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Abstract: The aim of our study is to establish, for convex functions on an interval, a midpoint version
of the fractional HHF type inequality. The corresponding fractional integral has a symmetric weight
function composed with an increasing function as integral kernel. We also consider a midpoint
identity and establish some related inequalities based on this identity. Some special cases can be
considered from our main results. These results confirm the generality of our attempt.
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1. Introduction

Let J C R be an interval and let u :
function u is called convex if it satisfies

J — R be a continuous function. Then, the

u(ker + (1 —x)ep) <xu(er) + (1 —x)u(ex), Ve, € Jandk € [0,1]. (1)

The function u is called concave whenever —u is convex.

For convex functions u : J — R, there is an important integral inequality in the
literature, namely the Hermite-Hadamard or, briefly, the HH integral inequality, which is
given by [1]:

o(952) < 2o [ utan < M), e

T —Cq C1 2

where ¢; < ¢ belong to J. In the literature, one can observe that the HH integral in-
equality (2) has been applied to different classes of convexity such as GA—convexity [2],
quasi-convexity [3,4], s—convexity [5], («, m)—convexity [6], exponentially convexity [7,8],
MT-convexity [9], and the readers can consult [10,11] to find other types.

As we know, fractional calculus is a generalized form of integer order calculus. Various
forms of fractional derivatives including RL, Hadamard, Caputo, Caputo-Hadamard, Riesz,
yp-RL, Prabhakar, and weighted versions [12-16] have been developed to date. Most
of these versions are described in the RL sense based on the corresponding fractional
integral. Many integer-order integral inequalities such as Ostrowski [17], Simpson [18],

Symmetry 2021, 13, 550. https:/ /doi.org/10.3390/sym13040550

https:/ /www.mdpi.com/journal /symmetry


https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6837-8075
https://orcid.org/0000-0003-4606-7211
https://orcid.org/0000-0003-0115-3079
https://orcid.org/0000-0002-0365-0282
https://doi.org/10.3390/sym13040550
https://doi.org/10.3390/sym13040550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13040550
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/4/550?type=check_update&version=2

Symmetry 2021, 13, 550

2 0f 22

Hardy [19], Olsen [20], Gagliardo-Nirenberg [21], Opial [22,23] and Rozanova [24] have
been generalized and reformulated from the fractional point of view.

In addition, in 2013, the HH integral inequality (2) was generalized and reformulated
by Sarikaya et al. [25] in terms of RL fractional integrals. Their result is given by:

c+ e F(v+1) v v u(er) +u(er)
u( 2 ) = 2(ca — )V {RLICHU(CZ) + RLICZ*U(Q)} = 2 ®)

where u : J — R is assumed to be a positive convex function, continuous on the closed
interval [cy, ¢;], and for Lebesgue, almost all x € [c, cp] when u(x) € L![c1, ¢o] with ¢; < ¢,
where RLIgl , and RLIgZ_ are the left- and right-sided RL fractional integrals of order v > 0,
defined by [12]:

RLI]C/l"Fu(x) = 1"(11/) /cx(x — ) lu(k)dk, x> cy;
Sz (4)
RLIZZ—U(x) = 1"(11/)/x (k —x)" tu(x)dx, x <,

respectively.

The inequality (3) is also known as the endpoint HH inequality due to using the ends
¢1, ¢ of the interval.

On the other hand, the endpoint HH inequality (3) has been applied for various
classes of convexity such as Ay—convexity [26], F-convexity [27], («, m)-convexity [28],
MT-convexity [29]. The reader can find other types of convexity in the literature, which in
particular, is true for [30]. In the mean time, applying the end-point HH inequality to other
models of fractional calculus has received a huge amount of attention. For example, this
is true for RL fractional models [31], conformable fractional models [32,33], generalized
fractional models [34], ¢ RL fractional models [35,36], tempered fractional models [37],
and AB- and Prabhakar fractional models [38].

After extending the important field of the integral inequalities in (2) and (3), a new
version of the endpoint HH inequality (3) was found by Sarikaya and Yildirim [39], namely
the midpoint HH inequality due to using the midpoint # of the interval, which is
given by

a+to 2T +1) [rp RL7v u(er) +u(er)
(252) = ey | asmy e+ gy wle| < MU, o

where the function u : [¢1, ¢;] — R is convex and continuous.

Definition 1 ([40]). Let g : [c1,¢2] — [0, 0) be a function. Then, we say g is symmetric with
respect to (c1 + ¢2) /2 if

gler+e—x)=g(x), Vxe€ e, (6)

Based on above definition, in [41], Fejér found a new extension of the HH type inequal-
ity (2), namely the HHF type inequality, and the result is as follows:

(952 [swar < ["utmgan < COTHD) Poom, @)

<1 <1
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where g is the integrable function, and Iscan [42] found the endpoint version of (7) in the
sense of RL fractional integrals, which is also the extension of (3). The result is as follows:

o (S5 ) [z st + MU glen)] < [T () (en) + T (ug) )]

< el tvl@l gy o) + 07 ge)], ©

where u is convex and continuous and the function g belongs to L![c1, ¢;] and is symmetric
(see Definition 1).

It is worth mentioning that the midpoint version of (8) has not been found yet, even
though many related inequalities of midpoint type were obtained in [43].

Recently, Mohammed et al. [44] found a new endpoint HHF-inequality in terms of
weighted fractional integrals with positive weighted symmetric function in a kernel, and
their result is as follows:

! <C1 2 Cz) [<Q*1(C1)+Iv:g(w o Q)> (Qil(Q)) T (IZ:’Ql(Cz)*(w ° Q>) (Qil (Cl))}

< uler) +u(e2) —; u(cz) [(Ql(clHIv:Q(w o Q)) (Q_l(cz))

+ (T ) (wo0) (e1<cl>)]- ©)

Here, u is a convex and continuous function, ¢(x) a monotone increasing function
from the interval (cj, ¢p] onto itself with a continuous derivative ¢’(x) on the open interval
(c1,¢2),and w : [c1, 2] — (0, 00) is an integrable function, which is symmetric with respect
to (¢ + ¢2) /2, where ¢; < c.

Definition 2. Let (¢1,¢cp) € R and o(x) be an increasing positive and monotone function on the
interval (cq, ¢a] with a continuous derivative ¢’ (x) on the open interval (cq, ¢z). Then, the left-sided
and right-sided the weighted fractional integrals of a function u according to another function o(x)
on [c1, ¢p] are defined by [15]:

( Ve u) (x) _ [w<x)

w—ecy—

w(x)]7t x
(s 7)) = 2 [ ¢ )tetx) = )"ty
|
)

for [w(x)] ™! :== =L such that w(x) # 0.

w(x)
Remark 1. From Definition 2, we can obtain the following special cases.

e Ifo(x) =xand w(x) =1, then the weighted fractional integrals (10) reduce to the classical
RL fractional integrals (4).

e Ifw(x) =1, we obtain the fractional integrals of the function u with respect to the function
o(x), which is defined by [13,14]:

(e 7)) = 55 [ €/ (0)(el) = ()" u(wd

€1

vo 1 e . (11)
(Te20) () = 5y [ @ 0els) —o(x)) ulw)d, v >0
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In this article, we will investigate the midpoint version of (9) and some related HHF in-
equalities by using the weighted fractional integrals (10) with positive weighted symmetric
functions in the kernel.

The rest of our article is structured in the following way: In Section 2, we will prove
the necessary and auxiliary lemmas, including the midpoint version of (9). In Section 3,
we will prove our main results, including new midpoint fractional HHF integral inequalities
with some related results. We will present some concluding remarks in Section 4.

2. Auxiliary Results

In this section, we prove analogues of the fractional HH inequalities (2)-(3) and HHF in-
equalities (7)—(8) for weighted fractional integral operators with positive weighted symmet-
ric function kernels. Here, the main results are as follows: Theorem 1 (it is a generalisation
of HH inequalities (2)—(3) and HHF inequality (7), and a reformulation of HHF inequality (8))
and Lemma 2 (it is a consequence of Theorem 1).

At first, we need the following lemma.

Lemma 1. Assume that w : [c1,¢3] — (0,00) is an integrable function and symmetric with
respect to (c1 + ¢2)/2, ¢1 < ¢y. Then,

(i) for each x € [0,1], we have

w(Kq—i-z_Kcz) :w(Z_Kcl—i-Kcz). (12)

2 2 2 2

(ii) Forv > 0, we have

(1 o2y 27050 (¢ e0) = (2% sy 0001 ()
- % [(gl(flyz)JrIV:Q(wo Q)) (Q*1(02)> + (IZ:Ql(Cl;CZ)_(WOQ)> <Ql(cl))‘|‘ 13)

Proof.

(i) Letx = 5¢; + 25%cy. It is clear that x € [c1, ¢;] for each k € [0,1] and that¢; + ¢y — x =
Z%Kcl + 5¢2. Then, by making use of the assumptions and Definition 1, we can obtain (12).

(if) The symmetry property of w leads to

(wo 0)(x) = w(o(x) =w(e + 2 —o(x), Vx € [0 (er) 07 (e2)]-

From above and setting o(x) := ¢; + ¢ — 0(«), it follows that

(u(q;v)ﬁ‘“w ° e)) (07 ()

1

“ep)
v /Q ‘ (c2 — (x))" (w0 0) (x)¢ (x)dx

()
/_Ql(clerCZ>
a Q

() Jo~1(er)

(0(k) = e1)" Tw(er +e2 — o(x))@' (k)dx

Cl +C2

= /QQ1(C(1) 2 >(Q(K) — 1)’ Hwo o) (x)¢ (k)dx
)

I'(v)
= (IZ:‘Z(W _(woe)> (e7 (),
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which completes the desired equality (13). O

_ 1
T w(x)

Remark 2. Throughout the present article, we denote [w(x)] ™
the function o(x).

and o~ (x) the inverse of

Theorem 1. Let 0 < ¢1 < ¢y, let u : [c1, 2] — R bean L convex function and w : [c1,¢3] — R
be an integrable, positive and weighted symmetric function with respect to % If, in addition,
0 is an increasing and positive function from [cy, c3) onto itself such that its derivative ¢'(x) is
continuous on (c1, ¢3), then for v > 0, the following inequalities are valid:

u (Cl ; Cz) (Ql(cl;ﬂj“@(w ° Q)) (¢7()
+ <I::Q1(cl-§c2)_<wo Q)) (Q%Q))} < w(e2) (Ql<c142rc2>+fz/u:gg(u °© Q)) <Q71 (CZ))
+w(er) (wogzj‘i (a5m) (0 e)) (e (en)
< uler) + ulez) —; ulca) [(gl (@)Jrfvzg(w o Q)) (Q_l(cz))

" .. wo e . (14
+< Q7](¥)_( Q)) (Q (1))] (14)

Proof. The convexity of u on [cy, ¢3] gives

(B3 < )t

5 < 5 forallx,y € [¢1, c2].

So, for x = §¢; + ZE—KCZ andy = Z_TKcl + 5¢, x € [0,1], it follows that

c+c K 2—xK 2—K K
< — — .
2u( > ) < u<2C1+ 5 Cz) +U( 5 c1 + 2C2> (15)

Multiplying both sides of (15) by ' 1w (5¢; + Z*T”cz) and integrating the resulting
inequality with respect to k over [0, 1],, we obtain

c1+ ¢ /l v_1 K 2—x
oul =21 == =
u( > )01( w 2c1—|— > < |dx
K 2
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From the left-hand side of the inequality in (16), we use (13) to obtain

21T (v) : _ _
(= 1) Kgl(qp)f"@(woe>) (67(e2)) + (Igi (cl;cz)_woe)) (o 1<c1>)]

_ _2'T(W) v _
T (2—q) (@1(”?2)+Z fweo Q)> (Q 1(C2))

2 () o — 0l (w 0 0) (1) (x)dx
- )/Ql(qmu o))" (@ o @) (x)¢'(x)d

(c2—¢)¥
o) (2(c - o(x) " . 2dx
_/ aie (zcl> (woe)(x)e'(x) - —
_/ v—1 ( 2) dx, [denoting;( = 2(C2—Q(9€)):|
C2 — C1
It follows that

c1+c¢ 1 v_1 K 2—K . 2”1’(1/) c+C
2u< 5 )/0 K w<2c1+2 C2>dK_(c2—c1)Vu 5
x qiey, 20 wo0) | (67(@) + (T sy (o 0) | (e7H(en) |- (7)
o1 (952)+ o (952)-
By evaluating the weighted fractional operators, we see that
v:Q -1 0 -1
w(c) (Q (g bl e)) (67 (c2)) +w(e) ( ooy (g (0° e)) (¢7 ()

o00) o (e )
(e 202 (@) /QQ1<W)<cz—@<x>>V1<uog><x><woe><x>e’<x>dx

00) (o (c -1 %
Fanfe) 220 EQ o /QQ B3 (o) - ey wo 00w o N RN

o —c) [ole e — vt
_ (2 —¢1) /QQ (C )(2(2@(96))) (uo0)(x)(wo0)(x)d (x) 2dx

G —Qq

)
(c2— )’ 7o (%2%) (2(0(0) —en) )" ) 28
ol [T (L) weommond 20

where we used

w o -1 = = 1 ory = ¢, C.
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2(c—0(x))

@—C

2(e(x)—e1)

-~ , one can deduce that
GQ—C

Setting t; = and t; =

w(c) (Ql(qmgz;&(u o e)) (e—1<cz>) +w(e1) (ZUOQIZ " (eagm) (00 e)) (7))
22v;C1 [/t“ ( 2 ) (21+ 2t°2>dt1

+/01 tzv—1u<2—2tzcl+tzzcz>w(2—2tzcl+fzzcz)dt2

= (CZZV;(:}))V [/01 K"_lu(gcl + 2 ; Kcz)uJ(;q + 2 g Kcz> dx

—1—/11{”71 2_Kc —|—Ec wE 2_Kc dx
0 T @ 2 2 @ '

by using (12)

It follows that
1 2—x K 2 —x
v—1
= d
/OK (2c1—|— 5 ) <2c1+ 5 cz> K
1 7 _
v—1
+/0 K u( >

K K K 2—K
C1+§C2 w §C1+ > < |dx
2VT'(v)

= o) @ (Ql(qmgz;sg(u o e>> (e7(e2)
+w(c ><WI () (uoe)> (e en)] 9
By making use of (17) and (19) in (16), we get
o(5%) (o) e ()
+<I§i<qm<woe>> (e en) <w(C2)<Q (clﬂz)g;;gg(uoe)) (e ()

+w(er) <wogfjg (gm0 e)) (¢7 (). (0)

Thus, the proof of the first inequality of (14) is completed.
On the other hand, we can prove the second inequality of (14) by making use of the
convexity of u to get

K 2—k 2—k K
e 4 + = < + . 21
u<2 2 C2> u< 2 “ 2C2> < u(e) +u(e) 1)
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Multiplying both sides of (21) by k¥ 1w (5¢; + %cz) and integrating with respect to
« over [0,1] to get

/11{”_1 Ec +2_Kc w Ec +2_Kc dx
0 29T )9\ a9t 5@

+/1KV71 2_Kc +Ec w Ec +2_Kc dx
0 T2 T2 9T @

< (u(er) +u(e2)) /01 KVlw(Kcl + 2= Kcz) de. (22)

2 2
Then, by using (12) and (19) in (22), we get

w(ca) <Q1<q;cz)+ﬂjgg(u ° Q)) (Q_l(cz))
+ ZU(Cl) (wogzz:gl (w)_(u o Q)) (Qil(cl))

u(eq) +u(ey) " _
< 122KQ-1(°1;°2)+I Q(wog)) (¢7(e2)

This ends our proof. [

Remark 3. From Theorem 1, we can obtain some special cases as follows:

(i) Ifo(x) = x, then inequality (14) becomes
" c1+ ¢
2

< w(ez) <<q?j{ilgu> (e2) +w(er) (%Il{c];cz) _U> (c1)

u(e1) + u(ez) v v
< T l(lf)RiI w(cy) +RLI(C1;CZ)_w(c1)], (23)

(wﬁﬂw(cz) + RLIV(Q;CZ)_w(Cl)]

2
where Cf_ﬁl'z, and RuL}IgZ_ are the left- and right-weighted RL fractional integrals, respectively,
given by
-1
RL _w (x)/x e
(7)) = Ty [ =m0 T,
wl(x) re _
(Rzgzgz_u)(x) - r(u() ) /x (k — x)" u(x)w(x)dk, v > 0.

(i) Ifo(x) = xandv =1, then inequality (14) becomes the inequality in (7).
(i) Ifo(x) = xand w(x) = 1, then inequality (14) becomes the inequality in (5).
(iv)  Ifo(x) =x w(x) = 1land v = 1, then inequality (14) becomes the inequality in (2).

Lemma 2. Let 0 < ¢1 < ¢y, let u: [c1, 2] — R be a continuous with a derivative u’ € L'[c1, ¢
such that u(x) = u(e1) + fé u'(x)dk and let w : [c1,¢3] — R be an integrable, positive and

weighted symmetric function with respect to # If o is a continuous increasing mapping from
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the interval [c1,cp) onto itself with a derivative o' (x) which is continuous on (¢1,¢y), then for
v > 0, the following equality is valid:

" c1+c
2

(Ql(q?z%ﬂ@(wo g>> (¢ (e2)
+ (Igi (i) (0 e)) (e*(cl))]
- [w(a) <Q1<qm+zz;sg<u o q>) (7))
+w(e) <wogzgi<qm<u o e)) (Mm)]

c1+ep

B r<1> /fm(l) | l/:m) o/ (x)(e(x) =)' (wo e)(ﬂdxl (10 0) ()¢ (x)dx

1 et [ el V- , :
I(v) /Q](cl;q> [/K ¢'(x)(e2 —(x)) 1(woe)(JC)dx](u ° Q) (k)¢ (k)dr. (24)

Proof. Let us set

0 /;(c(l)) [ [, @0 e we e)(x)dx] (o 0 ) ()¢ (x)dx
“He2) Hea)

7 s [ 0 et o o] oo

=t /. Ql(flf) [ [, o) =) (we e)(x)dx] (o 0 0) (K)e' (x)dx

_ ) “He)
+ r(l) A (132) l/g ¢'(x)(e2 = o(x))" " (wo Q><x>dx1 (u" 0 @) ()¢’ () dx
1

o1
+ Eo.

By integrating by parts, using Lemma 1, and (10) and (11), we obtain

K NES
2= 107 (s, €000 — e (o @) (x)dx ) (wo o) ()

k=01 (c1)

LR,
e

) ey €000 —e) T wo o)) (uo o) (x)dx

1 e (2) . ¢ +e
=<F(U)/Ql(q> ¢ () e(x) — ) 1<woe><x>dx>u(12 ?)

wo 1/ -1 —1 ClerCZ
e @@t e ) 4910 - )~ @o ) o Q)(x)in
by using (18)
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+ (IZ:Q] (%)*(w o Q)) (Ql(cl))] —w(er) (?UOQIZ:Q1 ($>7(u © Q)> (Qil(cl))'

Analogously, we get

0 H(e2)

tze*(@)

[1]

— e2)
2= r(j) (/KQ Q'(x)(e2 —0(x))" (wo Q)(x)dx> (uo0)(x)dx

-1

" (c2
_1"(11/)/ Ql(cl;z)e%x)(cz—e(ww Lo 0) () (u 0 0) (K)dx

1 0 He2) o
- (F(V)/g 1(252) 0'(x)(c2 — 0(x))" H(wo o) (x )dX>U(

wo 1 1(c 07 cp
oo le7(e) /QQ1<(C1+)c2)Q’(K)(Cz—Q(K))V Hwo g) (k) (uo g)(x)dx

c1t+¢
2

- 'Z/U(Cz) F(v)

by using (18)

-o("3%) <g1<°1;cz)+f” :Q“‘“’Q)) (7 (e)
—w(cy) <Q1<c1;c2)+11z/¢;gg(u o Q)) (971(9))

(24 ) e o) (Ql<cl>)] ~w(er) (Ql (ags)  Foeluo Q)> (07 (e2)-
Thus, we deduce:

)
< 1+Cz wOQ > (Q_l(cl))

-
(=
—

which completes the proof of Lemma 2. O

Remark 4. From Lemma 2, we can obtain some special cases as follows:



Symmetry 2021, 13, 550 11 of 22

(i) Ifo(x) = x, then equality (24) becomes
c1+c¢

(*2%)

- |w(e2) <(qm I ) (e2) +w(er) (RLIV(>> (c1)]

- 1_(11/) /C:l?z [/CK(x - cl)”_lw(x)dx] u’ () dx

1

B 1"(11,) /c:izrcz l/;z (c2 — x)”lw(x)dx] u'(k)dx, (25)

where <C1+C2 )RLIV and RLT(C Hz) are as defined in Remark 3.
2 2

e+ RV (c RLIV oty c
(1T>+ ( ) ( ; ) ( 1)‘|

(i) Ifo(x) = xand w(x) = 1, then equality (24) becomes

21T (v 4+ 1)
(2 —e1)?

v + _
(ag2) s T o€ + Ty v <c1>]—u(clzc2)zcz4cl

1 2 _ 1 2
X [/0 KVu’<;cl+ ZKcz>d1c—/0 K”u’( 2Kcl+;cz)d1<],

which is already obtained in ([39] [Lemma 3]).

(i) Ifo(x) =x, w(x) = land v =1, then equality (24) becomes

1 €2 c1+o ) —C1 /1 (K 2—K
dx — = = d
Cz_Cl/c1 u(x)dx u( 7 ) ) LRl g 5 C2 |dx

which is already obtained in ([39] [Corollary 1]).

3. Main Results
By the help of Lemma 2, we can deduce the following HHF inequalities.

Theorem 2. Let 0 < ¢; < ¢, let u : [c1,¢] C [0 oo) — R be a (continuously) differentiable
function on the interval [c1, ¢3] such that u(x) = u(ey) + fx "(x)dx, and let w : [c1, c2] — R be

an integrable, positive and weighted symmetric function with respect to % If, in addition, |u’|
is convex on [c1, ¢z], and o is an increasing and positive function from [c1, ¢p) onto itself such that
its derivative o' (x) is continuous on (c1, ¢3), then for v > 0 the following inequalities are valid:

|E1 + &2 =

1 Q‘%#) K , .
I(v) /Q’l(cl) l/Ql(q) ¢ @)(e(x) =) (woo) (x)dxl
x (u 0 g) ()¢’ () dx

“ep) e)
B r<1> /fl(”?z) VQ ¢'(x)(e2 = @(x))"H(wo @(xW] (u" 0 Q) (x)/ ()dx
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< gor el aga o [0+ 3 )]+ 0+ Dl )]

+ [l [w,q],w[(v—l—lﬂu’(q)\+(v—|—3)|u’(c2)|]}
(e2 =)l ]

S 2v+1r(v+2) [|UI(C1)| + |U/(CZ)H- (27)

Proof. By making use of Lemma 2 and properties of the modulus, we obtain

|21 + B

e L 090 e o e e e
0 Hc2) “He)

w7 L, (s32) [ [F ¢@e - o) (ws e)(x)dx] (1 0 Q) ()¢ (x)dx

<67y <c(1>2 | [, € @) e wo o) (x| | o 0)(x)I¢ ()

1

)
/Q ¢'(x) (2 — 0(x))" H(wo o) (x)dx
x ("0 0)(x)|o" (k)dr. (28)

1 0 He2)
T / 1(a52)

Since |u’| is convex on [cy, ¢z}, we get for k € [0 (c1), 07 (c2)]:

(e, e

G —C C —C
¢ — oK) (k) —e1
< =7 - = .
< e M)l + S @) @9)

|(u"00) ()| =

Hence, we obtain

ol asa] .

_ _ 0 1( 1 2) x / .

21 4+80) € /w /,1(Cl)e<x><e<x>—cl> ldx
x [(e2 — 0()lu'(e1)] + (o(x >—c1>\u’<cz>|]e’<x>dx

[ e - oy

||ZUH 1+2C o~ CZ)
27C1)r ) Ql 1;z>
% [(e2 = 0(0) [ (e1)] + (o) — 1) o' (e2) ]/ (k)
_ 1
= Sl e L0 O]+ 0 DI (e
ol ase o) [0+ DI ()] + @ +3)u' ()]}

(2 — 1) Hw]| [er,2] oo
< 2V+11—‘(V—|—2) [|U/(C1)| + |U/(C2)H, (30)
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where

[ @) —erytas = 2L
0 (q

v

/KQ_l(Cz) Q/(x)(cz _ Q(x))vfldx — (CZ_VM;

)v+2

-971(¥> vl _ ) VLo () di = (2 — ¢,
oy @00 = [ 20008 W = i

/egl(c(l)z> (0(x) = e1)"(e2 = @(x))@' (i)
Hep) e H2(y
e e

This completes our proof. [0

Remark 5. From Theorem 2, we can obtain some special cases as follows:

(i) Ifo(x) = x, then inequality (27) becomes
" ()
2

—[w(02)<<c1+c2) I u)<cz>+w<cl>< 5 (agm) v )<c1>}|

< S Ll iy [ B + (o D)

el e ) o0+ D] + @ +3) (@)] ]

(wﬁsz(cz) + RLIV(W%ZU(Q)

(e2 = )" wlle,, e

< W )]+ W e ) 6D

(i) Ifo(x) = xand w(x) = 1, then inequality (27) becomes

21T (v +1)
(c2—c1)¥

RL7V(cy) + RE c1)| —u ate
<¥)+IV(2) I(clz.&) (1)] ( > )‘

< (c2 —cp)V Tt

— 2V+2T(v + 3)

Fl+ D]+ +3) ()] } < 2(?1}(%

{lv+3) (el + v+ D' (e2)]]

v+1

[Iu'(en) [+ [u'(e2)[], (32)

which is already obtained in ([39] [Theorem 5]).
(i) Ifo(x) =x, w(x) =1andv =1, then inequality (27) becomes

1 /CZ u(x)dx—u(cl ;CZ)‘ < C2;C1 [\U/(Clﬂ + |U,(C2)|], (33)

¢ —C1 Je

which is already obtained in ([45] [Theorem 2.2]).
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Theorem 3. Let 0 < ¢; < ¢, let u : [c1,¢2] C [0, oo) - R be a (continuously) differentiable
function on the interval [y, ¢3] such that u(x) = u(cy) + f )dk, and let w : [c1,¢2] = R
be an integrable, positive and weighted symmetric function wzth respect to % If, in addition,
|u’|7 is convex on [cq, ¢a] with q > 1, and ¢ is an increasing and positive function from [c1,c2)
onto itself such that its derivative o' (x) is continuous on (c1,cy), then for v > 0, the following
inequalities are valid:

(2 — Cl)VH
2 (0 4 2) T (v + 2)

|81 4+ 8] <

=

x{wwﬁhﬁﬁywhv+amXQMW+@+&Mwugw

+HM[ipmeKV+UWTﬁﬂ”+W+3NW@ﬂﬂé}

(2 =)' Hw]| [er,e] oo

.

3 (e)|T+ (v+1) | ()7
_2”“'@+2)HV+Q{KV+)|(ﬂ|+(_F” (e2)]

1
+ [+ D () + (v +3) ' ()] 7} (34)
Proof. Since |u’|7 is convex on [c1, ¢p], we get for k € [0 (c1), 07 (e2)]:

u'<°2 - Q(K)Cl Lok —a C2>

¢ —C G —Cq

q

(10 0)()|T =

2= 009 ey 2 =€ g
< 2B (e + L @)l 69

By making use of Lemma 2, power mean inequality and convexity of |u’|7, we get

|21 + |
C1+C2

r(lv/ Her)
i

IN

0'(x)(e(x) = e1)""H(wo o) (x)dx||(u" 0 ) (k)| ' (1) dx

0 Her)

|(u 0 0) () o' (i) dx
Q’(K)d1<>

|(u"o Q)(K)Iqe’(K)dK>

1-;
e’(K)dK>

|(u 0 0) () |70’ (x)d )

Hea) 0 Hcp)
C1+°2 ‘ / , )(e2 — Q(x))]kl (wo Q)(x)dx
L[ e (e52)
=T </¢2‘1(C1)
/: ¢ (x)(o(x) —e1)" Hwo @) (x)dx
o e)
1 0 He2)
T (4—1(61?2)

Hea) (c2)
x(é cﬁQ|/ ¢ ()2 — 0(x))" " (wo o) (x)dx

/: ¢ (%) ((x) =)' H(wo g)(x)dx
0 Har)

1
q

“Hep)
/Kg o' (x)(e2 —Q(x))vfl(wog)(x)dx

1
q
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QJ(ﬁ) 8 ! v— I 17%
’ (felm) J o ¢ 000 — ) xle (K)dK>
) (/egl<c(1>2> /exl(q) ¢ () (elx) — er)"x |(“'°@)(K>|"Q’(K)dK>
||WH[¥CZ]OO
A )
e e) 17%
x (/jl(clzcz) /KQ Q’(x)(cz - Q(x))V7ldx Q/(K)dK>
71(c2) —1(':2) %
’ </@Q1<“z°2> [ e@ie e taxiwe e)(xw@'(@d")
|wl| [%@],oo
=TT
Qil(q;%) " / _ v—1 / 17%
</QI(C1) '/971(61) ¢ (x)(e(x) —e1)"dxje (K)dK>

o [ /Q1 (%)
0 (1)

" (Cz—é’(mu/(q)u Q(K>__Clc1|ul(cz)|q>9/(’<)d"1

[ @) — e ldx
¢ H(er)

G —C €2

el ) . (/Ql(cz)
Q

T(v) 1 (g2)

0 !(e2)
L

He)
[F T e - o)) ax

0 ()
[F T e - olx)ax

1
o —o(x) q o) —er g\ ./ !
(D )+ L ) ) ()
_ (e —¢q)V*!
"M (1 4 2)IT (v + 2)

<=

x {|w|| o 132 ] o[ (VB ()7 (v 4 1) () ]

By

}

ol s o [0+ DIV )+ v+ 3 ()]
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(2= )l

v4+3)|u' (e)|7T+ (v+ D' ()7
< zv+1+%<y+z>ér<v+z>{[( +3)|u ()7 + (v + D) (e2) 7]

-

1
+ [+ D) ()] + (v +3) ' ()] 7}, (36)
where it is easily seen that

0! (%)
/971(,:1)

/: ' (x)(o(x) — e1)" x| (x)dx
0 Her)

C2 / C o l/—ld
s — ()"

Hence, the proof is completed. [

/ _ (CZ - Cl)v+1
o (r)dx = 2vtly(v+1)°

Remark 6. From Theorem 3, we can obtain some special cases as follows

(i)  Ifo(x) = x, then inequality (34) becomes

" c1+¢6
2

(wﬁﬂw(cz) + RLI?qu)_w(Cl)]

~ [w(e) <<C1;CZ)RLI” ) (e2) +w(e) (%I@mu) (c1)] ‘

(Cz _ Cl)v+1

1 1
2" (v 4 2)T (v +2)

x {|w||[cl,w,m[<v+s>u'<cl>|q+<v+1>|u’<q>|ﬂ]3f

1
+ [Jw]] [142,c5] o [(v+1) | (en)]T+ (v +3)|u'(e2)|7] 7 }
- (c2 = 1) Hwll ey, ea), 00

v+3) | T4+ (v+ 1) q
‘zv+1+é<v+z>%r<v+z>{( +3)|u ()" + (v + 1) (e2)]7]

==

[+ DI )7+ v+ 3) W (@)1} 37)

(i) Ifo(x) = xand w(x) = 1, then inequality (34) becomes

21T (v + 1)
(c2—c1)¥

<C1+C2) LIVU(CQ) + I<61;C2> (01)] _u(cl‘;CZ)‘
(e2 =)™ V4 3)| (en)) + (v + D] (e2)|1]7
< g LY FIWEI (4D @]

[+ D ) + @+ 3 (@)1}, 39)
which is already obtained in ([39] [Theorem 5]).
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(i) Ifo(x) =x, w(x) = 1and v =1, then inequality (34) becomes

1 C
/ ’ u(x)dx — u(cl +C2>
c—c1 Jg 2

< 7 I el +20 (@] 7 + 21 (en) 1+ W ()] . (39)

Theorem 4. Let 0 < ¢; < ¢, let u : [c1,¢2] C [0, oo) — R be a (continuously) differentiable
function on the interval [c1, ¢p] such that u(x) = u(ey) + fx "(x)dx, and let w : [c1,¢c2] = R

be an integrable, positive and weighted symmetric function wzth respect to # If, in addition,
|u’|7 is convex on [c1, cp] with % + % = land g > 1, and o is an increasing and positive function
from [c1, ¢2) onto itself such that its derivative o' (x) is continuous on (c1,cy), then for v > 0 the
following inequalities are valid:

(Cz_cl)wrl
2 (py + 1) T (v + 1)
o[BI )+ 1 (e2) ]+ ol g o7 [ Ce0) 7431 (e2) ]}
<cz—c1>v+1||wn[
T2 (1) T+ 1)
x L3l (e0) 7+ [u'(2) 7] 1+ [Iu'(e1) 7+ 3Ju(e2)|] 7} (40)

B + B <

{Iwl, oo .

c1 Cz]

Proof. Since |u’|7 is convex on [¢1, ¢p], we get for k € [071(¢y), 07 (e2)]:

q

u’<"2 —o) oK) —a Cz)

1
G0 —C G —Cq

(10 0)()|" =

< C — Q(K) |U/(C1)|q + Q(K> - |U/(C2)‘q.
G —C G —C

By using Lemma 2, Holder’s inequality, convexity of |u’|7 and properties of modulus,
we have

e ' (x)(o(x) — 1) Hwo o) (x)dx
x| (u" 0 0)(x)|¢" (k)dx

e
/KQ | ¢'(x)(c2 — 0(x))" (w0 0) (x)dx

1 o (952)
< —
—I(v) </Q_1(C1)

|E1 + Eo| < L /Ql(“l?z)
- o (1)

|(u 0 ) ()]’ (x)de

p 7
Q’(K)d7<>

[\ @) ) woe)()ix
0 1(e1)
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Il e, 252,

S
o1 (932)
* </Ql(cl)

(afe P lellase .
X (/QQ ( ) (u’oQ)(K)qQ/(K)dK> + [r(zv)]

()
y (/QI(Q) /Ql(cz) ) (er (x))vfldx p /(K)dK>:7
HCOIE N ‘
“I(ey) i
x (/jl( 1) I(u’oe)(K)qu’(K)dK>
el aza o
=TT
y </Ql(61§cz> /K ) o) — 1)l PQ,(K)dK> [
0 (1) 0 (1)
(%) (e —alx) o(k) —¢p, ) 7
" l/guq) (S e+ £ W el o
[[wl| [@mﬂ,w
)
N R RICY 1, G
" </el(q;cz) [ e@e - o) i Q(K)dK>
0 e) o —o(x), oK) —¢1, , . %
x l/gl(cl;cz) (iz_clh' (e)|? + ?Clllu (Cz)lq>e (K)dK]
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(CZ_Cl v+1 1
-2 oy B+ ()]
27 N (pr+1)rT(v+1) Vol

= =

ol perses ¢ o (1 ()17 + 31 (2)17]

(2 — )" Hw]| [e1,c2], o
_ ),
- 2v+1+2

T (pv+1)PT(v+1)

< { B )l + W @]+ [ ()l + 3 ()17,

where we used the identity

o1 (952) | p
/Ql(c(ﬂ2 | /Q—l(cngl(x)(g(x)_Cl)vfldx o' (k)dx
0 (e2)
- /Ql(m>

2

p
_ pv+1
"V die — (c2—¢c1) )
0 (K) K 2pv+1(pv+1)1/p

Her)
[F T e - o) ax

This ends our proof. [

Remark 7. From Theorem 4, we can obtain some special cases as follows:

(i)

If o(x) = x, then inequality (40) becomes
RLFv RLv

o(252) (ag2) (e

_[w@ﬁ<(qqﬁj%0(Q)+w@ﬁ<%f%qqyﬂ>@ﬂu

(2 —c1)' ™!
- 2V+1+%(

<=

- {loll g ez o B (0l + 1 (e2) 7]
pv+1)rT(v+1) N

1 (c2 = 1) Wl 1o, ], 0
0l g 1 [ 0)1T+ 30 (eI} < -

2V+1+%(pv+1)%1“(v+1)
x {[3|U/(Cl)|q + |U,(Cz)|qﬁ + [[u'(en) 17 +3|u"(e2)|7]

==

3

(i) Ifo(x) = xand w(x) = 1, then inequality (40) becomes
2V—1r(v+1) RL~v RL~Av C1+C2
e | (s T ) + Ty vle)| —u(252)

(52 - Cl)V-H ||wH [e1,€0],00

2 1
2" (pu+1)PT (v +1)

1
< BIV (el + 0 (e2)|7]7 + [Iu'(e1) 17 +3Ju (e2)|7] 7
which is already obtained in ([39] [Theorem 6]).

=
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(i) Ifo(x) =x, w(x) = 1and v =1, then inequality (40) becomes

1
1 ) c1+o c— 4 P
dx — <
CZ*C1/¢31 U(X) X u( 2 > - 16 P+1

x { I (en) |7 + I (€))7 + [u'(en) |7 + 31w (e2)1]

=

which is already obtained in ([45] [Theorem 2.3]).

4. Concluding Remarks

In the present article, we have investigated a midpoint fractional HHF integral inequal-
ity by using the weighted fractional integrals with positive weighted symmetric function
kernels, which is also the midpoint version of (9). Moreover, we have investigated some
related results.

The existing versions of HHF integral inequalities (7) and (8) have been successfully
applied to other classes of convex functions, see [46—48]. Therefore, our present results can
be applied to those classes of convex functions as well.

Furthermore, one can observe that our results in this article are very generic and can
be extended to give further potentially useful and interesting HHF integral inequalities of
end-midpoint version, like the following one

c+a 2“711—'(1/ + 1) caq+ao c+a
u< 2 > = B e e R

(2 =)
u(er) +u(ep)

<
which was already established by Mohammed and Brevik in [49].
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