symmetry

Article

Fractional Reverse Coposn’s Inequalities via Conformable
Calculus on Time Scales

Mohammed Zakarya 2*, Mohamed Altanji !, Ghada AINemer 3, Hoda A. Abd El-Hamid 4, Clemente Cesarano °

and Haytham M. Rezk ¢

Citation: Zakarya, M.; Altanji, M.;
AlNemer, G.; Abd El-Hamid, H.A.;
Cesarano, C.; Rezk, H.M. Fractional
Reverse Coposn’s Inequalities via
Conformable Calculus on Time
Scales. Symmetry 2021, 13, 542.
https://doi.org/10.3390/sym13040542

Academic Editor: Ioan Rasa and

Wei-Shih Du

Received: 2 March 2021
Accepted: 23 March 2021
Published: 25 March 2021

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and insti-

tutional affiliations.

Copyright: © 2021 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (http://cre-

ativecommons.org/licenses/by/4.0/).

1 Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004,
Abha 61413, Saudi Arabia; maltenji@kku.edu.sa

2 Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt

3 Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University,
P.O. Box 105862, Riyadh 11656, Saudi Arabia; gnnemer@pnu.edu.sa

4 Department of Mathematics and Computer Science, Faculty of science, Beni-Suef University,
Beni-Suef 62511, Egypt; Hoda.Ali@science.bsu.edu.eg.

5 Section of Mathematics, Universita Telematica Internazionale Uninettuno, 00186 Rome, Italy;
c.cesarano@uninettunouniversity.net

¢ Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt;
haythamrezk@azhar.edu.eg

* Correspondence: mzibrahim@kku.edu.sa

Abstract: This paper provides novel generalizations by considering the generalized conformable
fractional integrals for reverse Copson’s type inequalities on time scales. The main results will be
proved using a general algebraic inequality, chain rule, Holder’s inequality, and integration by parts
on fractional time scales. Our investigations unify and extend some continuous inequalities and
their corresponding discrete analogues. In addition, when a = 1, we obtain some well-known time
scale inequalities due to Hardy, Copson, Bennett, and Leindler inequalities.
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1. Introduction

The Hardy discrete inequality is known as (see [1]):

[ee] k [ee]
> (1200) <he) o o
=1 j=1 =1

where w(l) > 0 foralll > 1.
In [2], Hardy exemplified the continuous version of (1) by utilizing the calculus of
variations, which has the form:

© (1 (Y : " h
— s)ds | dy < (—)
fo (yfo 7 ) 7= =1
where g = 0, which is integrable over (0,y), ghisa convergent and integrable function
over (0,) and (h/(h — 1))" is a sharp constantin (1) and (2).
In [3,4], Copson outreached the inequalities of Hardy (1) and (2). Particularly, he
exemplified that if h > 1,w(j) = 0,k(j) = 0,Vj = 1,9(1) = X}, k(j) and m > 1, then:

h o
f g"Mdy, h>1, 2)
0
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The continuous transcriptions of (3) and (4) were exemplified by Copson in [4].
Particularly, he exemplified thatif h > 1,m > 1 and 9(s) = fos k({)d{, then:

“ k(s) A" (° k(s)
J; () O"(s)ds < (m — 1) fo FL=e g"(s)ds, 5)
where 0(s) = fomk(i)g(c)d( andifh > 1,0 <m < 1, then
* k(S) — h h oo k(s)
J; 97 (s) 0"(s)ds < <1 — m) fo =T gh(S)dS, ©)

where 8 (s) = [" k({)g({)d .

Leindler in [5] and Bennett in [6] obtains some generalizations of (3) and (4) by
using new weighted function. Specially, Leindler exemplified that if ¥*(I) = X7, k(j) <
o,h>1and 0 <m <1, then:

oo l h [eY)
k(! ho\" -m
W(ZW"“’) <(12) Yooy Two. o
=1 =1 =1
Bennett explicated thatif 1 <m < h, then:

oo 0 h ®
Z (a—'ff‘z?)'” (Z WU)km) = (%)h; KO O) "o ®)

Bennett in [7,8] established a converses of the inequalities (3) and (4). Particularly,
he exemplified thatif m <0 < h <1, then:

© o h
Z%(}Z wo')k(j)) = (5

andif m>1>h>0,9(1) » o, then

- k(l WL AP
19"55)(2””(’)"(’)) > (~=5) ;"(”ﬂ“""(l)wh(o, (10)

h-m

. m)hi %0 (Zl k(i)) Wi, ©)
=1 =1

where

— inf k(D)
TINKC+ D

In the last decades, the study of the dynamic equations and inequalities on time scales
became a main field in applied and pure mathematics. We refer to the papers ([9-15]). In fact,
Refs. [16-24] mentions forms of the above inequalities on a time-scale and their extensions.

For example, in [25], Saker et al. exemplified the time scale version of a converse of
the inequalities (7) and (8), respectively, as follows:
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Assume that T be a time scale with we (0,0).Ifm<0<h<1,9()=
f;o k(s)As and Q(¢) = fvi k(s)n(s)As, then

P kD oo ho " .

fw 9 Q) Q°@N"AL = (m) fw k (©On" (9" ™AL (11)
FO<h<1l<md() = f;ok(s)As and 0(¢) = f¢°° k(s)n(s)As, then

LIPS hM™\" o

| @@z (=) [ ror@rron, (12)
where
L9700
M = 1nf {50 > 0.

In the same paper [25], Saker et al. proved the time scale transcript of the Bennet-Leindler
inequalities (9) and (10), respectively, as follows: Assume that T is a time scale with

wE (0,0). fm<0<h<1,T()= f‘ik(s)As and Q(¢) = f;k(s)r}(s)As, then:

ho " ([
h h o h-m
[ (Fa@)m( @z (=) [ ror@ @

IfO<h<mT()= f‘i k(s)As, such that

L:= 1nf ro >0,

FG(O
and ®(¢) = f;k(s)n(s)AS, then

hLtm\" e
[ —om @y ( ) [ k@@ ar@rrag g
(Fg(f )) 1-mj) J,

In recent years, a lot of work has been published on fractional inequalities and the
subject has become an active field of research with several authors interested in proving
the inequalities of fractional type by using the Riemann-Liouville and Caputo derivative
(see [26-28]).

On the other hand, the authors in [29,30] introduced a new fractional calculus called
the conformable calculus and gave a new definition of the derivative with the base prop-
erties of the calculus based on the new definition of derivative and integrals.

The main question that arises now is: Is it possible to prove new fractional inequali-
ties on timescales and give a unified approach of such studies? This in fact needs a new
fractional calculus on timescales. Very recently Torres and others, in [31,32], combined a
time scale calculus and conformable calculus and obtained the new fractional calculus on
timescales. Thus, it is natural to look on new fractional inequalities on timescales and give
an affirmative answer to the above question.

In particular, in this paper, we will prove the fractional forms of the classical Hardy,
Copson type and its reversed and Leindler inequalities with employing conformable cal-
culus on time scales. The article is structured as follows: Section 2 is an introduction of the
basics of fractional calculus on timescales and Section 3 contains the main results.

2. Basic Concepts

In this part, we introduce the essentials of conformable fractional integral and deriv-
ative of order « € [0,1] on time scales that will be used in this article (see [33-35]). A time
scale T is an arbitrary nonempty closed subset of the real numbers R. We define the op-
erator g: T - T, as ¢(0) = inf {s € T:s > 8}. In addition, we define the function u: T —
[0,00) by u(6):=0(0)—06. Finally, for any 6 € T, we refer to the notation

{7(8) by ¢(a(6)),i.e.,{? = ea.



Symmetry 2021, 13, 542

4 of 15

In the following, we define conformable a-fractional derivative and a-fractional in-
tegralon T.

Definition 1 (Definition 1, [31]). Suppose that {: T — R and a € (0,1]. Then for 6 > 0, we
define D§($)(6) to be the number with the property that, for any € > 0, there is a neighborhood
Vof 0 s.t. VO €V, we have:

|[57(6) = ¢()]o™~*® — DR()(O)[a(6) — s]| < ela(8) — sI.

The conformable a-fractional derivative on T at 0 as:

Dz(¢(0)) = lim Dz($(6))-

Theorem 1 (Theorem 51, [31]). Assume a € (0,1] and v,{: T - R be conformable a-frac-
tional derivative on T, then
(i) The v+ {:T - R is conformable a-fractional derivative and

Da(v +¢) = Da(v) + Dz ({).
(ii) For 1 € R, then Av: T —» R a-fractional differentiable and
D& (Av) = AD:(v).

(iii) Ifvand ¢ are a-fractional differentiable, then v{: T — R isa a-fractionald differen-
tiable and

Da(v) = Dg()¢ + (v ° 0)D3(¢) = Dg()({ © o) + vDe({). (15)
(iv) Ifvis a-fractional differentiable, then 1/v is a-fractional differentiable with:

D (1) __ Da)

v)]~ v(oo)

(v) Ifvand ¢ are a-fractional differentiable, then v/ is a-fractional differentiable with:

v\ {DAw) - vDA(C)
D3(2>‘ @)

valid at all points 8 € T* for which {(8)((c(8)) # 0.

(16)

Lemma 1 (Chain rule [32]). Suppose that {: T — R is continuous and a-fractional differentia-
bleat 8 €T, for a € (0,1] and v : R - R is continuously differentiable. Then (v {):T - R is
a-fractional differentiable and

D3 0)(8) = v'({(d))D(¢(0)), where d € [6,a(6)]. (17)

Definition 2 (Definition 26, [31]). For 0 < a < 1, then the a-fractional integral of {, is de-
fined as

18C(s)) = f 0(5)gs = f 0(5)s% s,

Theorem 2 (Theorem 31, [31]). Suppose that L m,n € Tand A € R. If v,{: T - R, then
(vi) flm[v(s) +7(8)]Ays = flmv(s)Aas + flm((s)Aas.

(vii) flm M(s)Ags = A flm v(s)AysS.

(viii) flmv(s)Aas =- flm v(s)A,sS.

(ix) flmv(s)Aas = fln v(8)Ays + f:l V(8)AysS.

(x) fll v(s)Ays =0
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Lemma 2 (Integration by parts formula [31]). Suppose that |,m € T where m > . If v,{
are conformable a-fractional differentiable and a € (0,1], then:

f u(s) DEQ()hes = ()P — f {7()D2((s))Ags. (18)
l l

Lemma 3 (Holder’s inequality [32]). Let [,m € T where m > 1. If a € (0,1] and F,G:T -
R, then

[

fmlF(s)G(s)l Ays < <fm|F(s)|’1Aols>}L (fmlG(s)l“Aas>u, (19)
1 1 1

where 1 >1 and 1/A+/u=1.

Through our paper, we will consider the integrals are given exist (are finite i.e., con-
vergent).

3. Results

Here, we will exemplify our main results in this article by utilizing Holder’s inequal-
ity, chain rule, and integration by parts for fractional on time scale.

Theorem 3. Suppose that T is a time scale with w € (0,0)y,k <0 < h < 1and a € (0,1]. De-

fine

o y
9() = f x($)Ags and Q(y) = f x($)N(S)Ags.
y w
Then

h

® x) o h . —k+a-1
|| geegy @00 b2 (=) [ oo eiong. @)

Proof. By utilizing the formula of integration by parts (18) on

© x(y) or\h
fw m(ﬂ O) Aoy,

. h
with {°(y) = (2°(y))" and D2 (v(y)) = ﬂkfgz 5y we have

e x()
fw Sari(y) (Q°(1))"Aay = v()Q* )

+ f (—vM)DE(Q"(1))Asy,  (21)

where

_ (7 %)
U(y) = —L mAaS.

Using Q(w) = 0and v(e0) = 0 in (21), we see that

) -
|| gy (@00 sy = = [ voIDAR ()80 22)

By utilizing chain rule, we get:
hDa(0M)) _ hDa(0())
(e@)"™"  (eeo) "

DA(a"()) = kA" Y (d)DE (W) =

Since DZ(Q(¥)) = x(¥) n(y), we have
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hx(y) n(y)
Di(Q"(y)) = ——=- 23
(Qe() ™" *)
Next note D 9(y) = —x(y) < 0. By the chain rule, we have (note k < 0)
D (9975 = (@ = 9" (d)DLI()
=LDA19( ) > ai_kDAg( )
19k+1_°‘(d) V) = Bk“_“(y) aVly
Ca- ~(@ = )x()
= m(—x()’)) = ToRagy)
This leads to
-1
97T x() 2 = Da(9° 7)),
and then, we have
@ x(s) -1 (=
-v(y) = —— <05 2 D2 (9%7K(s)) A,s
L 9k 1(}/) a— k_[, ( ) (24)

1
T @- 19 0)
Substituting (23), (24) into (22) yields:

© x(y) N h . n(y)x(y)
fw Sk-ati(y) (20)) 8y 2 <a—k> jw ey (o)) " ey )

Raises (25) to the factor h, we have:

1 h
*x0)  opene \ o N[ n"@)x" ) g »
(y gr=a1(y) (Q°(») Aa}’> > (a—k) (jw (ﬂh(k—“)(y)(ﬂ"(y))h(l_h)> Aa}’> ) (26)

By applying Holder’s inequality (19) on the term

1 h
f‘”( "x"(y) )hA )
h(1-h) a ’
w \9hE-D(y)(Qo(y))
with indices 2 =1/h > 1,1 = 1/(1 — h) (note that >+ i = 1,where 2 > 1) and

h h
F(y) = "G
90 () (02 ()

we see that

0 h © h h %
1 " ¥)x"(y)
Fh(y)Aay> = ( = ) Agy
(fw (fw ,9h(k—a)(y)(ﬂc(y))h( h )
[ F )6y
= o 1 1-h
(fy 67r)AY)
<jﬂ°(nh<y)(x(y)a-k+“-1(y))l‘hxh(y)nc(y))h“-h>> A y)

hk-a) ») (Qo (y))h(l_h)

h_
= x()(2° )"
X ( fw Wi\ay)

1-h

raom and G(}’)=(%) (Qo(y))h(l—h)’

h
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_< f‘”( " x() ) )

= w1 | Day

w {)h(k—a)(y)({)k—a+1(y))
“x((Q°®))" )

"(fw Yk-ati(y) A“y)

h

* n"x" () i S xRl (A, y
.[ (,9h(k—a)( o “(1"’)> Aa = w oot T 27)
" (@) (U ozt )

This means that

by substitution (27) into (26), we get

© h n h (® n( ) ( )ah—k+a—1( )Aa
<f x(y) (m(y))hAay> 2( )fwn Y)x(y Nhay

k—a+1 _ 1-h
meri(y) a—k ( [P r@em)” y)
w sk—a+1(y) a

This means that

T X)) oer)t h A\ ka1
fw W(Q ) Ay = (m) fw x(N" AT (Y)Agy,

which the wanted inequality (20). o

Corollary 1. If we put a = 1 in Theorem 6, then we get

2 x(O) /og N B
fw 7o) (& )"y = (m) fw x()n" 9" (A, (28)

where w € (0,00),k <0< h <1,
© y
I(y) =f x(s)As and Q(y) =f x(s)n(s)As,
v w
which is (11) in the Introduction.

Remark 1. If we take T = R in Theorem 6, then:

o h h oo
|| sty @Oy ay 2 (727) [ xomr o) ey, @9

where w € (0,0),k <0< h<1,9() = fywx(s)sa_lds and Q(y) = fvi/X(S)n(s)S“‘lds.
Remark 2. Clearly, for a« = 1 and w = 1, Remark 1 coincides with Remark 1 in [25].

Remark 3. As a result, if T =Z in (20), and k <0 < h < 1, then:

[0} h [oe]
Z %(9"@))%’“‘1 +D*t 2 (m) yz x(w) ") ph(w) (v + DY (30)
y=w =w

where, Q°(y) = Q(y + 1) = X2, x(s) n(s)(s + Dt and I(y) = X2, x(s) (s + D* .

If @ =1, then (30) becomes

(o)

yZ;"(:Vw)) (@°0)" 2 (7=5) Y xm o orn o), (31

y=w

where, Q°(y) = Q(y + 1) = ¥¥_, x(s) n(s) and 9(y) = Yszy x(s). which is Remark 2 in
[25].
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Theorem 4. Suppose that T be a time scale with w € (0,00),0 < h <1< k and a € (0,1].
Assume that 9(y) is defined as in Theorem 6 such that:

= inf V7 (y)
el 9(y)
and define Q(y) = fyoox(s)n(s)Aas. Then

>0, (32)

h

© x(y) _ n th—a+1 © krat
fw W(ﬂ(}’)) Ayy = (ﬁ) fw x()nt ()9 ei(y)A,y.  (33)

Proof. Utilizing the formula of integration by parts (18) on

x(y)
f 5 ,Hyl( )(Q(y))hAay,

with (y) = (f_l(y))hand DA7(y) = =2 we have

Sk_‘“'l(y)

 x) _
|| ey @00 8y =00 @0))"

T f " 07 (-DA@M)") by,

where {(y) = fm}: #ﬁ()Aas. This with Q(e) = 0 and {(w) = 0 implies that

f s a(fl)( gearigyy (@0)) Aay = f 270 (-P4(AM)") Aoy (34)
But utilizing chain rule, we obtain:
hx(m@) _ hx(@n)
@)™ @)

Since D3Q(y) = —x(y)n(y) < 0andd =y, we find that Q(y) = Q(d). By substitut-
ing (35) into (34) and using that D3{(y) = 0, we get

~D& (A)" = —hA"1(d)DLA(Y) = (35)

| wf—ﬂ)()m(y)m y=h f () (é(yy)?)ﬂy X)) (36)

Next note D§ 9(y) = —x(y) < 0. By the chain rule, we have (note k < 0)
Dy (9°7*(») = (@ = k)9** " (d)Dg I(»)

a—k A a—k A
= mDa I(y) < 1L9,(+1—_0£()Da 9(y)

<K s —E T )

_19k+1 a(d) ( ( ))k+1 a xy
x(y) Yrma(y)
(ﬁ”(y))k+1_a 19k+1—oz(y)

(k — )x(y)
T MRrma(9(y)) T

This implies that

y (%) Mlti-a\ ¥ ~ Mk+i-a B
() = fw 19,(31—:,(5)%5 = (m) fw DE(9*7K(s))Ags = ( s >z9"‘ k().  (37)

By substituting (37) into (36) yields

* x(y) M=\ 2 x (y)n(y)
fw m(ﬂ(y))hAas 2( k—a )fw Y9k (y) Q00 (y) Aqy. (38)

Raising (38) to the factor h, we get:
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1 h
“ x() B N S A LT O
([ oo @omas) = (=) (fw (o) 2| -

The rest of the proof is identical to the proof of Theorem 6 and hence is deleted. o

Corollary 2. If we put a = 1 in Theorem 8, then:

o _ th h o
fw ;k(—(};))(ﬂ(y))hAy > (k — 1) fw x " M"Y, (40)
where w € (0,0)1,0 < h <1<k Q(y) = f;ox(s)n (s)As and 9(y) = fymx(s)As such that
L 9%(y)
= 56y

which is (12) in the Introduction

Remark 4. If we take T = R (i,e,0(y) = y) in Theorem 8, then

h h oo
f gkx(y) (Q(Y))hy“‘ldy2<m) f x M"Y (y)y tdy, (41)

a+1(y) W
where 0 <h<1<ka€ (01],9() = fmx(s)s“_lds,ﬁ(y) = fy“x(s)n(s)sa—lds and
9° 9
M = inf () i () _
yET I(y) yeRﬁ(y)
If « =1andw =1, then (41) becomes:

h

(o2} _ h [oe]
2 @m) @y = () [ x ooy, )

1 9
which is Remark 3 in [25].

Remark 5. As a special case of (33), when T=Z ({.e.c(y) =y+1)and0<h <1<k, we

get:
%(Q(};))h > (k — a) Z x(n" ()9 rei(y), (43)
y=w y=w
where 9(y) = ¥, x(s) (s + D* %, and Q(y) = X2, x(s)n(s) (s + 1“7
M o= inf o) e 2D

yeT I@y) wyez I()
which is Remark 4 in [25], when a = 1.

Theorem 5. Suppose that T is a time scale with w € (0,00)p,k <0< h <1landa € (0,1]. As-
sume that T'(y) = f‘j:x(s)AaS and 0(y) = fymx(s)r](s) Ags. Then

h

” (62) - h o ks
fw (re (;;k-aﬂ (ﬂ(y))hﬁayZ(m) fw xONTG)) T Ay, (44)

Proof. Utilizing the formula of integration by parts (18) on

fw # (ﬁ(}’))hl\a%
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) _  \h
with v(y) = (Q(y)) and D3{(y) = ﬁ, we get

f % @p))"a

+ fm(”(y) (-p2@1)") 4y,

w (T7(y)
where {(y) = fw(rg(x)(%ﬂoz& This with Q(e) = 0 and ['(w) = 0 imply that
“ x() — R °° — R
——— =7 (20)) day = | °) (-DE(QW)) Aay- 45
J T ) J, e (-ne( (45)

By utilizing chain rule, we get:
hxn®) _ hxGn@)
2" (d) =7 hy)

Since D2Q(y) = —x(y)n(y) < 0. By substituting (46) into (45) and using that
DAt(y) = 0, we have:

~D2(A())" = —h2"}(d)D4A(y) = (46)

< x(y) or XN

fww(ﬂ(}’))ﬁy>hf (()th()ﬁy (47)
Next note D3T'(y) = x(y) = 0. By the chain rule, we have (note k < 0)

DE(r**()) = (a — k)r**=*(d)DEr (y)

a— A a—k A
= FkTa(d)D“F(y) —WD ol (¥)
a—-k a-k
< mx(}/) < WX(}/)-
This implies that

sy _ [T x(® L a1 ek
) = fw (Fd(s))k_aﬂzlasza_k fw Da(I(®)" "Aas =—2 (7)) . (48)

By substituting (48) into (47) yields

fw (x(%( (y)) y>_f ()" kx(¥)n (y)A . “9)

re(y)) Q)
Raises (49) to the factor i, we get:
©___x0) am)” ' R A N ' 50
(1 e @on'a) = G (1 (o™ ) ) )

The rest of the proof is identical to the proof of Theorem 6 and hence is deleted. o

Corollary 3. If we put a = 1 in Theorem 10, then:

[ o Eyi)"( o'ay= () [ xomr ooy 61)

where w € (0,0)1, k<0< h<1,
y [oe]
r0) = [ x(s)s and 80) = | xm)as,
w y
which is (13) in the Introduction.

Remark 6. In Theorem 10, if we take T = R (i.e.a(y)=y), then:

” - " e kta1
) @)ty = () [ 2ot ) (00)) T e ray, (52)
w (T) @=k/ Jy
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where w € (0,0),k <0< h<1,a€(0,1]

y oo
rO) = [ x5« ds and 80) = | x@n(s)sds.
y

w

If =1 and w =1, then (52) becomes

h

© x(y) = \h h . h—k
Q dy = (— hy) (T dy,
fw (r(y))"( ) dy (1_k) fw xn"() (TG)) dy (53)

where

y _ [oe]

I'(y) =f x(s)ds and Q(y) =f x(s)n(s)ds,

1 y

which is Remark 5 in [25]

Remark 7. As a special case of (44) when T =17 (i.e.o0(y)=y + 1), we get:
— h _ L. h-k+a-1 _
B ooy (000)" 04 D7 2 () Zx 0" () ™ o+ D (54)

where  T7(y) =T(y+1) =X, x(s) (s + D7, Q) = ZZy x(SI(s) (s + ¥,k <
0<h<1.
For a = 1in (54), then we get the inequality in Remark 6 in [21].

Theorem 6. Suppose that T is a time scale with w € (0,0)1,0 <h <1<k and a € (0,1].
Assume that T'(y) = fv?:x(s)Aas such that

_ . TO)
L= teg) 0 (55)
and define ®(y) = [ x(s)n(s)Aqs
> xO) - n hLek\" o . o nekeat
fw (Fc(y))k—an (P(c()) Aay = (k — a) fw x(N") (T°()) MAy.  (56)

Proof. Utilizing the formula of integration by parts (18) on

f % (‘T’(G(y)))hﬁay,
w S(y

, — h
with ¢°(y) = (®(a(¥))) and Dv(y) = #, we have

J w#@(“(m)h by =) + [ (—o(02G0)) e

where v(y) = fx#Aas. This with () = 0 and I'(w) = 0 imply that

fw # ()" Bay = fm (—v(y))(Dg(cTn(y))h) Agy. (57)

By utilizing chain rule, we obtain:

hf(y)n(y) - hx(y)n(y)
PN T (B(o(y)) "

Since D2®(y) = x(y)n(y) = 0. By substituting (58) into (57) and using that
D5®(y) = 0, we have:

DAY = h(B())" ()DEB() = (58)
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f %(5(0@)))}[&”2}1_{ (—v(y))%&xy
w (T°(y)) w (CID(c(y)))

Next note DT (y) = x(y) = 0. By the chain rule, we have (note k < 0)
DT () = (a = IOr**(d)DET(»)

(39)

a—k A a—k A
= I"‘Ta(d)Da I'y) < F,(Ta(y)DaF(Y)

< 7,{0{ — . x(y) < S — _k —x(),
[k+i-a(y) (Lo (y))k+i-a
And

o) == [ s
w (Fa(s))k—a+1 a

T
= — fw Dg (T (s))Aqgs

1 o)\, ak (60)
_(k—a>_<l""(y)> (r°m)

La—k a
> (=) o)™

by substituting (60) into (59), we get

“ x) _ h hL* R\ a-k  x(INW)
——————(®(c()) Axy = <—> (r°'®)  ———55 0
fw (Fo(y))k ( ) k—a fw (5(0(}1))) h (61)

Raises (61) to the factor h, we get

h

h h 1
o _ h a-k o am h h h
([ gemtsoont o 3 ([ (coon o).

(@)

The rest of the proof is identical to the proof Theorem 6 and hence is deleted. o

Corollary 4. If we put a = 1 in Theorem 12, then:

? x(y) /= n RLE\" e \ ek
fw (Fc(y))k (CD(G(Y))) Ay = (k — (X) fw x(y)r] (y)(F (y)) Ay, (62)
where w € (0,00),0 < h <1<k ®(y) = fvjv/x(s)n(s)As andI'(y) = f‘::x(s)Aas such that
N €))
b= )111611frF"(y) >0,

which is (14) in the Introduction

Remark 8. If we take T = R (i.e.,o(y) = y) in Theorem 12, then:

- B h A\ e —k+a-1
f %(d%y))hy“dyz(m) f O ()" Gy, (69)
w y Y

where wE (0,0),0<h<1<k®y)= fvi/x(s)n(s)s“‘lds and I'(y) =
fvav/x(s)s“‘lds such that

L:= inf—r(y) = in m=
T yerro(y)  yerI(y)

If @ =1andw =1, then (63) becomes



Symmetry 2021, 13, 542 13 of 15

oo x(y) _ h h h .0 hek
) dy > —— r(y)(T dy,
| oy OV = () | xomt o)) ay (64)
where
y _ y
r0) = [ x)ds and 30) = [ x@)n@)ds,
which is Remark 7 in [25]

Remark 9. As a special case of (56), when T =1Z (i.e.o0(y) =y+1)and0<h <1<k, we

get:
- _ h _ nLa-k\" h—k+a—1 _
Biey ooy (BEON) 0+ D = (F5) Zh a0 0 0) T w1t (@)
where, @) =T +1) =X, x() (s + DL Do) =@y +1) =
s=wx(N() (s + D
T T,
L = inf = in ,
yerro(y) vezl(y +1)
which is Remark 8 in [25], when a = 1.
Applications
The applications of quantum calculus play an important role in mathematics and the
field of natural sciences, such as physics and chemistry. It has many applications in or-
thogonal polynomials, number theory, quantum theory, etc. In this section, some example
for Reverse Coposn’s Inequalities in fractional quantum calculus are selected to fulfil the
applicability of the obtained results.
Now, we give an example using the time scale T = gN°,q > 1 which is a time scale
with interesting applications in quantum calculus.
Example 1. (Quantum calculus case 1.): Let T = qNo = {t:t = q",n € Ny, q > 1}. Then for all
t € gNe, we have
b logg b-1 _
o) =qt,u(® =(@-Dt and [[fO-gt =250 f@InEME@I, Vabe g (66)
Now, with the help of Theorem 3 and the above identities in (66), we can deduce
- n _ " e h—k+a—1 B
Siintogqw gsiri Q@) u@@) 7 2 () Liziogwx (@I (@(@M)" T n@ @
where,
(g™ 108q (4™~
2@ =a(o@) = [ HME©Bs= Y X@IMERE @
w m=loggw
and

o]

0@ = [ x@hs= Y x@uEM @

1 m=logg q™
For an application of Theorem 4, we give the following example.

Example 2. (Quantum calculus case 2.): Let T = qNo,q > 1, then the relation (66) is satisfy.
Hence, we have:

o(O) = qtu(®) = (@ =Dt and [} FOAE =T 50" F@IRE@IE@IT, Vab e g

Now, with the help of Theorem 4 and the above identities in (66), we can deduce:
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n — k—a+1y 1t —k+a-1
S ctogg w gt (@@ (@ (@) 2 (M) Biitoggw (@ (@ (9(@™) T R@ @
where,  Q(q") = [ X(IN()DaS = Trniog, qn X@™NGMR@E™) (@™ M=
99(q™

s L
qlnne T > 0, 9(q™) is defined in the above example.

Note that. By using theorems 10 and 12, we can apply the technique used in the above
examples to obtain different applications. In addition, the above result is important not
only for arbitrary time scales, but also for quantum calculus.

4. Conclusions and Future Work

The new fractional calculus on timescales is presented with applications in new frac-
tional inequalities on timescales like Hardy, Bennett, Copson, and Leindler types. Inequal-
ities are considered in rather general forms and contain several special integral and dis-
crete inequalities. The technique is based on the applications of well-known inequalities
and new tools from fractional calculus. In future research, we will continue to generalize
more dynamic inequalities by using Specht’s ratio, Kantorovich'’s ratio, functional gener-
alization, and n-tuple fractional diamond- «a integral. It will be interesting to find the ine-
qualities in «,3-symmetric quantum and stochastic calculus.
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