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Abstract: Multivariate statistical analysis such as partial least square regression (PLSR) is the common
data processing technique used to handle high-dimensional data space on near-infrared (NIR) spectral
datasets. The PLSR is useful to tackle the multicollinearity and heteroscedasticity problem that can be
commonly found in such data space. With the problem of the nonlinear structure in the original input
space, the use of the classical PLSR model might not be appropriate. In addition, the contamination
of multiple outliers and high leverage points (HLPs) in the dataset could further damage the model.
Generally, HLPs contain both good leverage points (GLPs) and bad leverage points (BLPs); therefore,
in this case, removing the BLPs seems relevant since it has a significant impact on the parameter
estimates and can slow down the convergence process. On the other hand, the GLPs provide a
good efficiency in the model calibration process; thus, they should not be eliminated. In this study,
robust alternatives to the existing kernel partial least square (KPLS) regression, which are called the
kernel partial robust GM6-estimator (KPRGM6) regression and the kernel partial robust modified
GM6-estimator (KPRMGM6) regression are introduced. The nonlinear solution on PLSR was handled
through kernel-based learning by nonlinearly projecting the original input data matrix into a high-
dimensional feature mapping that corresponded to the reproducing kernel Hilbert spaces (RKHS). To
increase the robustness, the improvements on GM6 estimators are presented with the nonlinear PLSR.
Based on the investigation using several artificial dataset scenarios from Monte Carlo simulations
and two sets from the near-infrared (NIR) spectral dataset, the proposed robust KPRMGM6 is found
to be superior to the robust KPRGM6 and non-robust KPLS.

Keywords: partial least square regression; outliers; high leverage points; GM6 estimator; robust;
nonlinear; kernel; Hilbert space; near-infrared spectral data

1. Introduction

In vibrational spectroscopic techniques, multivariate statistical analysis is the common
method used in the pre-treatment screening, processing, and interpreting of near-infrared
(NIR) spectral data. It allows a huge number of spectral to be processed in relation to the
amount of chemical quantities. However, with the high-dimensional and irregular data
space problem in the NIR dataset, the use of classical multivariate analysis is sometimes
not appropriate. Moreover, with its dataset complexity, it suffers from contamination of
multiple outliers and high leverage points (HLPs). These are important factors that can
contribute to inaccurate interpretation and can be computationally intensive. The outliers
are observations that produce high residual or outlying in the y -coordinate while the HLPs
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are outlying in the X -coordinate. The HLPs comprise good leverage points (GLPs) and bad
leverage points (BLPs). The GLPs, in this case, are not significant because they are still near
the fitted regression line, and they can increase the efficiency of an estimate [1,2]. On the
other hand, the BLPs are far from the majority pattern of the data; hence, they are highly
significant on the computed values of various estimates [2,3]. To prevent serious damage to
the parameter estimate, only the affected outliers and BLPs should be eliminated during the
model fitting process. In relation to this, there are many studies [4–7] related to identifying
the outliers and HLPs that have been conducted, and none of them has classified the HLPs
into good or bad. Therefore, it seems timely to introduce some alternatives to the nonlinear
robust multivariate method that can handle irregular data space problems and are able to
identify outliers and BLPs in the dataset.

A recent well-known multivariate method that is used to downscale the high-dimensional
dataset is the partial least square regression (PLSR) method [8]. It is used by projecting
a large set of the n×m matrix X into a smaller set of uncorrelated variables called latent
variables that correspond to the n× 1 vector y. This has been beneficial to overcome the
multicollinearity and heteroscedasticity problem in the variables. Theoretically, PLSR is
known as a class of linear methods with the basic assumption that such linearity serves
both relationships between observed variables and modeling in the latent variables [9].
With the irregular space in the NIR spectral dataset, the nonlinear PLSR is preferred as it
has shown its superiority to the linear method [10,11]. Furthermore, the nonlinear solution
for PLSR is conducted by mapping the original input data matrix into the high-dimensional
nonlinear feature space through a nonlinear mapping function. Among all the existing non-
linear methods, the kernel method is the most powerful method due to its flexibility and
efficiency in the computational aspect [12–16]. Additionally, in the class of kernel mapping,
to reach the nonlinear optimization procedure, using the reproducing kernel Hilbert spaces
(RKHS) [17] is the most suggested procedure [13,18]. It produces a consistent solution
through its unique functional spaces into kernel partial least square (KPLS) regression [13].
However, not much attention has been given to making a robust procedure on the KPLS
regression method.

To address the issue, improvements on bounded influence and high breakdown
point (with close to 50%) robust procedure of the GM6-estimator [19] are introduced in
the KPLS. In the GM6-estimator, the initial estimator uses the least trimmed of squares
(LTS) [20]. To detect the outliers and HLPs, the initial weight function is used by using
robust Mahalanobis distance (RM2

i ) based on the minimum volume ellipsoid (MVE) [21].
However, it has been reported that the suggested initial weight function is not resistant to
the swamping effects and not able to classify the HLPs into good or bad [3].

Another robust method was introduced by Rousseeuw and Leroy [22] called reweighted
least squares (RLS), based on the least median of squares (LMS). This RLS-LMS is an
improvement to the inefficiency of classical LMS [23], which yields a better high break-
down point to identify outliers [24,25]. However, the LMS is sensitive to the contamina-
tion of multiple HLPs [24]; therefore, the diagnostic robust generalized potential (DRGP)
method [26,27] is suggested to overcome this limitation. The DRGP calculates the general-
ized potential criteria of each observation to examine whether the suspected observations
contain potential HLPs. In addition, further improvement of the efficiency of DRGP that is
known as DRGP(ISE) was also introduced by replacing the RM2

i based on MVE with index
set equality (ISE) [28]. The DRGP(ISE) calculates the initial location and scale in parameter
estimates through robust procedures. To make DRGP(ISE) more efficient, only outliers
and BLPs are down-weighted since it has been proven that the least square (LS) estimates
can only be damaged by the BLPs [26]. This is conducted by classifying the observations
using diagnostic criteria of modified generalized studentized residuals (MGTi) [3] against
the DRGP to prevent the swamping and masking effects. In this case, only the regular
observations and GLPs will be given a weight of 1, while the weight for outliers and BLP
observations will be assigned a weight of 0.
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In this study, the new robust methods called the kernel partial robust GM6-estimator
(KPRGM6) regression and the kernel partial robust modified GM6-estimator (KPRMGM6)
are presented. The KPRGM6 is the extension work of the kernel partial robust M-estimator
(KPRM) [7], which employs generalized weight wi, which contains both row and column
weights to remove the outliers and BLPs in the nonlinear kernel. The KPRMGM6 improves
the initial weight in the GM6-estimator by applying several steps to classify the outliers
and BLPs using diagnostic criteria of MGTi and the generalized potential values of DRGP.
The desirability indices use several statistical measures to assess the performance of the
methods, which are: root mean square error (RMSE), coefficient of determination (R2), and
standard error (SE). The RMSE measures the absolute error of the predicted model; R2 is the
proportion of variation in the data summarized by the model and indicates the reliability
of the goodness of fit for the model; and SE measures the uncertainty in the prediction.
In this case, the RPD parameter is no longer significant since it is not different from R2

in evaluating the quality of the model [29]. To evaluate the performance, the non-robust
KPLS is also included in comparison to the proposed robust methods.

The main objectives of this study are: (1) to formulate a robust nonlinear solution to the
PLSR method using kernel-based learning of RKHS with the modified GM6-estimator in
handling the irregular data space in the input data matrix; (2) to evaluate the performance
of the proposed robust methods KPRGM6 and KPRMGM6 in classifying the outliers and
BLPs during the model fitting process; and (3) to apply the proposed methods on several
artificial dataset scenarios with Monte Carlo simulations and sets of NIR spectral of oil
palm (Elaeis guineensis Jacq.) fruit mesocarp (fresh and dried ground). We limit the study
by applying only the PLSR method as the principal solution to reduce the dimension in
NIR spectral dataset into smaller new latent variables. The solutions also deal with the
robust procedures and kernel method to downgrade the influence of outliers and BLPs and
to figure out the nonlinear behavior in the dataset. The significance of this study is that it
can contribute to the development of big data analysis, particularly for the process control
in the NIR spectral data analysis.

2. Kernel Partial Least Square Regression

With the high-dimensional and irregular data space in the raw NIR spectral dataset,
the kernel-based learning solution using the RKHS procedure is proposed. In general, each
point in the original input data matrix is mapped nonlinearly to a higher dimensional
feature space F that corresponds to a RKHS space. The theory and some general description
on this can be found in Aronszajn [17]. For convenience, denote x ∈ X ⊂ <m, where m is
the number of predictor variables, and y ∈ Y ⊂ <p, where p is the number of response
variables. Let X be the centered matrix of X -space and y the centered matrix of Y -space.
The mixed relation in the PLSR [30] can be formed by integrating the linear inner relation{

X = VPT + E
}

between X and y block score and the outer relation
{

y = uqT + f
}

for the
n× 1 vector y as:

y = V aT +
`
f (1)

where V is a n× l (for l ≤ m) matrix of the n× 1 vector vg
{

vg =
(
Xwj

)
/
(
wj

Twj
)} l

g=1,

a
{

aT = binnerqT} is the l × 1 vector of the coefficient, and
`
f

{
`
f = gqT + f

}
denotes the

n× 1 vector of residual in the mixed relation where f is a n× 1 vector of residual in outer
relation for response y. wj

{
wj =

(
XTu

)
/
(
uTu

)} m

j=1
is a m× 1 vector of weight for X,

binner

{
bg = uTvg/

(
vT

g vg

)}l

g=1
is a l × 1 vector of regression coefficient as LS solution

on the decomposition of vector u
{

u = bgvg
}l

g=1 of inner relation, g is a n × 1 vector

of residual in the inner relation of u and V, and q
{

qg =
(

yTvg
)
/
(
vg

Tvg
)} l

g=1
is the

loading l × 1 vector of outer relation for the response y. Equation (1) holds a = VTy, and
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without loss of generality X = VPT as the outer relation for predictor X, the formulation in
Equation (1) can be reconstructed as:

y = XW∗a +
`
f

y = XW(PTW)
−1a +

`
f

(2)

where V = XW∗ and W∗ = W(PTW)−1. Define bPLSR = W (PTW)
−1a as m× 1 vector

coefficient of mixed relation in the PLSR, then Equation (2) is equivalent to:

y = XbPLSR +
`
f (3)

the residual
`
f has to be minimized. Applying the relation between inner and outer relation

both in X and y, they can be calculated as W = XTu, P = XTV(VTV)
−1. The estimator for

the parameter bPLSR in Equation (3) then can be calculated as:

b̂PLSR = XTu (VTX XTu)
−1

VTy, b̂PLSR ∈ <mx1 (4)

b̂PLSR denotes the m dimensional vector of regression coefficient in the PLSR model.
The computation of the PLSR model uses the PLSR general algorithm called the

nonlinear iterative partial least squares (NIPALS) algorithm [31]. This algorithm allows an
iterative procedure to solve the singular value decomposition problems. In relation to the
integration of kernel mapping function on the original input of the NIPALS algorithm, the
modification in the algorithm is needed to extract the new latent variables from the kernel
matrices. This new latent variable is calculated efficiently in the feature space F by using
the nonlinear kernel functions.

Using the RKHS space H to correspond to a kernel function K, any kernel function as
a sequence of linearly independent functions can be stated as a connection between the
RKHS space H defined by K and space of feature mapping F. Let K(x , y) be defined as
any positive definite kernel following Mercer’s theorem [17] on a compact domain X× X,
and it can be written as:

K(x, y) =
s

∑
i=1

λi ϕi(x)ϕi(y), S ≤ ∞ (5)

where {λi > 0}S
i=1 is the positive eigenvalue with λ1 ≥ λ2 ≥ . . . ≥ λs of K(x , y), {ϕi}s

i=1
is the sequence of eigenfunctions, and S is the dimension of the space H. Renormalize
Equation (5), then:

K(x, y) =
s

∑
i=1

√
λi ϕi(x)

√
λi ϕi(y) =

(
ϕ(x)T ·ϕ(y)

)
= 〈 ϕ(x) ·ϕ(y)〉 (6)

It is obvious to see that any kernel K(x, y) in Equation (6) also corresponds to a
canonical (Euclidean) dot product in a possibly higher dimensional feature space F, with
the mapping function ϕ written as:

ϕ : X → F
x→ ϕ(x) =

(√
λ1 ϕ1(x),

√
λ2 ϕ2(x), . . . ,

√
λS ϕS(x)

)
where the

{{√
λi ϕi(x)

} S
i=1, x ∈ X

}
represents the feature mapping.

Assuming a nonlinear transformation of the original input matrix {xi}n
i=1 into the

feature mapping F in the form of:

ϕ : xi ∈ X ⊂ <m → ϕ(xi) ∈ F



Symmetry 2021, 13, 547 5 of 23

where the mapping ϕ replaces xi with the sequence of eigenfunctions ϕ(xi) and produces
the high-dimensional and can even be infinite feature space F. Define ϕ as the n× S matrix
of mapped space data where the ith row is the vector ϕ(xi) in the feature space F, rather
than using an explicit nonlinear mapping, the use of nonlinear kernel function is preferred.
Recall Equation (6) in which the deflation is obtained as:

K = ϕϕT (7)

where K is represented as n× n kernel Gram matrix of the cross dot products among all
mapped input data points {ϕ(xi)}n

i=1. Now, recall the PLSR theorem whereby once the
component score variable n× l matrix V in the linear PLS is obtained, a nonlinear PLS
is determined as the new input matrix. Applying

{
vg
}l

g=1 as the new extraction of the
normalized latent variables, the deflation of the matrix K and vector y is formulated as:

ϕgϕ
T
g ←

(
ϕg − vgvT

gϕg

) (
ϕg − vgvT

gϕg

) T

Kg ←
(

I− vgvT
g

)
Kg

(
I− vgvT

g

)
and

yg ← yg − vgvT
g yg = yg

(
I− vgvT

g

)
Thus, the coefficient matrix of the KPLS regression model feature space F can be

obtained from:
b̂KPLS = ϕTu

(
VTKTu

)−1
VTy, b̂KPLS ∈ <S

the final prediction of the PLSR model is given as:

ŷ = ϕ b̂KPLS = Ku(VTKu)−1 VTy
ŷv = ϕvb̂KPLS = Kvu(VTKu)−1 VTy

(8)

where ŷ and ŷv are the prediction of the training set and validation set, respectively. Kv
is the nv × n kernel matrix of the validation set with each element composed of Kij =

K
(
xi , xj

)
. {xi}n+nv

i=n+1 is the input vectors of the validation set whereby nv is the number
of samples in the validation set and

{
xj
}n

j=1 is the input vectors of the training set. As
mentioned in Rosipal [13], centering the kernel Kij is necessary to produce the bias term to
be zero. Centralization on the mapped data in F can be calculated as:

K =
(

I− 1
n 1n1T

n

)
K
(

I− 1
n 1n1T

n

)
Kv =

(
Kv − 1

n 1nv 1T
n Kv

)(
I− 1

n 1n1T
n

) (9)

where I represents the n -dimensional identity matrix and 1n, 1nv denotes the vectors with
elements equal to 1, with lengths n and nv, respectively.

3. Proposed Methods
3.1. Kernel Partial Robust GM6-Estimator (KPRGM6)

Extending the work of Jia [7], which provides the robust version of KPLS using a
modified robust M-estimator, here another kernel version using a robust GM6-estimator
is introduced. The robust GM6-estimator proposed by Coakley and Hettmansperger [19]
combines a high breakdown point (50%) of LTS [20] as the initial estimator and the
LMS estimator [23] for the initial estimates of the scale, which provides 0.95 efficiency{

σ̂LMS = 1.4826

(
1 + 5/

(
n− p− 1)) Median

∣∣∣∣∣ `f i

∣∣∣∣∣
}

.
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Let b̂LTS be the initial estimator obtained in LTS and σ̂LMS be the initial scale estimate
in LMS. The initial solution for the partial robust GM6-estimator can be rewritten as:

b̂PGM6 = b̂LTS +

 n

∑
i=1

ψ′


`
f i

(
b̂LTS

)
σ̂LMSwi

vivT
i


−1

×
n

∑
i=1

σ̂LMS wiψ


`
f i

(
b̂LTS

)
σ̂LMSwi

vi (10)

where ψ′
(`

f i(b̂LTS)
σ̂LMSwi

)
is the derivative of the re-descending score function, and

`
f i

(
b̂LTS

)
is

the residual using the initial LTS estimator

{
`
f i = yi − vT

i b̂LTS

}
. To identify outliers and

HLPs in the dataset, the classical threshold value of suitable chi-square distribution χ2
0.95,m

with RM2
i is used:

wi ∝ min

(
1,

χ2
0.95,p

RM2
i

)
(11)

RM2
i = (vi −mv)

TC−1
v (vi −mv) (12)

where mv and Cv are robust estimates of multivariate location and covariance matrix of the
minimum covariance determinant (MCD) estimator [21] calculated from the matrix of V.
The improvement on KPRGM6 is now the modified M-estimator of Serneels [6] replaced
with the GM6-estimator. Here, the final estimates are calculated iteratively rather than in
the single-step (Newton Raphson). The final estimates for the partial robust GM6-estimator
can be defined as:

b̂PRGM6 = arg min
b

(
n

∑
i=1

wr
i wx

i

`
f i
∗2
)

where w r
i and w x

i are robust weights in row- and column-based, respectively. w r
i

uses slight modification on vertical weight in the y direction using a re-descending

score function ψ1(u) = ∂θ1(u)
∂u with u =

yi−vT
i b̂PGM6
σ̂LTS

and robust scale estimates σ̂LTSMAD

(
`
f
∗

1 ,
`
f
∗

2 , . . . ,
`
f
∗

n

)
= median

i

∣∣∣∣∣∣∣∣
`
f
∗

i − median
`
f
∗

j

∣∣∣∣∣
j

 from residual
`
f
∗

i = yi− vT
i b̂PGM6.

w r
i = ρ

 `
f
∗

i
σ̂LTS

, c


where ρ(z , c) is a fair weight function [32]

{
ρ(z, c) = 1/

(
1 +

∣∣ z
c

∣∣)2
}

, and tuning constant c
follows Huber’s function [33]. While wx

i is calculated using:

w x
i = ρ

(
||vi −medL1(V)||

median||vi −medL1(V)|| , c
)

||·|| is Euclidean norm, medL1(V) is a robust estimator of the center of the l dimensional
score vectors, and vi = (vi,1, . . . , vi,l)

T is the vector of component score matrix V, which
should be estimated.

The kernel version of PRGM6 is the input matrix X, which is subsequently replaced
by the outer product ϕϕT of the n× n kernel Gram matrix K. A particular concern in the
KPRGM6 is to assign the generalized weight wi on the observations that are suspicious as
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outliers and HLPs. Let
`
K be defined as the new weighted matrix that is calculated using

the remaining dataset of X, so that:

`
K = (Ωϕ)(Ωϕ)T = ΩKΩ (13)

where Ω is said to be the diagonal weight matrix, with the ith elements in the diagonal
matrix equal to the generalized weight wi in the PRGM6.

3.2. Kernel Partial Robust Modified GM6-Estimator

Another improvement in the robust procedure of GM6-estimator called the kernel
partial robust modified GM6 regression (KPRMGM6) is introduced. This method accom-
modates several robust approaches on initial weight in the GM6-estimator to remove both
outliers and BLPs in the dataset. Initially, we identify the suspected outliers using the
high breakdown point of the RLS-MLS estimator. Thereafter, we observe the suspected
potential HLPs using the DRGP(ISE) method, which is computationally faster. To prevent
the swamping and masking effects, the diagnostic criteria using fast MGTi (FMGTi) and
generalized potential DRGP are employed to re-confirm the suspicions into true outliers
and BLPs in the dataset. Here, the outliers and BLPs will be weighted as 0, while the
remaining observations will be weighted as 1. This weight is then applied as the initial
weight wi in the GM6-estimator to determine the final estimates iteratively. The procedure
uses several robust approaches, which are discussed in the following order.

3.2.1. Reweighted Least Squares Based on Least Median of Squares

The formulation of the robust procedure solution of the RLS-LMS estimator on the
PLSR model can be written as [22]:

b̂PRRLS = arg min
b

(
n

∑
i=1

wi

`
f i

2

)
(14)

where
`
f i = yi − vT

i b̂PLSR, the wi is determined from the LMS solution with criteria if∣∣∣∣∣`f i/s

∣∣∣∣∣ ≤ 2.5

s = 1.4826(1 + 5/(n−m))

√√√√median
i

(
`
f

2

i

) the observation will be identi-

fied as a suspected outlier and is assigned as 0; otherwise assign wi as 1. Here, the suspected
outliers will be placed in the deletion set Dr, while the remaining observations with no
suspected outliers will be in the remaining set Rr.

3.2.2. Diagnostic Robust Generalized Potential Based on Index Set Equality

The DRGP(ISE) was introduced by Lim and Midi [28] as an improvement to the
MVE [21] and fast minimizing covariance determinant (MCD) [34] in the initial weight
of classical DRGP [26]. The method employs two steps. The first step is to determine
the suspected multiple outliers and HLPs using RM2

i based on ISE. Here, the suspected
observations are placed in the deletion set Dx, while the remaining observations are
in the remaining set Rx. In ISE, arbitrarily, let Told be a subset containing h different
observations matrix of V using the same initial subset Told and the DRGP(ISE) will yield
to the same final location and scale estimates as in fast MCD [28]. Define mTold and CTold
as the mean vector and covariance matrix of the whole observations in Told. In addition,
let Iold =

{
πold
(1), πold

(2), . . . , πold
(h)

}
be the index set related to the sample items in Told with

their Mahalanobis distance squares denoted as d2
old(i) following Equation (12) and sorted

in ascending order. Reconstruct the Inew =
{

πnew
(1) , πnew

(2) , . . . , πnew
(h)

}
as the index set that is

affiliated to the sample items in Tnew =
{

tπ(1), tπ(2), . . . , tπ(h)

}
, where Tnew contains the

h different observations matrix with the first h observations in increasing order of d2
old(i)
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and π(i) being the permutation on {1, 2, . . . , h}. The replacement procedure to fast MCD is
if Inew 6= Iold, re-define Told := Tnew followed by the mean vector mTold := mTnew and the
covariance matrix CTold := CTnew to recalculate d2

old(i). Otherwise, if Inew = Iold, then the
process is converged. The second step is to re-confirm the suspected observations in Dx into
potential outliers and HLPs using the generalized potential p∗ii that is examined through
the robust cut-off point

{
p∗ii > Median

(
p∗ii
)
+ 3Qn

(
p∗ii
)}

[5]. Qn is an order statistics of all
pairwise distance proposed by Rousseeuw and Croux [35]. The formula for generalized
potential p∗ii [5] can be written as:

p∗ii =


w−(D)

ii

1−w−(D)
ii

f or i ∈ Rx

w−(D)
ii f or i ∈ Dx

(15)

where w−(D)
ii is the ith diagonal element of matrix V

(
VT

RVR
)−1VT . The remaining set

Rx consists of (n− d) observations after d < (n− k) observations in Dx are deleted. d is
the number of deleted cases and k is the number of regressors (including the intercept).
The rule is that if p∗ii satisfies the criteria, then the suspicion Dx in the first step is true.
Otherwise, put back the observation and recalculate the p∗ii on the remaining subset Rx.

3.2.3. Fast Modified Generalized Studentized Residuals

The FMGTi improves the efficiency of existing FMGTi [3] by accommodating the
RLS-LMS and DRGP(ISE) as initial estimators to remove the suspected outliers and HLPs
in the calculation of parameter estimates. This method builds a deletion group D based on
the union of remaining sets of Rr in RLS-LMS and Rx in DRGP(ISE). Let R be the remaining
group in the dataset, and the estimated parameters of the PLSR model as in Equation (4)
can be reformed as:

b̂PLSR(R) = XT
RuR(VT

RXR XT
RuR)

−1
VT

RyR, b̂PLSR(R) ∈ <mx1

where the residual of ith remaining observations is given by

`
f i(R) = yi − vT

i b̂PLSR (R)

The formulation of the externally studentized residual denoted as t∗i for i ∈ R is:

t∗i∈R =
yi − vT

i b̂PLSR (R)

σ̂R−i

√
1− wii(R)

=

`
f i(R)

σ̂R−i

√
1− wii(R)

(16)

where the wii(R) is the ith diagonal element of hat matrix calculated using:

wii (R) = vT
i

(
VT

RVR

)−1
vi

the additional point i in the R set is defined as:

wii (R+i) = vT
i

(
VT

RVR + vi vT
i

)−1
vi =

wii (R)

1 + wii (R)

Hence, the formulation of the externally studentized residual t∗i for i ∈ D is given by:

t∗i∈D =
yi − vT

i b̂PLSR (R)

σ̂R

√
1− wii(R+i)

=

`
f i(R)

σ̂R

√
1 + wii(R)

(17)
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Following [3], the FMGTi for all observations can be rewritten by combining Equations
(16) and (17) as follows:

FMGTi =


`
f i(R)

σ̂R−i
√

1−wii(R)
f or i ∈ R

`
f i(R)

σ̂R
√

1+wii(R)
f or i ∈ D

(18)

where
`
f i(R) is the residual of the ith observations in the remaining group R. The σ̂R−1 is the

scale estimate of the remaining group R excluding the ith case and σ̂R is the scale estimate
of the remaining group R. The improvement on the diagnostic criteria [3] for classification
of observation by using FMGTi in Equation (18) and generalized potential p∗ii of DRGP(ISE)
in Equation (15) then can be proposed into four following categories:

(i) Observation is classified as a regular observation: If |FMGTi| ≤ CPFMGT and p∗ii ≤
Median

(
p∗ii
)
+ 3Qn

(
p∗ii
)
.

(ii) Observation is classified as vertical outliers: If |FMGTi| > CPFMGT and p∗ii ≤
Median

(
p∗ii
)
+ 3Qn

(
p∗ii
)
.

(iii) Observation is classified as GLPs: If |FMGTi| ≤ CPFMGT and p∗ii > Median
(

p∗ii
)
+

3Qn
(

p∗ii
)
.

(iv) Observation is classified as BLPs: If |FMGTi| > CPFMGT and p∗ii > Median
(

p∗ii
)
+

3Qn
(

p∗ii
)
.

where CPFMGT is the cut-off point {CPFMGT = Median(FMGTi) + 3MAD(FMGTi)}.

3.2.4. Proposed Algorithm in Kernel Partial Robust Modified GM6-Estimator

In general, the proposed improvement in the modified GM6-estimator is to introduce
a new initial weight with high resistance to the contamination of multiple outliers and
BLPs in the dataset. The main computational steps in the proposed KPRMGM6 can be
summarized as follows.

Step 1: Compute the kernel Gram matrix K in Equation (7) of the cross dot products
among all mapped input data points.

Step 2: Centralize the kernel Gram matrix K as in Equation (9).
Step 3: Uses identity matrix I as the initial weight Ω on the centralized kernel matrix to

obtain the weighted
`
Kg

{
`
Kg = ΩKgΩ

}
and output vector

`
yg,
{
`
yg = Ωyg

}
.

Step 4: Regress
`
Kg on

`
yg to obtain the weight

`
wg, then apply the normalization and

rename it as
`
vg.

Step 5: Continue the steps until convergence and l number of PLS are determined. Here
l < m.

Step 6: The new calculated latent variables denoted as the n× l matrix of
`
V are used as

the new input space.

Step 7: Calculate the residual
`
f i based on the initial LTS estimator using new latent

variables
`
V.

Step 8: Calculate the scale estimate σ̂LMS

{
σ̂LMS = 1.4826

(
1 + 5/

(
n− p− 1)) Median

∣∣∣∣∣ `f i

∣∣∣∣∣
}

of the residuals in Step 7.

Step 9: Calculate the standardized residuals ei

{
ei =

`
f i

σ̂LMS

}
using

`
f i and σ̂LMS.

Step 10: Compute the proposed improvement of initial weight wi in Equation (10) using

FMGTi and cut-off point CPFMGT , wi ∝ min
(

1, CPFMGT
FMGTi

)
.
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Step 11: Calculate the bounded influence function for BLPs ti using standardized residuals

ei and improvised initial weight wi,
{

ti =
ei
wi

}
. .

Step 12: Apply the weighted least squares (WLS) iteratively to obtain the parameter esti-
mates of b̂PGM6 as in Equation (10).

Step 13: Calculate the new residual
`
f i from WLS and repeat Steps (8–12) until convergence.

4. Results and Discussions

To examine the performance, all the proposed methods consisted of KPLS, KPRGM6,
and KPRMGM6 and were evaluated using artificial data and NIR spectral data. The
artificial data use the Monte Carlo simulation with some scenarios applied. The NIR
spectral data use the spectral signature of oil palm fruit mesocarp (fresh and dried ground)
with three interested dependent variables (chemical parameters): percent of oil to dry
mesocarp (%ODM), percent of oil to wet mesocarp (%OWM), and percent of fat fatty
acid (%FFA). Here, the NIR spectral data associated with its chemical parameters were
converted into the comma-separated values (CSV) text file format. This analysis was
performed using R i386 software (http://rproject.org) with version 3.4.2 for windows.

4.1. Monte Carlo Simulation Study

It is known that almost all the available chemometric methods are only capable of
capturing linear datasets; however, they fail to capture the structure of highly nonlinear
datasets. The artificial data use the sin(x) function [7] to create the nonlinear behavior
in the dataset. The artificial dataset is generated randomly using a uniform distribution
within the range of [0, 10]. The scenarios in the simulation use a different artificial dataset
that is based on sample size, number of predictors, and level of contamination of outliers
and HLPs. The sample size uses n = 40, 60, 160, and 400, while the number of predictor
variables uses m = 41, 101, and 201. The different levels α = 0.05, 0.15, and 0.25 of outliers
and HLPs were applied to evaluate the robustness. The formulation of this artificial data
can be defined as follows:

k = {0, 0 + d, (0 + d) + d, . . . , 10} (d = 1/((n− out− h)/10))
cj = k + U( 1, 10) (j = 1, 2, 3, . . . , m)
e ∼ N (0, 1) (i = 1, 2, 3, . . . , n)
xj = cj (j = 1, 2, 3, . . . , m)
y = sin(−4/5(k)) + e (i = 1, 2, 3, . . . , n)

(19)

where the cj and e are independent of each other while xj and y are observable variables.
The variable cj is the sum of the arithmetic sequence k and random values using uniform
distribution. The artificial spectra X is the collection of xj, while y uses the sine function,
which is calculated through the sum of the sine function of stated initial sequence with
added noise e. If the sample order is considered as HLPs in X dimension, then cj = k +
U(5, 10). Corresponding to the vertical outlier in y, the yi = sin(−4/5(k))− ei, while
if it is considered as HLP, the yi = sin(−4/5(k)) + ei, where e ∼ U(3,5). Clearly, the
illustration of the scenarios using this formulation can be seen in Figure 1.

As seen in Figure 1, the illustrations of the scenarios using different level contamination
of outliers and HLPs in the dataset are presented in terms of an open circle. In Figure 1a, the
scenario uses a small sample size, number of predictors, and level of contaminations. While
in Figure 1b,c, the scenarios are set to be higher. These data are assumed good enough to
evaluate the nonlinear effects of the proposed methods. We decide not to increase the level
contamination of outliers and HLPs greater than 25% since with relating to data acquisition
quality, this is not acceptable. The superiority of the proposed methods is evaluated by
plotting the prediction values on the original artificial data (see Figure 2). As seen in
Figure 2a, using a small sample size, number of predictors, and 5% level contamination,
the calibration models with KPRGM6 and KPRMGM6 produce better prediction results

http://rproject.org
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than KPLS. This can be observed through the fitted line of predicted values against the
actual values in the proposed methods (see the green line and blue line). According to
the robustness performance, the KPRMGM6 is superior to KPRGM6. This is because the
KPRGM6 suffers the influence of HLPs in the dataset. By increasing the sample size, the
number of predictors, and level contaminations (see Figure 2b,c), the proposed KPRMGM6
(blue line) is still superior to the KPRGM6 and KPLS since it almost fits the whole actual
values. In general, the kernel solution succeeded in figuring out the nonlinear structure of
the dataset. With the contamination of outliers and HLPs in the dataset, the non-robust
KPLS suffers from the swamping and masking effects, while the robust KPRGM6 is only
able to downgrade partially some of the effects. On the other hand, KPRMGM6 is able to
prevent the contamination of both outliers and BLPs; hence, it produces a better fitting line
and efficiency. To confirm this finding, the Monte Carlo simulation ran 10,000 simulations,
and the results are based on the average of statistical measures.

Figure 1. Training dataset using sine function with different scenarios: (a) n = 60, m = 41, outliers +
high leverage points (HLPs) = 5%; (b) n = 200, m = 101, outliers + HLPs = 15%; (c) n = 400, m = 201,
outliers + HLPs = 25%.
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Figure 2. Predictions on artificial data using the calibration model of kernel partial least square (KPLS), kernel partial
robust GM6-estimator (KPRGM6), and kernel partial robust modified GM6-estimator (KPRMGM6) on different dataset
scenarios: (a) n = 60, m = 41, outliers + HLPs = 5%; (b) n = 200, m = 101, outliers + HLPs = 15%; (c) n = 400, m = 201,
outliers + HLPs = 25%.

By preventing the effects of outliers and HLPs in the fitting process (see Table A1), the
KPRMGM6 produces the lowest prediction error (RMSE) and better R2 than KPRGM6 and
KPLS. The KPLS still suffers from the swamping effects in the fitting process. The KPRGM6
only partially succeeds in removing the influence of outliers and BLPs in the dataset. Using
different scenarios, even with low and high levels of contaminations applied in the fitting
process, the results using the KPRMGM6 are still satisfactory. Clear outliers and HLPs in
the dataset can be observed in Figure 3. In Figure 3a, using small sample size, number
of predictors, and 5% level contamination, the KPLS really suffers from the outliers and
HLPs in the dataset. This has a dramatic impact to mislead the fitted model, making the
accuracy of the model low. The KPRGM6 is only able to partially downgrade the effect
of contamination, which leads to a decrease in the accuracy of the fitted model. Using a
higher level of contaminations (15% and 25%), the KPRGM6 still suffers from the influence,
which increases the prediction error; in addition, the accuracy in KPLS becomes worse (see
Figure 3b,c). Here, the fitted regression line using KPRMGM6 shows better performance
(efficiency and accuracy) than the KPRGM6 and KPLS since the model is not really affected
by the contamination of outliers and BLPs.
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Figure 3. Cont.
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Figure 3. Actual values against predicted values on different dataset scenarios: (a) n = 60, m = 41,
outliers + HLPs = 5%; (b) n = 200, m = 101, outliers + HLPs = 15%; (c) n = 400, m = 201, outliers +
HLPs = 25%.

4.2. NIR Spectral Data

The spectral data use light absorbance in each j wavelength band adopted from the
Beer–Lambert law [36], and the data are presented in m× 1 column vector xj using the
log base 10. The spectral measurement was obtained by scanning (in contact) the fruit
mesocarp using a portable handheld NIR spectrometer (QualitySpec Trek) from Analytical
Spectral Devices (ASD Inc., Boulder, Colorado (CO), USA). A total of 80 fruit bunches
were harvested from the site of the breeding trial in Palapa Estate, PT. Ivomas Tunggal,
Riau Province, Indonesia. In a bunch, there were 12 fruit mesocarp samples collected from
different sampling positions. The sampling positions comprised the vertical and horizontal
lines in a bunch [37]: bottom-front, bottom-left, bottom-back, bottom-right, equator-front,
equator-left, equator-back, equator-right, top-front, top-left, top-back, and top-right. Right
after the collection, the fruit mesocarp samples were sent immediately to the laboratory
for spectral measurement and wet chemistry analysis. The sources of variability such
as planting materials (Dami Mas, Clone, Benin, Cameroon, Angola, Colombia), planting
year (2010, 2011, 2012), and ripeness level (unripe, under-ripe, ripe, over-ripe) were also
considered to cover the different sources of variation in the palm population as much
as possible.

Two sets of NIR spectral data with different sample properties of fruit mesocarp (fresh
and dried ground) were used. The average of three spectra measurements of each fruit sam-
ple mesocarp was used in the computation. The fresh fruit mesocarp was used to estimate
the %ODM and %OWM, while the dried ground mesocarp was used to estimate the %FFA.
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These parameters were analyzed through conventional analytical chemistry that adopts
standard test methods from the Palm Oil Research Institute of Malaysia (PORIM) [38,39].
The %ODM was calculated on a dry matter basis, which removes the weight of water
content, while the %OWM used a wet matter basis. Statistically, the distribution range of
%ODM used as the dataset is 56.38–86.9%; the %OWM is 19.75–64.81%; and the %FFA is
0.17–6.3%. The NIR spectra on oil palm fruit mesocarp (both in fresh and dried ground
mesocarp) and its frequency distribution on response variables, the %ODM, %OWM, and
%FFA, can be seen in the previous study [37]. It is important to note that there is no prior
knowledge on whether outliers and HLPs are present in this dataset. Therefore, the meth-
ods were evaluated based on their accuracy improvement through its desirability index.

4.2.1. Oil to Dry Mesocarp

The NIR spectra of fresh fruit mesocarp from 960 observations involving 488 wave-
lengths (range 550–2500 nm: 4 nm interval) were used in this study. Using the %ODM
as the response variable, the effectiveness of the proposed methods was presented. As
seen in Table 1, the robust KPRMGM6 improves the accuracy of the model with the lowest
prediction error (0.128) and better R2 (0.999) than the KPRGM6 and KPLS. The non-robust
KPLS produces higher SE (0.282–0.283) with lower R2 (0.927) compared to the KPRGM6
and KPRMGM6. It is known that the proposed robust methods are able to prevent the
influence of outliers and HLPs in the dataset; thus, they produce more accurate predictions.
The comparison between the measured and predicted values is presented in the fitting
line regression (see Figure 4). It shows that by using the proposed robust methods (see
Figure 4b,c), the model predictions have been able to approximately estimate the mea-
sured values. The robust KPRMGM6 fits the data more accurately compared to the robust
KPRGM6. Corresponding to the residual plots produced by the proposed methods, the
KPRMGM6 (see Figure 4c) yields the lowest prediction error than the remaining methods.

Table 1. Statistical measures on the prediction results using %ODM, %OWM, and %FFA datasets.

Dataset Methods RMSEP R2 SE

%ODM
KPLS 0.283 0.927 0.282

KPRGM6 0.250 0.997 0.252
KPRMGM6 0.128 0.999 0.128

%OWM
KPLS 0.404 0.967 0.402

KPRGM6 0.364 0.998 0.365
KPRMGM6 0.301 0.999 0.301

%FFA
KPLS 0.222 0.814 0.222

KPRGM6 0.207 0.844 0.208
KPRMGM6 0.117 0.866 0.117

4.2.2. Oil to Wet Mesocarp

Using a similar NIR spectral dataset as in the previous analysis, %OWM was used
as a response variable. As seen in Table 1, it is known that the proposed robust KPRGM6
and KPRMGM6 are still superior to the non-robust KPLS. This is because the KPLS fails
to prevent the influence of outliers and HLPs that may exist in the dataset. The two
robust methods produce better R2 (0.998–0.999) and lower prediction error (0.301–0.364).
Based on these results, the KPRGM6 and KPRMGM6 are still superior as they show
their robustness compared to the non-robust KPLS. The visual comparison between the
measured values against the predicted values of the two proposed robust methods can be
seen in Figure 5. It is observed that both the KPRGM6 and KPRMGM6 have successfully fit
the measured values adequately with less error (see Figure 5b,c). However, the KPRMGM6
still outperforms the KPRGM6. As highlighted in the residual plots, the KPRMGM6 yields
the lowest prediction error (see Figure 5c) compared to KPRGM6, which is dominantly
close to 0. Hence, the results confirm our previous claims. In this study, even though the
same NIR spectral data are used as predictor variables, with the different use of response
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variables, the desirability indices show different results. Nonetheless, the summarized
performance of the two proposed robust methods remains satisfactory

Figure 4. Measured values against predicted values and the residual using %ODM data: (a) KPLS,
(b) KPRGM6, and (c) KPRMGM6.

.
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Figure 5. Measured values against predicted values and the residual using %OWM data: (a) KPLS,
(b) KPRGM6, and (c) KPRMGM6.

4.2.3. Fat Fatty Acids

Another set of NIR spectra of dried ground mesocarp from 839 observations and
500 wavelengths (range 500–2500 nm: 4 nm interval) was used in the study. Here, the
%FFA was used as the response variable. As seen in Table 1, the two proposed robust
KPRGM6 and KPRMGM6 are better than non-robust KPLS as it yields the highest error
in the prediction (0.222) and the lowest R2 (0.814). The robust procedures in KPRGM6
and KPRMGM6 have prevented the PLSR model from the influence of outliers and HLPs
that may exist in the dataset. Based on the fitted regression line graphs (see Figure 6), the
KPRGM6 and KPRMGM6 models summarize the variability (84.4–86.6%) of the response
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data adequately. As seen in the residual plot (see Figure 6b,c), the KPRMGM6 produces less
error (0.117) than KPRGM6 (0.207). It also observed that there is no specific pattern shown
in the residual plot both in KPRGM6 and KPRMGM6; this claims a good fit of predicted
values that are a random pattern. With robust procedures provided in the PLSR model, this
model is relatively good enough to be used in further interpretation since it is resistant to
the influence of outliers and BLPs. The range of %FFA data used in the calibration model
is still needed to be expanded in order to guarantee all the possible outcome values are
covered in the model. In general, we measure the %FFA using the conventional laboratory
method, which is based on the extracted oil from ground dried mesocarp. This then would
contribute to increasing the bias in the model accuracy of the proposed method.

Figure 6. Measured values against predicted values and the residual using %FFA data: (a) KPLS, (b)
KPRGM6, and (c) KPRMGM6.
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5. Conclusions

With consideration to the high dimensionality and irregular data space in the dataset,
particularly for chemometric analysis on NIR spectral data, the two new robust methods
called the KPRGM6 and KPRMGM6 algorithms are proposed. The methods combine
the benefits of linear PLSR and the kernel-based learning RHKS with the robustness of
the modified GM6 estimators. Based on the results, the proposed robust methods have
generally succeeded in preventing the influence of outliers and HLPs in the dataset and
captured the nonlinear relationships through high-dimensional feature mapping. The non-
robust KPLS suffers from the contamination of outliers and HLPs; hence, it has decreased
the accuracy of the PLS model. In the investigation, the use of different datasets reached
different desirability indexes where the KPRMGM6 is generally superior to KPRGM6 in
terms of accuracy improvement. The proposed modified KPRMGM6 shows its superiority
by removing only the outliers and BLPs in the dataset since GLPs contribute to increasing
the efficiency during the fitting process of parameter estimates. By adding some artificial
outliers and HLPs in the Monte Carlo simulation data, the KPRGM6 has only managed to
detect some outliers while the rest are unidentified. On the other hand, the contamination
of all real outliers and BLPs in the dataset has to be down-weighted for the proposed
KPRMGM6 to show great prominence. For future research, combining the proposed
KPRMGM6 with the robust pre-processing and wavelength selection method is highly
suggested. This will contribute to creating a more flexible, robust PLSR method rather
than applying the method separately. A consideration to employing such machine learning
(ML) and deep learning (DL) methods to figure out the nonlinear behavior in the dataset is
also encouraged.
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List of Abbreviations:

Abbreviations Full Form
ASD Analytical Spectral Devices
BLPs Bad Leverage Points
CP Cut-off Point
CSV Comma-Separated Values
DL Deep Learning
DRGP Diagnostic Robust Generalized Potential
FFA Fat Fatty Acid
FMGT Fast Modified Generalized Studentized
GLPs Good Leverage Points
HLPs High Leverage Points
ISE Index Set Equality
KPLS Kernel Partial Least Square
KPRGM6 Kernel Partial Robust GM6-Estimator
KPRMGM6 Kernel Partial Robust Modified GM6-Estimator
KPRMGM6 Kernel Partial Robust M-Estimator
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LMS Least Median of Squares
LTS Least Trimmed of Squares
MCD Minimizing Covariance Determinant
MGT Modified Generalized Studentized
ML Machine Learning
MVE Minimum Volume Ellipsoid
NIPALS Nonlinear Iterative Partial Least Squares
NIR Near-Infrared
ODM Oil to Dry Mesocarp
OWM Oil to Wet Mesocarp
PLSR Partial Least Square Regression
RKHS Reproducing Kernel Hilbert Spaces
RLS Reweighted Least Squares
RMD Robust Mahalanobis Distance
RMSE Root Mean Square Error
SE Standard Error
WLS Weighted Least Squares

Appendix A

Table A1. Statistical measures in kernel partial methods using the sine function.

Outliers and HLPs n m Methods RMSE R2 SE

With outliers and HLPs (5%)

60 41 KPLS 2.933 0.523 2.957
KPRGM6 0.458 0.706 0.462

KPRMGM6 0.140 0.921 0.140

60 101 KPLS 2.985 0.515 3.010
KPRGM6 0.477 0.640 0.481

KPRMGM6 0.142 0.912 0.142

60 201 KPLS 3.051 0.522 3.077
KPRGM6 0.500 0.658 0.504

KPRMGM6 0.098 0.932 0.101

200 41 KPLS 2.778 0.438 2.785
KPRGM6 0.422 0.663 0.423

KPRMGM6 0.120 0.910 0.120

200 101 KPLS 2.701 0.430 2.707
KPRGM6 0.393 0.688 0.394

KPRMGM6 0.123 0.909 0.124

200 201 KPLS 2.762 0.429 2.769
KPRGM6 0.391 0.652 0.392

KPRMGM6 0.163 0.895 0.163

400 41 KPLS 2.830 0.418 2.834
KPRGM6 0.383 0.702 0.384

KPRMGM6 0.198 0.814 0.200

400 101 KPLS 2.772 0.421 2.775
KPRGM6 0.415 0.674 0.416

KPRMGM6 0.122 0.910 0.122

400 201 KPLS 2.855 0.427 2.859
KPRGM6 0.352 0.712 0.353

KPRMGM6 0.104 0.959 0.104
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Table A1. Cont.

Outliers and HLPs n m Methods RMSE R2 SE

With outliers and HLPs (15%)

60 41 KPLS 3.456 0.560 3.485
KPRGM6 0.559 0.620 0.563

KPRMGM6 0.187 0.859 0.189

60 101 KPLS 3.459 0.564 3.488
KPRGM6 0.553 0.700 0.558

KPRMGM6 0.187 0.860 0.189

60 201 KPLS 3.484 0.580 3.513
KPRGM6 0.504 0.664 0.508

KPRMGM6 0.125 0.930 0.126

200 41 KPLS 3.533 0.592 3.542
KPRGM6 0.572 0.736 0.573

KPRMGM6 0.214 0.841 0.215

200 101 KPLS 3.359 0.597 3.368
KPRGM6 0.532 0.672 0.533

KPRMGM6 0.139 0.898 0.139

200 201 KPLS 3.330 0.602 3.338
KPRGM6 0.493 0.707 0.495

KPRMGM6 0.171 0.872 0.172

400 41 KPLS 3.505 0.589 3.510
KPRGM6 0.589 0.662 0.590

KPRMGM6 0.217 0.815 0.218

400 101 KPLS 3.529 0.619 3.534
KPRGM6 0.515 0.645 0.515

KPRMGM6 0.195 0.807 0.196

400 201 KPLS 3.405 0.639 3.409
KPRGM6 0.525 0.658 0.526

KPRMGM6 0.138 0.851 0.139

With outliers and HLPs (25%)

60 41 KPLS 3.585 0.676 3.615
KPRGM6 0.749 0.696 0.755

KPRMGM6 0.131 0.899 0.132

60 101 KPLS 3.535 0.642 3.565
KPRGM6 0.680 0.670 0.686

KPRMGM6 0.248 0.872 0.250

60 201 KPLS 3.471 0.687 3.501
KPRGM6 0.464 0.694 0.468

KPRMGM6 0.154 0.843 0.155

200 41 KPLS 3.672 0.586 3.681
KPRGM6 0.653 0.640 0.655

KPRMGM6 0.240 0.749 0.241

200 101 KPLS 3.779 0.680 3.789
KPRGM6 0.616 0.754 0.618

KPRMGM6 0.136 0.896 0.137

200 201 KPLS 3.722 0.681 3.731
KPRGM6 0.591 0.717 0.592

KPRMGM6 0.252 0.855 0.253

400 41 KPLS 3.646 0.633 3.651
KPRGM6 0.641 0.657 0.642

KPRMGM6 0.248 0.755 0.249

400 101 KPLS 3.616 0.686 3.621
KPRGM6 0.578 0.694 0.579

KPRMGM6 0.236 0.771 0.236

400 201 KPLS 3.679 0.684 3.684
KPRGM6 0.559 0.720 0.559

KPRMGM6 0.224 0.785 0.225
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