of service providers. The developed PaaS ontology does not address QoS attributes.
Zhenglan et al. [8] constructed a QoS ontology for CSS based on some of the core attributes,
and involved only a small number of QoS attributes. Weights are assigned to different QoS
attributes, and services are ranked using an Analytical Hierarchy Process (AHP) approach.
The ontology developed by Zhenglan has no provision to dynamically update new service
information in the ontology. Samer et al. [9] presented a semantic reasoner and segregated it
into domain ontology and relationship ontology. Semantic similarity, along with numerical
similarity, dominant similarity, and recessive similarity, is calculated to find the number of
matching services for a user request. The proposed semantic reasoner does not consider
QoS attributes in its service selection process.

Richard et al. [10] generated semantic rules and a logical reasoning system to col-
lect consistent and correct feedback from users about the usage of services provided by
CSPs. The ontology introduced for SaaS by the author does not involve QoS attributes.
Richard et al. [11] proposed a requirements ontology that, possibly, identified the necessary
user requirements utilized in service searching process, and have provided freedom in
developing its own user tasks. This ontological model of Richard also did not consider
QoS attributes. Yasmine et al. [12] created a SaaS domain ontology that connects various
concepts through an is-a relationship. Feature similarity and request–service hierarchi-
cal similarity is computed to provide an efficient service discovery capability to the user.
The author has not involved QoS attributes in the decision-making of selecting services.
Ontologies have been developed to address faults that occur during the run-time of Web
Services (WS) [13].

Ontologies for various applications have been in use nowadays and, henceforth, there
is a requirement for generic models to find associations among attributes in ontology.
Hence, a generic ontological reference, suitable for all disciplines, is proposed. With this
model, a service user can find related associations among attributes pertaining to their
application, and it is also useful for the service providers to update their requirements
according to the specified QoS.

3. Proposed Generic CSS onto Archetype

Ontology contains a set of concepts in the domain and the relationships between
these concepts. It can be applied to information retrieval to deal with user queries [14].
Ontologies and taxonomies of research topics can support a variety of applications, such as

Symmetry 2021, 13, 563 3 of 18

dataset integration, the exploration process in digital libraries, the production of scholarly
analytics, and modelling research dynamics [15]. There are various ontologies which exist
in the field of computer science, such as computer science ontology [16], gene ontology
resources [17], crop ontology [18], ecology [19], eco-informatics [20], etc.

A generic ontological reference model suitable for all disciplines is a challenging issue.
Hence, we propose a generic model that is used to retrieve the relationships between the
various parameters in the CSS-QoS ontology as a testing environment. The proposed
architecture is as shown in Figure 1, and it would be suitable for all kinds of ontologies.

Symmetry 2021, 13, x FOR PEER REVIEW 4 of 19

Figure 1. Generic CSS Onto Archetype.

Figure 2. Development process of the QoSOnto-CSS ontology.

4. QoS Parameters Ontology for Cloud Service Selection
The ontology development process of QoSOnto-CSS is detailed in Figure 1. Deter-

mining the attributes for CSS and identifying the important QoS attributes contributing
to CSS, as well as verifying the significance of QoS in service selection and, based on the
inference, adding those QoS attributes as classes and its sub-attributes as subclasses will
be added in ontology, is shown below. Then, we have plotted the attributes as hierarchi-
al taxonomy and interpret the relationships between attributes, if any.

Figure 1. Generic CSS Onto Archetype.

The proposed architecture consists of various components, such as service user, service
provider, service repository, CSS-QoS ontology, and the CSS Onto archetype. Service users
are the ones who request the service. Service providers are the ones who provide services
to the users and, the various CSPs are Amazon, Google, Microsoft, etc. CSPs provides
numerous services to the users with several significant attributes, and with a fixed threshold
for each of those attributes. The CSPs maintain and manage the metadata of all the services
offered by them. The service repository acts as a repository of cloud services where service
providers publish their cloud service. The attributes involved in cloud service selection are
gathered from different CSPs and various research articles, and the ontology is developed
by utilizing those attributes. The developed ontology is offered as a tool for CSPs, which
need common vocabulary and semantics to communicate requirements and capabilities.

A cloud user makes a request by providing necessary attributes and the request is
forwarded to the request analyzer module. The request analyzer component has been
designed to delegate the validation of specified attributes. The verified attributes are given
to the proposed generic CSS Onto Archetype for parsing, which results in the exploration
of unknown relationships among attributes.

The steps are shown in Figure 2 and it is described below.
Step 1: Get the necessary input attribute from the user based on the relative importance

of their business.
Step 2: Import the proposed ontology as an OWL file that consists of superclass–

subclass relationships.
Step3: A Resource Description framework (RDF) graph is constructed from the python

package mandated for RDF, called RDFLIB, and it stores the ontology diagram as a collec-
tion of RDF triples, namely subject, predicate, and object.

Step 4: Store the input attribute received from the cloud user in two fields, namely
INPUT_LIST and SEMANTIC_MATCH_LIST.

Step 5: Parse the RDF Graph for identifying and formulating semantically related
attributes based on the values in the INPUT_LIST.

Step 6: Find the parent of attributes in the INPUT_LIST using subclass of relation in
the generated RDF Graph. If the parent is available procced for the next step else proceed
for the step 9.

Step 7: Add the identified parent of INPUT_LIST to the SEMANTIC_MATCH_LIST.
Step 8: Include the identified parent to the INPUT_LIST and procced to Step 5.

Symmetry 2021, 13, 563 4 of 18

Step 9: Inform the cloud user about the various service attributes they receive, in
addition to the attributes stated in the service request.

Thus, the CSS Onto Archetype analyses the semantics of each attribute, and appropri-
ate relations are identified. Cloud users are informed about the various service attributes
they receive, in addition from the attributes stated in the service request.

Symmetry 2021, 13, x FOR PEER REVIEW 4 of 19

Figure 1. Generic CSS Onto Archetype.

Figure 2. Development process of the QoSOnto-CSS ontology.

4. QoS Parameters Ontology for Cloud Service Selection
The ontology development process of QoSOnto-CSS is detailed in Figure 1. Deter-

mining the attributes for CSS and identifying the important QoS attributes contributing
to CSS, as well as verifying the significance of QoS in service selection and, based on the
inference, adding those QoS attributes as classes and its sub-attributes as subclasses will
be added in ontology, is shown below. Then, we have plotted the attributes as hierarchi-
al taxonomy and interpret the relationships between attributes, if any.

Figure 2. Development process of the QoSOnto-CSS ontology.

4. QoS Parameters Ontology for Cloud Service Selection

The ontology development process of QoSOnto-CSS is detailed in Figure 1. Determin-
ing the attributes for CSS and identifying the important QoS attributes contributing to CSS,
as well as verifying the significance of QoS in service selection and, based on the inference,
adding those QoS attributes as classes and its sub-attributes as subclasses will be added in
ontology, is shown below. Then, we have plotted the attributes as hierarchial taxonomy
and interpret the relationships between attributes, if any.

To solve service selection problems, we propose a QoSOnto-CSS based on attributes
specified by Service Measurement Index (SMI) consortium as reference that can be used to
provide most the relevant service to the user, as per their requirements. It also provides
useful information to the user about the services and their relations with other QoS param-
eters. The ontology is created using the protege4.2 editor, which is freely available and
platform-independent. Using Web Ontology Language (OWL), it is easy to publish and
share ontologies on the World Wide Web. Based on the parameters, an ontology for service
selection has been developed and it is shown in Figure 3.

Symmetry 2021, 13, 563 5 of 18

Symmetry 2021, 13, x FOR PEER REVIEW 5 of 19

To solve service selection problems, we propose a QoSOnto-CSS based on attributes
specified by Service Measurement Index (SMI) consortium as reference that can be used
to provide most the relevant service to the user, as per their requirements. It also pro-
vides useful information to the user about the services and their relations with other QoS
parameters. The ontology is created using the protege4.2 editor, which is freely available
and platform-independent. Using Web Ontology Language (OWL), it is easy to publish
and share ontologies on the World Wide Web. Based on the parameters, an ontology for
service selection has been developed and it is shown in Figure 3.

Functional attributes, such as Service Model, OS Series, OS Distribution, CPU Man-
ufacturer etc., are provided by all CSPs by default. In order to make our approach dif-
ferent from other service selection approaches, we have considered QoS as a main class
for our proposed ontology. The various subclasses that are included in QoS are illus-
trated in Figure 4.

Figure 3. Proposed QoSOnto-CSS. Figure 3. Proposed QoSOnto-CSS.

Functional attributes, such as Service Model, OS Series, OS Distribution, CPU Manu-
facturer etc., are provided by all CSPs by default. In order to make our approach different
from other service selection approaches, we have considered QoS as a main class for our
proposed ontology. The various subclasses that are included in QoS are illustrated in
Figure 4.

Symmetry 2021, 13, x FOR PEER REVIEW 6 of 19

Figure 4. QoS subset in QoSOnto-CSS.

4.1. Accountability
Accountability is considered to provide business reputation for CSPs due to a lack

of transparency and less control over data on the market, as well as supplying good data
stewardship for CSPs with compliance across geographic boundaries [21]. The account-
ability subset ontology is shown in Figure 5

Accountability includes subclasses, such as impact assessments, SLA management,
provider personnel requirements, sustainability, incident management, trust manage-
ment, audit and certification, policy enforcement, monitoring status and violations, and
data ownership. An impact assessment is a means of measuring the possible conse-
quences that an activity may have on the privacy of an individual. SLA management is
considered to be important for allocating and managing resources, as well as negation,
controlling the service, reporting, and monitoring service levels with high standards.
Provider personnel requirements show the extent to which CSP personnel have the
skills, education, certifications, and experience required to rightly distribute a service.
Sustainability has an impact on the society, the environment and the economy of the
CSP by offering resources dynamically and serving multiple business users by a com-
mon infrastructure. Sustainability is common to classes such as accountability and a
subclass of performance known as efficiency. Incident management has been taken into
consideration for identifying any unplanned interruptions to an IT service and for re-
cording the response actions essential for mitigating the incident.

Trust management is another vital component that helps in relational exchanges
between ecommerce trading partners in a cloud environment. Audit and certification
verify that the requirements follow internal policies, laws and regulations, corporate
contracts, or other factors. Policy enforcement is indispensable for providing robust and
flexible security and nursing for cloud-based applications and data. Monitoring status
and violations parameters are incorporated, as they are important for managing and
maintaining software and hardware resources, and for providing uninterrupted infor-
mation for those resources and consumers deployed applications on the cloud. Data
ownership details the actual proprietor of data in the CC and the landscape of data
stored, as well as where it was created.

Figure 4. QoS subset in QoSOnto-CSS.

4.1. Accountability

Accountability is considered to provide business reputation for CSPs due to a lack of
transparency and less control over data on the market, as well as supplying good data stew-
ardship for CSPs with compliance across geographic boundaries [21]. The accountability
subset ontology is shown in Figure 5.

Symmetry 2021, 13, 563 6 of 18Symmetry 2021, 13, x FOR PEER REVIEW 7 of 19

Figure 5. QoSOnto-CSS: Accountability subset.

4.2. Agility
Agility is primary for any organization in order to adapt quickly to a continuously

growing business environment by integrating new capabilities to address users’ grow-
ing needs, and to quickly create, test and, introduce software applications that initiates
business growth [22]. Elasticity, flexibility, scalability, extensibility, malleability, and ca-
pability are the service parameters that comprise agility, and these are shown as sub-
classes of agility in Figure 6. Elasticity is the capacity of a system module to quickly adapt
to the real-world workload demand by automatically allocating and deallocating re-
sources. Flexibility of a CSP is based on its capability to include or eliminate predefined
features from a cloud computing service (CCS). Flexibility includes two subclasses, such
as portability and replaceability. Portability indicates the way a service can be shifted
from one CSP to another CSP with a minimum level of distraction. Replaceability dictates
the possibility of changing from one CSP to another. Scalability is characterized by in-
creasing or decreasing the number of CCS obtainable to meet the SLAs and objectives, as
agreed with clients.

Extensibility concentrates on how to include novel, real-time background support
through community build packs. Malleability drives the CSP to adjust to new inclusions
by clients in their previously stated requirements. Capability is significant for determin-
ing the capacity of a CSP by identifying the level of satisfaction by comparing with the
standards.

Figure 5. QoSOnto-CSS: Accountability subset.

Accountability includes subclasses, such as impact assessments, SLA management,
provider personnel requirements, sustainability, incident management, trust management,
audit and certification, policy enforcement, monitoring status and violations, and data
ownership. An impact assessment is a means of measuring the possible consequences
that an activity may have on the privacy of an individual. SLA management is considered
to be important for allocating and managing resources, as well as negation, controlling
the service, reporting, and monitoring service levels with high standards. Provider per-
sonnel requirements show the extent to which CSP personnel have the skills, education,
certifications, and experience required to rightly distribute a service. Sustainability has an
impact on the society, the environment and the economy of the CSP by offering resources
dynamically and serving multiple business users by a common infrastructure. Sustain-
ability is common to classes such as accountability and a subclass of performance known
as efficiency. Incident management has been taken into consideration for identifying any
unplanned interruptions to an IT service and for recording the response actions essential
for mitigating the incident.

Trust management is another vital component that helps in relational exchanges be-
tween ecommerce trading partners in a cloud environment. Audit and certification verify
that the requirements follow internal policies, laws and regulations, corporate contracts,
or other factors. Policy enforcement is indispensable for providing robust and flexible
security and nursing for cloud-based applications and data. Monitoring status and viola-
tions parameters are incorporated, as they are important for managing and maintaining
software and hardware resources, and for providing uninterrupted information for those
resources and consumers deployed applications on the cloud. Data ownership details the
actual proprietor of data in the CC and the landscape of data stored, as well as where it
was created.

4.2. Agility

Agility is primary for any organization in order to adapt quickly to a continuously
growing business environment by integrating new capabilities to address users’ growing
needs, and to quickly create, test and, introduce software applications that initiates business
growth [22]. Elasticity, flexibility, scalability, extensibility, malleability, and capability are
the service parameters that comprise agility, and these are shown as subclasses of agility

Symmetry 2021, 13, 563 7 of 18

in Figure 6. Elasticity is the capacity of a system module to quickly adapt to the real-
world workload demand by automatically allocating and deallocating resources. Flexibility
of a CSP is based on its capability to include or eliminate predefined features from a
cloud computing service (CCS). Flexibility includes two subclasses, such as portability
and replaceability. Portability indicates the way a service can be shifted from one CSP to
another CSP with a minimum level of distraction. Replaceability dictates the possibility of
changing from one CSP to another. Scalability is characterized by increasing or decreasing
the number of CCS obtainable to meet the SLAs and objectives, as agreed with clients.

Symmetry 2021, 13, x FOR PEER REVIEW 8 of 19

Figure 6. QoSOnto-CSS: Agility subset.

4.3. Assurance
Assurance is important to avoid misinterpretations in SLAs, security or privacy

policies, and standard terms and conditions, which leads to increased adoption of CSs by
consumers in their business environments [23]. Assurance incorporates subclasses, such
as availability, resiliency, and serviceability. Stability, fault tolerance, and reliability are
the subclasses considered for availability. Service continuity, supportability, and main-
tainability are the subclasses included in serviceability, and these are demonstrated in
Figure 7.

Availability signifies the degree to which CCS works without any failure. Stability
signifies the importance of predicting interactions among independently developed but
interacting CSs. The parameter of stability is common to the class usability and subclass
availability of assurance. Fault tolerance is the capability of a CS to work continuously
without stalling due to any unknown or unpredictable conditions or situations. Reliabil-
ity is the measure of consistency provided by the CSP while delivering a service. Resili-
ency, as a form of failover, rectifies it by distributing redundant implementations of IT
resources across physical locations. Serviceability quantifies the efficiency of the CSP in
accomplishing maintenance and revising problems with the CCS. Service continuity
provides the capability to deliver protection for critical applications and data that help
businesses to avoid, prepare for, and recover from, a disruption. Supportability is the
level of comfort provided to the users in solving their queries after delivering a CS.
Maintainability is essential to ensure that adequate performance is guaranteed, with
minimum maintenance costs.

Figure 6. QoSOnto-CSS: Agility subset.

Extensibility concentrates on how to include novel, real-time background support
through community build packs. Malleability drives the CSP to adjust to new inclusions by
clients in their previously stated requirements. Capability is significant for determining the
capacity of a CSP by identifying the level of satisfaction by comparing with the standards.

4.3. Assurance

Assurance is important to avoid misinterpretations in SLAs, security or privacy poli-
cies, and standard terms and conditions, which leads to increased adoption of CSs by
consumers in their business environments [23]. Assurance incorporates subclasses, such
as availability, resiliency, and serviceability. Stability, fault tolerance, and reliability are
the subclasses considered for availability. Service continuity, supportability, and main-
tainability are the subclasses included in serviceability, and these are demonstrated in
Figure 7.

Availability signifies the degree to which CCS works without any failure. Stability
signifies the importance of predicting interactions among independently developed but
interacting CSs. The parameter of stability is common to the class usability and subclass
availability of assurance. Fault tolerance is the capability of a CS to work continuously
without stalling due to any unknown or unpredictable conditions or situations. Reliability
is the measure of consistency provided by the CSP while delivering a service. Resiliency, as
a form of failover, rectifies it by distributing redundant implementations of IT resources
across physical locations. Serviceability quantifies the efficiency of the CSP in accomplish-
ing maintenance and revising problems with the CCS. Service continuity provides the
capability to deliver protection for critical applications and data that help businesses to
avoid, prepare for, and recover from, a disruption. Supportability is the level of comfort pro-
vided to the users in solving their queries after delivering a CS. Maintainability is essential
to ensure that adequate performance is guaranteed, with minimum maintenance costs.

Symmetry 2021, 13, 563 8 of 18Symmetry 2021, 13, x FOR PEER REVIEW 9 of 19

Figure 7. QoSOnto-CSS: Assurance subset.

4.4. Financial
Cost is one of the major factors considered by users when selecting a service, and

for providers to deliver contemporary IT solutions [24]. The subclasses that characterize
the financial class are on-going cost, pricing models, profit sharing, and initial cost. These
are illustrated in Figure 8.

On-going cost is necessary to decide on the cost involved in managing and main-
taining activities. The pricing model tends to satisfy both customers and providers by
providing different packages to consumers based on their usage pattern. In the case
where a CS involves multiple providers, profit sharing allows providers to split their
profit based on their contribution towards the service. Initial cost involves the pricing for
the data centre and the cost of installation charges, including cooling resources, real es-
tates, electricity costs and network connection etc.

Figure 8. QoSOnto-CSS: Financial subset.

Figure 7. QoSOnto-CSS: Assurance subset.

4.4. Financial

Cost is one of the major factors considered by users when selecting a service, and for
providers to deliver contemporary IT solutions [24]. The subclasses that characterize the
financial class are on-going cost, pricing models, profit sharing, and initial cost. These are
illustrated in Figure 8.

Symmetry 2021, 13, x FOR PEER REVIEW 9 of 19

Figure 7. QoSOnto-CSS: Assurance subset.

4.4. Financial
Cost is one of the major factors considered by users when selecting a service, and

for providers to deliver contemporary IT solutions [24]. The subclasses that characterize
the financial class are on-going cost, pricing models, profit sharing, and initial cost. These
are illustrated in Figure 8.

On-going cost is necessary to decide on the cost involved in managing and main-
taining activities. The pricing model tends to satisfy both customers and providers by
providing different packages to consumers based on their usage pattern. In the case
where a CS involves multiple providers, profit sharing allows providers to split their
profit based on their contribution towards the service. Initial cost involves the pricing for
the data centre and the cost of installation charges, including cooling resources, real es-
tates, electricity costs and network connection etc.

Figure 8. QoSOnto-CSS: Financial subset.

Figure 8. QoSOnto-CSS: Financial subset.

On-going cost is necessary to decide on the cost involved in managing and maintaining
activities. The pricing model tends to satisfy both customers and providers by providing
different packages to consumers based on their usage pattern. In the case where a CS
involves multiple providers, profit sharing allows providers to split their profit based on
their contribution towards the service. Initial cost involves the pricing for the data centre
and the cost of installation charges, including cooling resources, real estates, electricity
costs and network connection etc.

Symmetry 2021, 13, 563 9 of 18

4.5. Performance

Performance indicates the ability of CS resources for carrying out jobs concurrently
with extreme parallel processing, and thereby reducing the time involved, and promises
more flexibility [25]. The various subclasses that have been included in performance are
functionality, provisioning time, timeliness, agreement compliance, resource consumption,
interoperability, accuracy, throughput, and efficiency. The subset ontology of performance
is shown in Figure 9.

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 19

4.5. Performance
Performance indicates the ability of CS resources for carrying out jobs concurrently

with extreme parallel processing, and thereby reducing the time involved, and promises
more flexibility [25]. The various subclasses that have been included in performance are
functionality, provisioning time, timeliness, agreement compliance, resource consump-
tion, interoperability, accuracy, throughput, and efficiency. The subset ontology of per-
formance is shown in Figure 9.

Functionality specifies whether the features provided by the CCS meet clients’
needs. Provisioning time refers to the time taken to provide resources to the customer or
requesting application in run time. Timeliness guarantees the on-time delivery of a ser-
vice to its consumers to keep them satisfied. Agreement compliance is necessary to
carefully evaluate the degree to which the CSP agrees to the jurisdiction laws and policy
mentioned in the SLA. Resource consumption describes the quantity of resources utilized
by the CS in delivering a request to the consumer. Interoperability determines the ability
of the CCS to easily interact with other services. Accuracy indicates how far the CCS
adheres to its requirements. Throughput specifies the number of services successfully
supplied by a CSP in a given unit of time. Efficiency measures the amount of energy
consumed by the resources involved in the CS delivery.

Figure 9. QoSOnto-CSS: Performance subset.

4.6. Security and Privacy
Security in CC is a group of policies and access controls to be adhered to in order to

keep data applications and information safe [26]. Privacy is the capability of an object to
control the information that it acknowledges about itself to the service provider. The
subclasses contributing to the security and privacy class is shown in Figure 10.

Authorization checks the correctness of data created, stored, and used, which, in
turn, offers confidence to the clients that they are using accurate and valid data. Data
destruction prompts the CSP to direct clients to use and share data with certain limita-
tions. Authentication is required to validate customers who are accessing the services
provided by CSP. Foreign laws are applicable if the service provider accessed by the

Figure 9. QoSOnto-CSS: Performance subset.

Functionality specifies whether the features provided by the CCS meet clients’ needs.
Provisioning time refers to the time taken to provide resources to the customer or requesting
application in run time. Timeliness guarantees the on-time delivery of a service to its
consumers to keep them satisfied. Agreement compliance is necessary to carefully evaluate
the degree to which the CSP agrees to the jurisdiction laws and policy mentioned in the
SLA. Resource consumption describes the quantity of resources utilized by the CS in
delivering a request to the consumer. Interoperability determines the ability of the CCS
to easily interact with other services. Accuracy indicates how far the CCS adheres to its
requirements. Throughput specifies the number of services successfully supplied by a
CSP in a given unit of time. Efficiency measures the amount of energy consumed by the
resources involved in the CS delivery.

4.6. Security and Privacy

Security in CC is a group of policies and access controls to be adhered to in order
to keep data applications and information safe [26]. Privacy is the capability of an object
to control the information that it acknowledges about itself to the service provider. The
subclasses contributing to the security and privacy class is shown in Figure 10.

Symmetry 2021, 13, 563 10 of 18

Symmetry 2021, 13, x FOR PEER REVIEW 11 of 19

consumer is in a different country from the user. Access controls ensures the policies and
processes in use by the CSP guarantee certain privileges based on personnel and make
use of or modify data or work products.

Data separation or segregation is primary in a cloud environment, as data from
several users are stored in a shared environment, and one user of a CS can interfere with
data of another user. Threat management security solutions are necessary to protect ser-
vice provider organizations from possible attacks. Encryption necessitates the secure
transmission of information. Key management tells consumers about their permissible
level to read information. Logging and audits are necessary to keep track the number of
clients using their service, as well as the service they are accessing. Provider access con-
trols set by CSPs limit the user in accessing their services without proper authentication.
Data location allows clients to select the location of data centers based on geographical or
political factors. Physical security of data centers is to protect the infrastructure by vari-
ous means of safeguarding measures that are independently audited on a need basis.

Figure 10. QoSOnto-CSS: Security and privacy subset.

4.7. Usability
The process of achieving required goals in an effective and efficient manner is

coined as usability of a system [27]. To reveal the usability of the cloud and CSs that is
available to the end user, the following factors are considered, namely learnability, indi-
vidualization, client personnel requirements, availability, operability, precision, installa-
bility, understandability, transparency, and interaction options. This subset of usability
ontology is shown in Figure 11.

Figure 10. QoSOnto-CSS: Security and privacy subset.

Authorization checks the correctness of data created, stored, and used, which, in
turn, offers confidence to the clients that they are using accurate and valid data. Data
destruction prompts the CSP to direct clients to use and share data with certain limitations.
Authentication is required to validate customers who are accessing the services provided
by CSP. Foreign laws are applicable if the service provider accessed by the consumer is in a
different country from the user. Access controls ensures the policies and processes in use
by the CSP guarantee certain privileges based on personnel and make use of or modify
data or work products.

Data separation or segregation is primary in a cloud environment, as data from
several users are stored in a shared environment, and one user of a CS can interfere
with data of another user. Threat management security solutions are necessary to protect
service provider organizations from possible attacks. Encryption necessitates the secure
transmission of information. Key management tells consumers about their permissible
level to read information. Logging and audits are necessary to keep track the number
of clients using their service, as well as the service they are accessing. Provider access
controls set by CSPs limit the user in accessing their services without proper authentication.
Data location allows clients to select the location of data centers based on geographical or
political factors. Physical security of data centers is to protect the infrastructure by various
means of safeguarding measures that are independently audited on a need basis.

Symmetry 2021, 13, 563 11 of 18

4.7. Usability

The process of achieving required goals in an effective and efficient manner is coined
as usability of a system [27]. To reveal the usability of the cloud and CSs that is available to
the end user, the following factors are considered, namely learnability, individualization,
client personnel requirements, availability, operability, precision, installability, understand-
ability, transparency, and interaction options. This subset of usability ontology is shown in
Figure 11.

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 19

Figure 11. QoSOnto-CSS: Usability subset.

Learnability signifies the QoS and interfaces that allow consumers to quickly be-
come familiar with the features and capabilities of that service. Individualization neces-
sitates that service providers treat consumers as individuals and reward them with rel-
evant offers by making them feel as if they are being remembered, being listened to and
felt in control. The client personnel requirement is a crucial aspect to be considered when
a service is being created and rendered to consumers for their usage. Availability indi-
cates the amount of time a service is available for use without any failure. Operability
dictates the extent to which the CCS is operable by users with disabilities. Precision ini-
tiates a detailed assessment of the client’s needs, with a focus on the business needs, the
business continuity plan, and the application utilization aspects. Installability character-
izes the effort, time and privilege required to get the CCS ready for deployment in a client
environment. Understandability defines the level of ease for the consumer to understand
a CS. Transparency demonstrates the maximum level to which users can determine the
changes in a feature or component of the CCS, and the level of impression it has on usa-
bility. Interaction options show increases in conversations, create brand advocates,
onboard customers, boost lifetime values, and improve customer service. Stability is
important to indicate to consumers that they can access a service at any time without any
problems.

5. Results and Discussion
The proposed generic model is developed using python programming language that

utilizes a third-party web framework library called “flask” and a special package called
“rdflib” to work exclusively with RDF.

Simple protocol and RDF query Language (SPARQL) works as a data access query
interaction protocol and language that matches graphical patterns against data sources.
The Web Ontology Language (OWL) file is extracted from the ontology of service selec-
tion using a Protégé editor that stores ontology relations in a Resource Description For-
mat Schema (RDFS). The RDF data model-based query language, SPARQL 1.1, imple-
mentation has been utilized to query the semantics of each attribute and its associated
relations. The ontology shown in Figure 2 is converted into an OWL file named as
QoSonto.owl. This OWL file is given as input to our application that processes the hier-

Figure 11. QoSOnto-CSS: Usability subset.

Learnability signifies the QoS and interfaces that allow consumers to quickly become
familiar with the features and capabilities of that service. Individualization necessitates
that service providers treat consumers as individuals and reward them with relevant offers
by making them feel as if they are being remembered, being listened to and felt in control.
The client personnel requirement is a crucial aspect to be considered when a service is being
created and rendered to consumers for their usage. Availability indicates the amount of time
a service is available for use without any failure. Operability dictates the extent to which
the CCS is operable by users with disabilities. Precision initiates a detailed assessment of
the client’s needs, with a focus on the business needs, the business continuity plan, and
the application utilization aspects. Installability characterizes the effort, time and privilege
required to get the CCS ready for deployment in a client environment. Understandability
defines the level of ease for the consumer to understand a CS. Transparency demonstrates
the maximum level to which users can determine the changes in a feature or component of
the CCS, and the level of impression it has on usability. Interaction options show increases
in conversations, create brand advocates, onboard customers, boost lifetime values, and
improve customer service. Stability is important to indicate to consumers that they can
access a service at any time without any problems.

5. Results and Discussion

The proposed generic model is developed using python programming language that
utilizes a third-party web framework library called “flask” and a special package called
“rdflib” to work exclusively with RDF.

Simple protocol and RDF query Language (SPARQL) works as a data access query
interaction protocol and language that matches graphical patterns against data sources.

Symmetry 2021, 13, 563 12 of 18

The Web Ontology Language (OWL) file is extracted from the ontology of service selection
using a Protégé editor that stores ontology relations in a Resource Description Format
Schema (RDFS). The RDF data model-based query language, SPARQL 1.1, implementation
has been utilized to query the semantics of each attribute and its associated relations. The
ontology shown in Figure 2 is converted into an OWL file named as QoSonto.owl. This
OWL file is given as input to our application that processes the hierarchies in an RDFS
format and uses SPARQL to realize the relationship between attributes, if any.

The processing steps of the Generic CSS Onto Archetype are shown in Figure 12.
Based on user’s interest in attributes, possible associations are mined from the OWL file
extracted from the ontology.

Symmetry 2021, 13, x FOR PEER REVIEW 13 of 19

archies in an RDFS format and uses SPARQL to realize the relationship between attrib-
utes, if any.

The processing steps of the Generic CSS Onto Archetype are shown in Figure 12.
Based on user’s interest in attributes, possible associations are mined from the OWL file
extracted from the ontology.

Figure 12. Workflow of generic CSS Onto archetype.

The sample input screenshot is as shown in Figure 13, and requests the user to pro-
vide the search criteria. For the given sample requirement as assurance from the user, the
subset ontology and its tracing will be identified.

Figure 12. Workflow of generic CSS Onto archetype.

The sample input screenshot is as shown in Figure 13, and requests the user to provide
the search criteria. For the given sample requirement as assurance from the user, the subset
ontology and its tracing will be identified.

When a user wishes to search for a parameter, the search criteria are sent to the
request analyser. The request analyser forwards the same to the parser present in QoS Onto
Archetype, which performs necessary parsing to identify subclasses of the given search
criteria. After identifying the subclasses, a semantic check is performed to find suitable
relationships with other classes in the ontology. As an example, when a user requests a
service with attributes in assurance, the QoS Onto model identifies the common attributes
present under multiple classes.

Symmetry 2021, 13, 563 13 of 18
Symmetry 2021, 13, x FOR PEER REVIEW 14 of 19

Figure 13. QoS Onto archetype: input requirement form.

When a user wishes to search for a parameter, the search criteria are sent to the re-
quest analyser. The request analyser forwards the same to the parser present in QoS Onto
Archetype, which performs necessary parsing to identify subclasses of the given search
criteria. After identifying the subclasses, a semantic check is performed to find suitable
relationships with other classes in the ontology. As an example, when a user requests a
service with attributes in assurance, the QoS Onto model identifies the common attrib-
utes present under multiple classes.

Let us consider that one of the input attributes from the user is “assurance”, and the
user submits the request. The query is passed to the QoS Onto Archetype via SPARQL
and a search for all the available subclasses from the RDFS is performed. The retrieved
results are shown in Figure 14.

The service provider can develop an ontology for any application or any field of
study using any editor, and can extract the OWL file. Our generic model accepts the
OWL file of any type and identifies the relationship between attributes stated in their
field of study. Thus, this generic model will be of greater advantage to anyone required
to associate relations among attributes.

Figure 14. Sample output screenshot.

The proposed generic model has been tested, with fault ontology proposed by au-
thors [13], and this generic model also suits that ontology. The RDF format of the fault
ontology was extracted and given as input to the proposed generic CSS Onto archetype;
it was observed that the model was able to trace the different types of errors and their
correlations. Attribute selection plays a vital role in service selection and, in turn, in the
development of an ontological model based on those attributes. Some authors considered

Figure 13. QoS Onto archetype: input requirement form.

Let us consider that one of the input attributes from the user is “assurance”, and the
user submits the request. The query is passed to the QoS Onto Archetype via SPARQL and
a search for all the available subclasses from the RDFS is performed. The retrieved results
are shown in Figure 14.

Symmetry 2021, 13, x FOR PEER REVIEW 14 of 19

Figure 13. QoS Onto archetype: input requirement form.

When a user wishes to search for a parameter, the search criteria are sent to the re-
quest analyser. The request analyser forwards the same to the parser present in QoS Onto
Archetype, which performs necessary parsing to identify subclasses of the given search
criteria. After identifying the subclasses, a semantic check is performed to find suitable
relationships with other classes in the ontology. As an example, when a user requests a
service with attributes in assurance, the QoS Onto model identifies the common attrib-
utes present under multiple classes.

Let us consider that one of the input attributes from the user is “assurance”, and the
user submits the request. The query is passed to the QoS Onto Archetype via SPARQL
and a search for all the available subclasses from the RDFS is performed. The retrieved
results are shown in Figure 14.

The service provider can develop an ontology for any application or any field of
study using any editor, and can extract the OWL file. Our generic model accepts the
OWL file of any type and identifies the relationship between attributes stated in their
field of study. Thus, this generic model will be of greater advantage to anyone required
to associate relations among attributes.

Figure 14. Sample output screenshot.

The proposed generic model has been tested, with fault ontology proposed by au-
thors [13], and this generic model also suits that ontology. The RDF format of the fault
ontology was extracted and given as input to the proposed generic CSS Onto archetype;
it was observed that the model was able to trace the different types of errors and their
correlations. Attribute selection plays a vital role in service selection and, in turn, in the
development of an ontological model based on those attributes. Some authors considered

Figure 14. Sample output screenshot.

The service provider can develop an ontology for any application or any field of study
using any editor, and can extract the OWL file. Our generic model accepts the OWL file
of any type and identifies the relationship between attributes stated in their field of study.
Thus, this generic model will be of greater advantage to anyone required to associate
relations among attributes.

The proposed generic model has been tested, with fault ontology proposed by au-
thors [13], and this generic model also suits that ontology. The RDF format of the fault
ontology was extracted and given as input to the proposed generic CSS Onto archetype;
it was observed that the model was able to trace the different types of errors and their
correlations. Attribute selection plays a vital role in service selection and, in turn, in the
development of an ontological model based on those attributes. Some authors considered
fewer QoS attributes for the development of an ontology, as shown in Table 1. The same is
illustrated in Figure 15.

Symmetry 2021, 13, 563 14 of 18

Table 1. QoS attributes considered by other authors.

Response Time [8,28–30]
Reliability [8,12,28,30,31]
Security [8,10,12,28,31,32]

Cost [8–10,12,28,30,31,33,34]
Usability [8,28–30]

Location [9,28,33,34]
Availability [9,12,28,30,31]
Adaptability [10,12,28,30]
Scalability [12,28,29,31,32]

Efficiency [28,29]
Accountability [31,32]
Integrity [1,28,32,35]

Interoperability [29,30]
Elasticity [30,36,37]

The QoSOnto-CSS ontology was constructed using 73 parameters. These 73 parame-
ters are classified under 7 broad classes, namely accountability, agility, assurance, financial,
performance, privacy and security, and usability; other attributes are plotted as subclasses
for these main classes are presented in Table 2. Response time is showcased for these
seven main classes, but it also includes all the subclasses in it. This model is efficient when
compared to other ontological models for service selection, as it considered a majority of
QoS attributes.

Symmetry 2021, 13, x FOR PEER REVIEW 15 of 19

fewer QoS attributes for the development of an ontology, as shown in Table 1. The same
is illustrated in Figure 15.

Table 1. QoS attributes considered by other authors.

Response Time [8,28–30]
Reliability [8,12,28,30,31]
Security [8,10,12,28,31,32]

Cost [8–10,12,28,30,31,33,34]
Usability [8,28–30]

Location [9,28,33,34]
Availability [9,12,28,30,31]
Adaptability [10,12,28,30]
Scalability [12,28–29,31,32]

Efficiency [28,29]
Accountability [31,32]
Integrity [1,28,32,35]

Interoperability [29,30]
Elasticity [30,36,37]

The QoSOnto-CSS ontology was constructed using 73 parameters. These 73 param-
eters are classified under 7 broad classes, namely accountability, agility, assurance, fi-
nancial, performance, privacy and security, and usability; other attributes are plotted as
subclasses for these main classes are presented in Table 2. Response time is showcased
for these seven main classes, but it also includes all the subclasses in it. This model is ef-
ficient when compared to other ontological models for service selection, as it considered
a majority of QoS attributes.

Figure 15. Attributes considered by different authors.

Table 2. Major QoS attributes considered to develop the ontology.

QoS Attributes
1st Level

Attributes
2nd Level
Attributes QoS Attributes

1st Level
Attributes 2nd Level Attributes

Accountability

SLA management

Assurance
Availability

Stability
Incident Management Fault Tolerance

Trust Management Reliability
Policy enforcement Resiliency

0
1
2
3
4
5
6
7
8
9

10

QoS Attributes

Cost
Reliability
Usability
Response time
Security
Availability
Efficiency
Scalability
Location
Interoperability
Accountability
Integrity
Adaptability

No
. o

f A
ut

ho
rs

Figure 15. Attributes considered by different authors.

The response time of attributes that have a semantic association is comparatively
lower than those attributes that do not have associations. This observation is plotted in
Figure 16.

It is observed that the response time of attributes which have interrelations is com-
paratively higher than those attributes which do not have interrelations. The observations
from our proposed ontology, was, it has seven major QoS attributes as classes and its
corresponding response time, is shown in Figure 17; it is inferred that an attribute with
semantic associations takes more time to execute when compared to attributes without
semantic associations.

Symmetry 2021, 13, 563 15 of 18

Table 2. Major QoS attributes considered to develop the ontology.

QoS Attributes 1st Level
Attributes

2nd Level
Attributes QoS Attributes 1st Level

Attributes
2nd Level
Attributes

Accountability

SLA management

Assurance

Availability

Stability

Incident Management Fault Tolerance

Trust Management Reliability

Policy enforcement Resiliency

Impact Assessments

Serviceability

Service continuity

Monitoring status and violations Supportability

Audit and certification Maintainability

Data Ownership

Financial

Ongoing Cost

Provider Personnel Requirements Pricing models

Sustainability Profit Sharing

Agility

Elasticity Initial Cost

Flexibility
Portability

Performance

Functionality

Replaceability Provisioning time

Scalability Timeliness

Extensibility Agreement compliance

Malleability Resource Consumption

Capability Interoperability

Security

Authorization Accuracy

Data destruction Throughput

Authentication
Efficiency

Response time

Applicability of foreign laws Sustainability

End user access controls

Usability

Learnability

Data separation Individualization

Threat Management Client personnel requirements

Encryption
Availability

Stability

Key management Fault Tolerance

Logging and audit Reliability

Provider access controls Operability

Data location Precision

Though the response time of attributes with interrelationships is comparatively higher
than those without relationships, it is preferrable, as the semantic relationship among
attributes has been found. The proposed ontology can be enhanced by considering data
and object properties, axioms, and individuals for different attributes of services. Such
additional inclusions to the ontology help to further refine the relationship among the
provided attributes and may result in better output.

Symmetry 2021, 13, 563 16 of 18

Symmetry 2021, 13, x FOR PEER REVIEW 16 of 19

Impact Assessments
Serviceability

Service continuity
Monitoring status and violations Supportability

Audit and certification Maintainability
Data Ownership

Financial

Ongoing Cost
Provider Personnel Requirements Pricing models

Sustainability Profit Sharing

Agility

Elasticity Initial Cost

Flexibility
Portability

Performance

Functionality
Replaceability Provisioning time

Scalability Timeliness
Extensibility Agreement compliance
Malleability Resource Consumption
Capability Interoperability

Security

Authorization Accuracy
Data destruction Throughput
Authentication

Efficiency
Response time

Applicability of foreign laws Sustainability
End user access controls

Usability

Learnability
Data separation Individualization

Threat Management Client personnel requirements
Encryption

Availability
Stability

Key management Fault Tolerance
Logging and audit Reliability

Provider access controls Operability
Data location Precision

The response time of attributes that have a semantic association is comparatively
lower than those attributes that do not have associations. This observation is plotted in
Figure 16.

Figure 16. Response time of attributes with and without semantic association.

It is observed that the response time of attributes which have interrelations is com-
paratively higher than those attributes which do not have interrelations. The observa-

2040

2060

2080

2100

2120

2140

2160

2180

2200

Without semantic association With semantic association

Re
sp

on
se

 T
im

e
(m

s)

Figure 16. Response time of attributes with and without semantic association.

Symmetry 2021, 13, x FOR PEER REVIEW 17 of 19

tions from our proposed ontology , was, it has seven major QoS attributes as classes and
its corresponding response time, is shown in Figure 17; it is inferred that an attribute with
semantic associations takes more time to execute when compared to attributes without
semantic associations.

Figure 17. Response time of different QoS attributes.

Though the response time of attributes with interrelationships is comparatively
higher than those without relationships, it is preferrable, as the semantic relationship
among attributes has been found. The proposed ontology can be enhanced by consider-
ing data and object properties, axioms, and individuals for different attributes of services.
Such additional inclusions to the ontology help to further refine the relationship among
the provided attributes and may result in better output.

6. Conclusions
Cloud Service Selection needs to be regularized as it guarantees services requested

by users. To select the service based on mandatory functional and optional QoS attrib-
utes, an ontology is developed to provide semantic reasoning among attributes of dif-
ferent kinds. The proposed QoSOnto-CSS ontology developed has been written in a
standard ontology language called OWL, which shows its generic capability. Thus, the
proposed generic QoS Onto Archetype can be used to find semantic relationships be-
tween attributes present in any ontology. It also provides an abstract perspective with
which it is possible to infer knowledge, follow common objectives, and interoperate for
service providers and service users. The proposed model has been tested using an ap-
plication with sample inputs and necessary interrelations derived as output shown. For
the future work, we plan to extend the generic model to have more possible associations
among the various attributes.

Author Contributions: R. Babu and K.Jayashree contributed equally to this article. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declares no conflict of interest.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

QoS attributes

Accountability

Agility

Assurance

Financial

Performance

Usability

Security

Re
sp

on
se

tim
e

(m
s)

Figure 17. Response time of different QoS attributes.

6. Conclusions

Cloud Service Selection needs to be regularized as it guarantees services requested by
users. To select the service based on mandatory functional and optional QoS attributes, an
ontology is developed to provide semantic reasoning among attributes of different kinds.
The proposed QoSOnto-CSS ontology developed has been written in a standard ontology
language called OWL, which shows its generic capability. Thus, the proposed generic QoS
Onto Archetype can be used to find semantic relationships between attributes present in
any ontology. It also provides an abstract perspective with which it is possible to infer
knowledge, follow common objectives, and interoperate for service providers and service
users. The proposed model has been tested using an application with sample inputs and
necessary interrelations derived as output shown. For the future work, we plan to extend
the generic model to have more possible associations among the various attributes.

Symmetry 2021, 13, 563 17 of 18

Author Contributions: B.R. and J.K. contributed equally to this article. Both authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declares no conflict of interest.

References
1. Majid, A.; Ali, E.; Fahimeh, R.; Farookh, H.K. Efficiency measurement of cloud service providers using network data envelopment

analysis. IEEE Trans. Cloud Comput. 2019, 1. [CrossRef]
2. Al-Sayed, M.M.; Hassan, H.A.; Omara, F.A. CloudFNF: An ontology structure for functional and non-functional features of cloud

services. J. Parallel Distrib. Comput. 2020, 141, 143–173. [CrossRef]
3. Uschold, M.; Jasper, R. A Framework for Understanding and Classifying Ontology Applications. In Proceedings of the IJCAI-99

Workshop on Ontologies and Problem-Solving Methods (KRR5), Stockholm, Sweden, 2 August 1999.
4. Maedche, A.; Staab, S. Measuring Similarity between Ontologies. In Knowledge Engineering and Knowledge Management; Springer:

Berlin/Heidelberg, Germany, 2002; Volume 2473, pp. 15–21.
5. Darko, A.; Neven, V.; Jurica, S. Cloud Computing Ontologies: A Systematic Review. In Proceedings of the Third International

Conference on Models and Ontology-Based Design of Protocols, Architectures and Services MOPAS 2012, Chamonix/Mont
Blanc, France, 29 April—4 May 2012; pp. 9–14.

6. Oprea, M. An Educational Ontology for Formal Languages and Compilers. In Proceedings of the 15th International Conference
on Virtual Learning, University of Bucharest, Romania, Europe, 31 October 2020; pp. 54–60.

7. Galety, M.G.; SaravanaBalaji, B.; SaleemBasha, M.S. OSSR-P: Ontological Service Searching and Ranking System for PaaS Services.
Int. J. Adv. Trends Comput. Sci. Eng. 2019, 8, 271–276. [CrossRef]

8. Xie, Z.; Yin, H. Selection of optimal cloud services based on quality of service ontology. Ing. Syst. Inf. 2018, 23, 127–141. [CrossRef]
9. Hasan, S.; Kumari, V.V. Generic-distributed framework for cloud services marketplace based on unified ontology. J. Adv. Res.

2017, 8, 569–576. [CrossRef] [PubMed]
10. Otuka, R.I.; Tawil, A.-R.; Al-Nemrat, A. Cloudysme: An Ontological Framework for Aiding SMEs Adoption of SaaS in a Cloud

Environment. J. Comput. Commun. 2017, 5, 86–112. [CrossRef]
11. Greenwell, R.; Liu, X.; Chalmers, K.; Pahl, C. A Task Orientated Requirements Ontology for Cloud Computing Services. In

Proceedings of the 6th International Conference on Cloud Computing and Services Science, Rome, Italy, 23–25 April 2016;
SCITEPRESS—Science and Technology Publications: Rome, Italy, 2016; pp. 121–128.

12. Yasmine, M.A.; Ibrahim, F.M.; Nagwa, L.B.; Tolba, M.F. Ontology-Based SAAS Catalogue for Cloud Services Publication and
Discovery. Asian J. Inf. Technol. 2016, 15, 4900–4915.

13. Jayashree, K.; Anand, S.; Chithambaramani, R. A Fault Ontology for Managing Run-Time Faults in Web Services. Asian J. Inf.
Technol. 2013, 12, 60–69.

14. Reshma, V.K.; Saravana, B. Cloud Service Publication and Discovery Using Ontology. Int. J. Sci. Eng. Res. 2012, 3, 1–4.
15. Osborne, F.; Salatino, A.; Birukou, A.; Motta, E. Automatic Classification of Springer Nature Proceedings with Smart Topic Miner.

In Proceedings of the International Semantic Web Conference, Kobe, Japan, 17–21 October 2016; pp. 383–399.
16. Salatino, A.A.; Thanapalasingam, T.; Mannocci, A.; Osborne, F.; Motta, E. The Computer Science Ontology: A Large-Scale

Taxonomy of Research Areas. In International Semantic Web Conference; Metzler, J.B., Ed.; Springer: Cham, Switzerland, 2018;
pp. 187–205.

17. Consortium, T.G. The Gene Ontology Resource: 20 Years and Still Going Strong. Nucleic Acids Res. 2019, 47, D330–D338.
18. Matteis, L.; Chibon, P.Y.; Espinosa, H.; Skofic, M.; Finkers, H.J.; Bruskiewich, R.; Hyman, J.M.; Arnoud, E. Crop Ontology:

Vocabulary For Crop-related Concepts. In Proceedings of the First International Workshop on Semantics for Biodiversity,
Montpellier, France, 27 May 2013.

19. Madin, J.; Bowers, S.; Schildhauer, M.; Krivov, S.; Pennington, D.; Villa, F. An ontology for describing and synthesizing ecological
observation data. Ecol. Inform. 2007, 2, 279–296. [CrossRef]

20. Williams, R.; Martinez, N.; Golbeck, J. Ontologies for Ecoinformatics. J. Web Semant. First Look 2006, 4, 237–242. [CrossRef]
21. Zou, J. Accountability in Cloud Services. Ph.D. Thesis, Department of Computing, MACQUARIE University, Sydney, Australia, 1

November 2016.
22. Fang, D.; Liu, X.; Romdhani, I.; Jamshidi, P.; Pahl, C. An agility-oriented and fuzziness-embedded semantic model for collaborative

cloud service search, retrieval and recommendation. Future Gener. Comput. Syst. 2016, 56, 11–26. [CrossRef]
23. Dash, S.B.; Saini, H.; Panda, T.C.; Mishra, A. Service Level Agreement Assurance in Cloud Computing: A Trust Issue. Int. J.

Comput. Sci. Inf. Technol. 2014, 5, 2899–2906.

http://doi.org/10.1109/TCC.2019.2927340
http://doi.org/10.1016/j.jpdc.2020.03.019
http://doi.org/10.30534/ijatcse/2019/28822019
http://doi.org/10.3166/isi.23.6.127-141
http://doi.org/10.1016/j.jare.2017.07.003
http://www.ncbi.nlm.nih.gov/pubmed/28794902
http://doi.org/10.4236/jcc.2017.514008
http://doi.org/10.1016/j.ecoinf.2007.05.004
http://doi.org/10.1016/j.websem.2006.06.002
http://doi.org/10.1016/j.future.2015.09.025

Symmetry 2021, 13, 563 18 of 18

24. Weintraub, E.; Cohen, Y. Cost Optimization of Cloud Computing Services in a Networked Environment. Int. J. Adv. Comput. Sci.
Appl. 2015, 6, 148–157. [CrossRef]

25. Jatoth, C.; Gangadharan, G.R.; Fiore, U.; Buyya, R. SELCLOUD: A hybrid multi-criteria decision-making model for selection of
cloud services. Soft Comput. 2019, 23, 4701–4715. [CrossRef]

26. Sun, Y.; Zhang, J.; Xiong, Y.; Zhu, G. Data Security and Privacy in Cloud Computing. Int. J. Distrib. Sens. Netw. 2014, 10, 1–9.
[CrossRef]

27. Aniobi, D.E.; Alu, E.S. Usability Testing and Evaluation of a Cloud Computing based Mobile Learning App: Students Perspective.
Int. J. Comput. Sci. Issues 2019, 13, 67–75.

28. Rekik, M.; Boukadi, K.; Ben-Abdallah, H. Cloud Description Ontology for Service Discovery and Selection. In Proceedings of the
10th International Conference on Software Engineering and Applications, Firenze, Italy, 18–19 May 2015; SCITEPRESS—Science
and Technology Publications: Colamr, France, 2015; pp. 26–36.

29. Bassiliades, N.; Symeonidis, M.; Gouvas, P.; Kontopoulos, E.; Meditskos, G.; Vlahavas, I. PaaSport semantic model: An ontology
for a platform-as-a-service semantically interoperable marketplace. Data Knowl. Eng. 2018, 113, 81–115. [CrossRef]

30. Garg, S.K.; Versteeg, S.; Buyya, R. SMICloud: A Framework for Comparing and Ranking Cloud Services. In Proceedings of
the Fourth IEEE International Conference on Utility and Cloud Computing, Melbourne, VIC, Australia, 5–8 December 2011;
pp. 210–218.

31. Moscato, F.; Aversa, R.; Di Martino, B.; Fortiş, T.; Munteanu, V. An analysis of mOSAIC ontology for Cloud resources annotation.
In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), Szczecin, Poland, 18–21
September 2011; pp. 973–980.

32. Jayapraksh, S.; Aramudhan, M. Classical Probability Ranking Principle based Provider Selection in Federated Cloud. Indian J. Sci.
Technol. 2016, 9, 1–5. [CrossRef]

33. Nepal, S.; Zhang, M.; Ranjan, R.; Haller, A.; Georgakopoulos, D. An Ontology-based System for Cloud Infrastructure Services’
Discovery. In Proceedings of the 7th International Conference on Collaborative Computing: Networking, Applications and
Worksharing, Pittsburgh, PA, USA, 14–17 October 2012; pp. 524–530.

34. Ali, A.; Shamsuddin, S.M.; Eassa, F.E. Ontology-based Cloud Services Representation. Res. J. Appl. Sci. Eng. Technol. 2014, 8,
83–94. [CrossRef]

35. Goeke, L.; Mohammadi, N.G.; Heisel, M. Context Analysis of Cloud Computing Systems Using a Pattern-Based Approach. Future
Internet 2018, 10, 72. [CrossRef]

36. Nagarajan, R.; AVC College of Engineering; Thirunavukarasu, R.; Shanmugam, S. VIT University A Cloud Broker Framework for
Infrastructure Service Discovery Using Semantic Network. Int. J. Intell. Eng. Syst. 2018, 11, 11–19. [CrossRef]

37. Niha, K.; Aisha Banu, W.; Anette, R. A cloud service providers ranking system using ontology. Int. J. Sci. Eng. Res. 2015, 6, 41–45.

http://doi.org/10.14569/IJACSA.2015.060420
http://doi.org/10.1007/s00500-018-3120-2
http://doi.org/10.1155/2014/190903
http://doi.org/10.1016/j.datak.2017.11.001
http://doi.org/10.17485/ijst/2016/v9i46/89725
http://doi.org/10.19026/rjaset.8.944
http://doi.org/10.3390/fi10080072
http://doi.org/10.22266/ijies2018.0630.02

	Introduction
	Related Work
	Proposed Generic CSS onto Archetype
	QoS Parameters Ontology for Cloud Service Selection
	Accountability
	Agility
	Assurance
	Financial
	Performance
	Security and Privacy
	Usability

	Results and Discussion
	Conclusions
	References

