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Abstract: This paper provides novel generalizations by considering the generalized conformable
fractional integrals for reverse Copson’s type inequalities on time scales. The main results will be
proved using a general algebraic inequality, chain rule, Holder’s inequality, and integration by parts
on fractional time scales. Our investigations unify and extend some continuous inequalities and their
corresponding discrete analogues. In addition, when o = 1, we obtain some well-known time scale
inequalities due to Hardy, Copson, Bennett, and Leindler inequalities.
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1. Introduction

The Hardy discrete inequality is known as (see [1]):

[e9)

! h I oo
ZGE“’@) < (hfl) l;wh(z), h>1, 1)

I=1

where w(l) > 0 foralll > 1.
In [2], Hardy exemplified the continuous version of (1) by utilizing the calculus of
variations, which has the form:

/(;oo (;./(;yg(s)dsydy < (L)h/ooogh(y)dy, h>1, )

where ¢ > 0, which is integrable over (0,y), gh is a convergent and integrable function over
(0,00) and (h/(h — 1))h is a sharp constant in (1) and (2).

In [3,4], Copson outreached the inequalities of Hardy (1) and (2). Particularly, he
exemplified thatif # > 1, w(j) >0, k(j) >0, Vj > 1,9(]) = 25‘21 k(j) and m > 1, then:

v k() ke " B (1)
% anr < (wg) TrO#m 000, ®
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andifh > 1and 0 < m < 1, then

h
SEAUNES 'k') o hmklﬁh"”l .
gﬂm(l)<ﬁwo>0) <(1_m>l§(> (Dw™ (1) )

The continuous transcriptions of (3) and (4) Were exemphﬁed by Copson in [4].
Particularly, he exemplified thatif h > 1,m > 1 and 9(s fo 0)dg, then:

© k(s) h I oo k(s) \
0 19M(S)® (S)dS < <m_1> 0 ﬁm*h(s)g (s)ds, 5)
where ©(s fo {)dandifh > 1, 0 <m < 1, then
®© k(s) =h h h o k(s) \
0 l9m<s)@ (S)ds < (1 — m> /O ﬁm_h(s)g (S)ds, (6)
where O ( f k(¢

Lemdler in [5] and Bennett in [6] obtains some generalizations of (3) and (4) by using
new weighted function. Specially, Leindler exemplified that if 8" (/) = 172 k(j) < oo, h >1
and 0 < m < 1, then:

h
o k) (& e
z—zl<l9*<l>>’”<zw(”k(”> <(15) Sro@ oo, o

Bennett explicated thatif 1 < m <k, then:

h
e (Zw(;)ko‘)) (3 ) LHO@ O w0

Bennett in [7,8] established a converses of the inequalities (3) and (4). Particularly, he
exemplified thatif m <0 < h < 1, then:

k h—m
kD (& . RN L
Q0 (};wo)k(ﬂ) > (1_"1) l;k(l) (};un) w (D), )

agk

andif m >1>h >0, ¥(I) — oo, then

ook(l) : 'k')h Lhwklﬁh—ml h1 10
122119"1 1)<];w(]> () >(m_1> 1:21 (" (D (1), (10)
where )
L= 1y

In the last decades, the study of the dynamic equations and inequalities on time scales
became a main field in applied and pure mathematics. We refer to the papers [9-15]. In fact,
Refs. [16-24] mentions forms of the above inequalities on a time-scale and their extensions.

For example, in [25], Saker et al. exemplified the time scale version of a converse of
the inequalities (7) and (8), respectively, as follows:

Assume that T be a time scale with w € (0,00)p. If m < 0 < h < 1,8(0) =

fgook(s)As and Q(¢ fgk s)As, then
00 h oS
[ ﬁ';(fg) @z (11) [CHoreerese
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fo<h<1l<m, 8= fgo k(s)Asand Q() = fgo k(s)n(s)As , then
© k@) ik MmN\ " peo Ity h—m
[ k@) s> () [Tk @ @ag )
where Q)
M=t 70

In the same paper [25], Saker et al. proved the time scale transcript of the Bennet-
Leindler inequalities (9) and (10), respectively, as follows: Assume that T is a time scale

withw € (0,00)p. If m <0< h <1,T(]) = f£ k(s)As and Q(7) = fgo k(s)n(s)As, then:

(SR BN Ry (o e
[ mam@@) s> (725) [THor@ o) e oy

fO<h<mI()= ff} k(s)As , such that

e §(9
L= o 7"

and ®(7) = f£ k(s)n(s)As, then

(e —m h (e
[ (w@) sz (Ar) [Trenro aror e as

In recent years, a lot of work has been published on fractional inequalities and the
subject has become an active field of research with several authors interested in proving
the inequalities of fractional type by using the Riemann-Liouville and Caputo derivative
(see [26-28]).

On the other hand, the authors in [29,30] introduced a new fractional calculus called
the conformable calculus and gave a new definition of the derivative with the base proper-
ties of the calculus based on the new definition of derivative and integrals.

The main question that arises now is: Is it possible to prove new fractional inequalities
on timescales and give a unified approach of such studies? This in fact needs a new
fractional calculus on timescales. Very recently Torres and others, in [31,32], combined a
time scale calculus and conformable calculus and obtained the new fractional calculus on
timescales. Thus, it is natural to look on new fractional inequalities on timescales and give
an affirmative answer to the above question.

In particular, in this paper, we will prove the fractional forms of the classical Hardy,
Copson type and its reversed and Leindler inequalities with employing conformable
calculus on time scales. The article is structured as follows: Section 2 is an introduction of
the basics of fractional calculus on timescales and Section 3 contains the main results.

2. Basic Concepts

In this part, we introduce the essentials of conformable fractional integral and deriva-
tive of order & € [0,1] on time scales that will be used in this article (see [33-35]). A
time scale T is an arbitrary nonempty closed subset of the real numbers R. We define
the operator ¢: T — T, as ¢(f) := inf {s € T:s > 0}. In addition, we define the func-
tion y: T — [0,00) by 1(0) := ¢(6) — 6. Finally, for any 6 € T, we refer to the notation
27(6) by £(0(0)), i, & = L o0

In the following, we define conformable a-fractional derivative and a-fractional inte-
gralon T.
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Definition 1 (Definition 1, [31]). Suppose that  : T — R and « € (0,1]. Then for 6 > 0, we
define D3 (Z)(0) to be the number with the property that, for any € > 0, there is a neighborhood V
of 85.t.V0 € V, we have:

[27(6) = &(s)le" ) — DR(2)(0) [0 (6) — S]’ < el (0) —s|.

The conformable x-fractional derivative on T at 0 as:

Dy (¢(0)) = llrr(l)DA(C(9))-

Theorem 1 (Theorem 51, [31]). Assume « € (0,1] and v, : T — R be conformable a-fractional
derivative on T, then

(i) The v+ :T — R is conformable a-fractional derivative and
D2(v+¢) = D2 (0) + DA(0).
(i) For A € R, then Av: T — R a-fractional differentiable and
D& (Av) = AD%(v).

(iii) If v and { are a-fractional differentiable, then v : T — R is a a-fractionald differen-
tiable and

D (v0) = Dg(v)¢ + (vo)Dg (§) = Dy (v)(§ 0 o) +vDg (0). (15)

(iv) Ifvis a-fractional differentiable, then 1/v is a-fractional differentiable with:

(v) Ifvand ¢ are x-fractional differentiable, then v/ is a-fractional differentiable with:

A(?) _ IDA(0) - oDA(Q)
D”‘(C)_ (Coo) (e

valid at all points 6 € T* for which ¢(0)(¢(c(8)) # 0.

Lemma 1 (Chain rule [32]). Suppose that ¢ : T — R is continuous and a-fractional differentiable
at® € T, fora € (0,1] and v : R — R is continuously differentiable. Then (vo():T — R is
a-fractional differentiable and

D (vo0)(0) = v'({(d)DL(L(6)), where d € [0,0(6)). (17)

Definition 2 (Definition 26, [31]). For 0 < a < 1, then the a-fractional integral of C, is defined as

) = f 0(s)Ags = / 7(s)s* As.

Theorem 2 (Theorem 31, [31]). Suppose thatl,m,n € Tand A € R. If v, : T — R, then
(vi) fl s) Axs = fl $)Axs + fl 8)Axs.

(vii) f" /\v Afl ch

(viii) ;" v A‘Xs - "o A“s
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(ix) fl $)Axs = fl A(Xs+f Aqys.
(x) fl A(xs =0

Lemma 2 (Integration by parts formula [31]). Suppose that [,m € T where m > . If v, are
conformable a-fractional differentiable and « € (0, 1], then:

06 D2 A = )N — [ DR ((6) A (18)

Lemma 3 (Holder’s inequality [32]). Let I,m € T where m > 1. If « € (0,1] and
F,G:T — R, then

koo !
/|F A,xs<</ IF(s |Aas> (/I |G(s)|”A,xs) , (19)
where A > land 1/A+ /u =1

Through our paper, we will consider the integrals are given exist (are finite i.e.,
convergent).

3. Results

Here, we will exemplify our main results in this article by utilizing Holder’s inequality,
chain rule, and integration by parts for fractional on time scale.

Theorem 3. Suppose that T is a time scale with w € (0,00)p,k <0 < h < landa € (0,1].
Define

8(y) = /yoo x(s)Ays and Q(y) = /wyx(s)iy(s)A,xs.

Then

00 h o
[ sy aa= () [T we ey @)

Proof. By utilizing the formula of integration by parts (18) on
' x(y) o h
Q Any,
/w l9k,tx+1 (]/) ( (y)) aY

with £ (y) = (Q°(y))" and D} (o(y)) = lﬂéwmw have

/: ngfa(fl)(y)(ﬁa(y))h%y = o(y) ' (y

+ / DA Qh(y)>A,xy, 1)

where )
e x(s
v(y) - _/y mA“S.
Using Q(w) = 0 and v(c0) = 0in (21), we see that

o)

[ s @) s = = [ oD (2) s 22)
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By utilizing chain rule, we get:

hDR(Qy)) . hDH(Q(y))
Q@)™ ()"

D2 (")) = "1 (@)DH(OUy)) =

Since D2 (Q(y)) = x(y) n(y), we have

Dﬁ(ﬂh(y)) > ()17(3/ _

Next note D2 8(y) = —x(y) < 0. By the chain rule, we have (note k < 0)

Dg (9%~ k(y)) Z( k)9*1(d )fAﬂ(y)
= WD 8(y) = W)D( 1)9(y)
= W%(—X(y)) 2 Wa(yy)'

This leads to 1

07 (y)a(y) > —

DR (),

and then, we have
« x(s) -1 /oo A x—k 1
“o(y) = Aus > DA (o Ags = —
0=, g 2 aop ), O ()8 = e
Substituting (23), (24) into (22) yields:
©_ xy) () ( I )/“’ 1(y)x(y)
———(0) Ayy > Ayy.
[ e mtawz (1) [ D
Raises (25) to the factor /1, we have:

“ 2y eryia ) e 7" (y)x" (y) '
([ st erwraw) = () (/ (ﬂh(k‘“)(y)(ﬂc(]/))h(l_h)) AW) |

By applying Holder’s inequality (19) on the term

1 h
® 7" (y)x"(y) '
(/w <l91’1(k—cx) () (Qc(y))h(l_h)> Aay) ,

with indices A = 1/h > 1, = 1/(1 — h) (note that + + % =1, where A > 1) and

_ " (y)x" (y) (1) N e ()
= Gy e S (ﬁk Wy)) (")

(23)

(24)

(25)

(26)
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we see that

1

0o -1 h ¥l g
(fw Fh (y>A’1y) ( ﬁhk «) ]/) QUEyz) h(1— h)) Aay>
> Jo o F (y)G(y)Aay

1—h
f;" G l—h Aw)

< h k4a—1 1=h_p h(1—h)
_ (f;o(v W WO ) A0 )t )Aay>

=) ()(Q ()"~

h

This means that

1
/°°< 7" (y)x" () ) Ay | > du T WX ) Ay
@\ () (07 ()" < I "%2“1 {l )))Aa}/>1_h
w «

by substitution (27) into (26), we get

1-h
© Q
(fw —“gﬁ&ﬁ( ) Aay)
This means that
* X (_1/) o h > h "
[ s @) s> (g
which the wanted inequality (20). O

Corollary 1. If we put & = 1 in Theorem 6, then we get

0 5 h e
[ ﬂk((% (Q°(y)"Ay > (ik) / x ()" (y)8" () Ay),

where w € (0,00),k <0< h <1,

which is (11) in the Introduction.

Remark 1. If we take T = R in Theorem 6, then:

®  x oo
. l%—ffl)(y)(ﬂ )y dy > <I£k> | e ) ey,

0

(27)

(28)

(29)

where w € (0,00),]( <0<h<1l, ﬂ(y) — fy x( ) a=14s and Q(y) y (S)U(S)S'x_lds.

w

Remark 2. Clearly, for « = 1 and w = 1, Remark 1 coincides with Remark 1 in [25].
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Remark 3. Asa result, if T = Z in (20), and k <0 < h < 1, then:

(e )

Y e 00 W) ) > (g )Zx )y ) )T, 0)

y=w

where, 0°(y) = Oy +1) = Fly () 7(5)(s + 1)* " and 0(y) = T2, x(s) (s + 1)
If « = 1, then (30) becomes

y;lu gk(%:U) (Q

"= (1 )zx ) O () 1" (), 61)

where, Q°(y) = Q(y+1) = Yy x(s) 71(s) and 8(y) = Ys2y x(s). which is Remark 2
in [25].

Theorem 4. Suppose that T be a time scale with w € (0,00),0 < h <1 < kand « € (0,1].
Assume that 9(y) is defined as in Theorem 6 such that:

a
M= inf W S (32)

and define Q(y) = fyoo x(s)n(s)Axs. Then

/wOo m(ﬂ(y)> Any 2 H) /woo x(y)n" ()" (y) Agy. (33)

Proof. Utilizing the formula of integration by parts (18) on

woo l%)i&yl)(y) QW) ey,

with (y) = (ﬁ(y)) and D27(y) = =Y we have

Feig)
Zlﬂ%(ﬁ(y)) Ay =12(y) +/ &y OW)")aw,
where {(y) = [ 52— =ity Bas. This with O(e0) = 0 and {(w) = 0 implies that
/w ) 1% QW) Buy = /w " ) (-0 (OW)" ) By (34)
But utilizing chain rule, we obtain:
~ D ()" = " @)D0y) = ?Q((};))’;EQ > ?Q((?)’;Eyh 35)

Since D2Q(y) = —x(y)n(y) < 0and d > y, we find that Q(y) > Q(d). By substitut-
ing (35) into (34) and using that D2{(y) > 0, we get

/ prTrEE Yy ,m QW) Aay > 1 / WAW (36)
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Next note D¢ #(y) = —x(y) < 0. By the chain rule, we have (note k < 0)

W) = - pe - @pg o)

— A A
= WD 19(]/) S WD 19(]/)
< gt *(W) < Wx(y)

_ x(y) 8y
= (k—u) (07 () FFI% OFFT=a(y)

(k—a)x(y)
T MEa(a(y))

This implies that

k+1—a k+1—a
y>:/jl9kj‘§"3(S)Aas > (Afc_a )/wy DA (875(5)) Aus = (Af{_a )wk(y). 37)

By substituting (37) into (36) yields

0o o hMk+1—a 00
/w M(Q(y))hAasz ( k—a )/w gn— k(()> E i‘( )Aay' 38)
Raising (38) to the factor /1, we get:
. h
* 3 gentan) s (N (e
(f Friagy (OW) e <H> (/ (M(k_a)(y)ﬂhu-h)(y)) Awy) | 9)

The rest of the proof is identical to the proof of Theorem 6 and hence is deleted. [

Corollary 2. If we put & = 1 in Theorem 8, then:

% K\ oo
W) o) ay > (,ﬁ”_ﬂ) [xorwetomse, @

where w € (0,00), 0 <h <1<k Q(y) = fyoo x(s)n (s)As and 9(y) = fyoo x(s)As such that

g
M= inf TV

>0,
yeT B(y)

which is (12) in the Introduction

Remark 4. If we take T = R (i,e,0(y) = y) in Theorem 8, then

w

[e9) h oo
/. lgkﬁyl)(y)(ﬂ(y))hy“‘ldﬁ(&) [ x i oty ay, @)

where 0 <h <1 <k,ae (0,1],8(y) = f;ox(s)s"‘_lds,ﬁ(y) = f;ox(s)iy(s)s"‘_lds and

oy _

If « = 1 and w = 1, then (41) becomes:

o h
Rl @) > () [T ey )

which is Remark 3 in [25].
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Remark 5. As a special case of (33), when T =Z (i.eoc(y) =y+1)and 0 < h < 1 < k, we get:

© o xy) o v \" & e
yzwl%-a(%(m”)h = (k—zx) y;wx(y)ﬂh(y)ﬂh iy, (43)

where 8(y) = 5%, x(s) (s + 1), and Q(y) = £, x(s)y(s) (s +1)* !

U
M = inf ¥ (y) = inf 8(+1)

0,
yeT O(y) vez. 9(I) >

which is Remark 4 in [25], when a = 1.

Theorem 5. Suppose that T is a time scale with w € (0,00)p,k <0 < h < 1land a € (0,1].
Assume that T(y) = [Y x(s)Axs and Q(y) = fyoo x(s)17(s)Ays. Then

[ee) h o0
/ (rg@’;’ﬁm(mw)%w>(£k) [ o @) . @

Proof. Utilizing the formula of integration by parts (18) on

[ oy e (00 8y

. = h
with o(y) = (Q(y))" and DRZ(y) = o eer, we get

oo

/ X Ly), Q)" Ay = ) Q)"

w ([7(y)f " +/w€“(y)(—D§(ﬁ(y))h)Aay,

w

w

where {(y) = [/ %AKS. This with Q(c0) = 0 and I'(w) = 0 imply that

) o
/w ([U(y))k a—i—l A"‘y / ¢y ( )) Any. (45)
By utilizing chain rule, we get:
- DA(@()" = " (@)piny) = B S W) )

ORI S ()

Since D2Q(y) = —x(y)y(y) < 0. By substituting (46) into (45) and using that
D2¢(y) > 0, we have:

SR {C) B C TN ® i X))
/w (I“T(y»k*oﬁLl (Q(y)) Al’éy Z h /w g (y) ﬁlih(y) Aay' (47)

Next note D2T(y) = x(y) > 0. By the chain rule, we have (note k < 0)

D3 (r“*’%y)) = (e —Rr HADI()

= FE=DET(y) < DeT(y)

Tk+1- “(d) — rk+1 a( )
<

k x—k
ey X ) < e (¥)-
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This implies that
o _ o) x(s) 1 o) A a—k _ 1 o a—k
SOENE W%sza_k/w DA(T(s))* ¥ Aus = —— (7). (48)

By substituting (48) into (47) yields

© X — h ® a—kX
[ wotm@w) s> 2 oo S Wy )

Raises (49) to the factor 11, we get:

h 1
© x(y) =k N[ 12 oy e X ") (y) "
</w W(O(y)) my) > (a_k> (/w ((r ()" k)Qh(lh)(y)> A“y) . (50)

The rest of the proof is identical to the proof of Theorem 6 and hence is deleted. [

Corollary 3. If we put & = 1 in Theorem 10, then:

[e9) h [e9)
[ mor@a'syz (75) [Comorw s, e

wherew € (0,00),k <0< h <1,
y o o
I'(y) = / x(s)As and Qy) = / x(s)n(s)As,
w Y
which is (13) in the Introduction.

Remark 6. In Theorem 10, if we take T = R (i.e.c(y) =y), then:

RO BN hoy!
/, T W)y 1dy2<a_k)
(

where w € (0,00),k <0< h <1, a€(0,1]

[ ) )" ay, 62)

w

I'(y) = /wyx(s)sa_lds and Q(y) = /yoo x(s)7(s)s*1ds.

If « =1and w = 1, then (52) becomes

[ (rg/;)k(a(y))hdyz(lfk) I o ) ) ay, 53)

where

which is Remark 5 in [25]

Remark 7. As a special case of (44) when T = Z (i.e.o(y) =y + 1), we get:

[e)

x(y) O h 1 x—1 ( h >h = h v h—k+a—1 1 a—1 54
L, o e Q) v+ (o0 ) L x0T ) (y+1)*, (54)
where I (y) = T(y +1) = Lo x(s) (s + 1)1, Qy) = £, x(s)(s) (s + )", k <
0<h<l
For @ = 1in (54), then we get the inequality in Remark 6 in [21].
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Theorem 6. Suppose that T is a time scale with w € (0,00),0 < h <1 < kand « € (0,1].
Assume that T (y fy 8)Ays such that

_ L)
L:= yuelﬂfrl"“(y) >0, (55)

and define (y) = [¥ x(s)n(s)Aqs

o a—k k )
/ %(E(G(y)))hmyz (ich—zx> /w ()" )T W) () Ay (56)

Proof. Utilizing the formula of integration by parts (18) on

/: (rgégk)_ﬂ (Do) Auy,

with {°(y) = (E(G(y)))h and D2o(y) = —¥__ e have

(19 (y))F- 17
h
+/ < <I>(y)) )Aay,

where v(y fy o x(y}? —1A4s. This with @(c0) = 0 and I'(w) = 0 imply that

/: méi»‘)/k)_m@(o(y)))%y = /woo (—v(y)) (Df((b(y))h>Aay. (57)

By utilizing chain rule, we obtain:

/oo (rg(;gk)_m(q’(ﬁ(y)))h Aay = 0(y) (B(y))"

DA @ ()" = h(®())" (&) DIB(y) = hx(y)n(y) < hx(y)v(y)_ _ (58)
(@) =h(P(y)) ¥) = i ") o (q)(c(y)))l h

Since D2®(y) = x(y)n(y) > 0. By substituting (58) into (57) and using that
D2®(y) > 0, we have:

W) (@ (o))" =y X ny)
/w (rc(y))kfuurl (®(0(y))) Day > h/w (—ov(y)) ) Ayy- (59)

Next note D2T(y) = x(y) > 0. By the chain rule, we have (note k < 0)

DA <r1x7k(y)) — (IX o k)l—vxfkfl (d)DAF(y)
- W’;‘((d)DAr(y> S rk+}( A(y) DAF(y)

- 4
< 1-k+177,x<y)x(y) < Wx(y),

And

(60)
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by substituting (60) into (59), we get

0 a—k ©
/ mégﬁm<¢<o<y>)my>(’;f_a) [ o

Raises (61) to the factor /1, we get

h h
R () T hAa> ><w-k) “[ oy @' |,
</w (ro-( ))kfaJrl( ( (]/))) Y = k—a /;u ( (]/)) (ao_(y))h(lfh) y

The rest of the proof is identical to the proof Theorem 6 and hence is deleted. [

Corollary 4. If we put & = 1 in Theorem 12, then:

©  x _ a—k h o
/, (rc((yy)))k(q’(ﬁ(y)))hAyZ (i,lfa> /w X" )W) ay, 62

wherew € (0,00),0 <h <1<k ®(y fy s)As and T'(y fy $)Ays such that

_ . T()
L= o~

which is (14) in the Introduction
Remark 8. If we take T = R (i.e.,0(y) = y) in Theorem 12, then:

/oo (r(yx)()yk)m(q’(y))

h

b oo
vy () [ ) (63)

w w

where w € (0,00)1,0 <h <1<k ®(y) = [V x(s)y(s)s* tdsand T'(y) = [ x(s)s*'ds
such that ) ()
- Yy
L:=inf =~ = inf —~= =
yelT%(y)  yerI(y)

If « =1and w =1, then (63) becomes

©  x(y) ho\" e _
| ao@war= () [Txontmew e
where y B y
F(y):/1 x(s)ds and @(y):/l x(s)n(s)ds,
which is Remark 7 in [25]

Remark 9. As a special case of (56), when T =7Z (i.eo(y) =y+1)and 0 < h <1 < k, we get:

[ee] a—k h [e)
y W (&) 1) > (ZL_ “> Y " T T y y 1, ()
w=y w=y

where, T7(y) = T(y+1) = Y ox(s) s+1)" L P(oy) = By+1) =
Y x(s)n(s) (s + 1) !

Loe inf LW) I'(y)

_ f ,
RO (y) T 0Ty + 1)
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which is Remark 8 in [25], when & = 1.

Applications

The applications of quantum calculus play an important role in mathematics and
the field of natural sciences, such as physics and chemistry. It has many applications
in orthogonal polynomials, number theory, quantum theory, etc. In this section, some
example for Reverse Coposn’s Inequalities in fractional quantum calculus are selected to
fulfil the applicability of the obtained results.

Now, we give an example using the time scale T = g™, > 1 which is a time scale
with interesting applications in quantum calculus.

Example 1. (Quantum calculus case 1.): Let T = ™o = {t : t = ¢",n € Ny, q > 1}. Then for
all t € g™, we have

b oo b
o(t) = qt, u(t) = (q — 1)t and /a f(£)Dat = Zﬁ‘{o;i £ @ @) Vabe g (66)

Now, with the help of Theorem 3 and the above identities in (66), we can deduce

0 " o N n ny\&— h " 0 n n n —k+ua— n nya—
L oy iy ) a0 = (g ) L X000 )
where,
o(q") logq o(g")—1 .
Q%" = 0olq") = [ x@reas = L x@ngmu g
m=log, w
and

ﬁ(qn) = /qoo X(S)A,XS = i x(qm)y(qm)(qm)“‘l

n
m=log, q"

For an application of Theorem 4, we give the following example.

Example 2. (Quantum calculus case 2.): Let T = q™o, q > 1, then the relation (66) is satisfy.
Hence, we have:

o) =gt w(t) = (g~ Dtand [ F001 = Dbt Fg (") @) Vab e g

Now, with the help of Theorem 4 and the above identities in (66), we can deduce:

x(g" s k—a+1 h o
T ) ey @ > () T a0 T g (g
g0 G-+ (gn) F—a -

where, O(g") = [ x($)1()Axs = Liiog gn ¥(@")n(@")p(g") (@) 1 M =

infT 13;7(%”)) >0, 9(q") is defined in the above example.
q"e

Note that. By using theorems 10 and 12, we can apply the technique used in the above
examples to obtain different applications. In addition, the above result is important not
only for arbitrary time scales, but also for quantum calculus.

4. Conclusions and Future Work

The new fractional calculus on timescales is presented with applications in new
fractional inequalities on timescales like Hardy, Bennett, Copson, and Leindler types. In-
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equalities are considered in rather general forms and contain several special integral and
discrete inequalities. The technique is based on the applications of well-known inequalities
and new tools from fractional calculus. In future research, we will continue to generalize
more dynamic inequalities by using Specht’s ratio, Kantorovich’s ratio, functional gen-
eralization, and n-tuple fractional diamond- « integral. It will be interesting to find the
inequalities in o, 3-symmetric quantum and stochastic calculus.
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