Numerical Solutions Caused by DGJIM and ADM Methods for Multi-Term Fractional BVP Involving the Generalized ψ-RL-Operators

Shahram Rezapour ${ }^{1,2,+\oplus}$, Sina Etemad 2,t© ${ }^{2}$, Brahim Tellab ${ }^{3, \dagger}$ and Praveen Agarwal 4,5,6,*,t and Juan Luis Garcia Guirao ${ }^{7,8,+(1)}$
1 Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan; rezapourshahram@yahoo.ca
2 Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz 51368, Iran; sina.etemad@azaruniv.ac.ir or sina.etemad@gmail.com
3 Laboratory of Applied Mathematics, Kasdi Merbah University, B.P. 511, Ouargla 30000, Algeria; brahimtel@yahoo.fr
4 Department of Mathematics, Anand International College of Engineering, Jaipur 303012, India
5 Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman AE 346, United Arab Emirates
6 International Center for Basic and Applied Sciences, Jaipur 302029, India
7 Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Campus de la Muralla, 30203 Cartagena, Murcia, Spain; juan.garcia@upct.es
8 Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; jlgarcia@kau.edu.sa
* Correspondence: praveen.agarwal@anandice.ac.in
\dagger These authors contributed equally to this work.

Citation: Rezapour, S.; Etemad, S.; Tellab, B.; Agarwal, P.; Garcia Guirao, J.L. Numerical Solutions Caused by DGJIM and ADM Methods for Multi-Term Fractional BVP Involving the Generalized ψ-RL-Operators. Symmetry 2021, 13, 532.
https://doi.org/10.3390/sym13040532

Academic Editor: Dorian Popa

Received: 7 March 2021
Accepted: 19 March 2021
Published: 25 March 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In this research study, we establish some necessary conditions to check the uniquenessexistence of solutions for a general multi-term ψ-fractional differential equation via generalized ψ integral boundary conditions with respect to the generalized asymmetric operators. To arrive at such purpose, we utilize a procedure based on the fixed-point theory. We follow our study by suggesting two numerical algorithms called the Dafterdar-Gejji and Jafari method (DGJIM) and the Adomian decomposition method (ADM) techniques in which a series of approximate solutions converge to the exact ones of the given ψ-RLFBVP and the equivalent ψ-integral equation. To emphasize for the compatibility and the effectiveness of these numerical algorithms, we end this investigation by providing some examples showing the behavior of the exact solution of the existing ψ-RLFBVP compared with the approximate ones caused by DGJIM and ADM techniques graphically.

Keywords: ADM numerical method; DGJIM numerical method; boundary value problem; existence

MSC: (2020) 34A08; 65R20

1. Introduction

Fractional calculus is extending quickly and its attractive applications are completely used in various parts of the applied science [1-5]. It has appeared in financial structures [6], optimal control [7], epidemiological models [8,9], chaotic systems [10], engineering [11-14] and etc. Specifically, the fractional configurations of boundary problems (FBVPs) usually give a vast diversity of mathematical modelings for description of physical, chemical and biological processes which one can refer to them in the newlypublished articles [15-19]. Besides these actual models caused by real phenomena, many researchers do research on the existence theory of solutions for general constructions of FBVPs furnished with boundary conditions involving multi-point nonlocal integral ones [20-29]. The most number of mathematicians have also worked on the numerical approaches to obtain the analytical and the approximate solutions of given FBVPs. In recent
years, numerous numerical techniques are presented by researchers that have improved the convergence rate and errors resulting from the approximate solutions. If we aim to refer to some examples of these methods and how to apply them, we can consider some techniques based on Haar Wavelet Method [30,31], HATM and q-HATM [32,33], Bernstein Polynomials [34], Iterative Reproducing Kernel Hilbert Space Method [35] and etc.

Since fractional multi-term differential equations have appeared in vast applied domains, many mathematicians and researchers have begun to study the specifications and numerical solutions of this kind of FDEs. Additionally, because most of the time, the exact solution cannot be obtained, or it is very difficult to find it, so numerous numerical approaches have been utilized for such FBVPs to yield the approximate solutions. For example, in 2016, Bolandtalat, Babolian and Jafari [36] compared the convergence effects of exact and numerical solutions of multi-order FDEs by terms of Boubaker polynomials. In the same year, Hesameddini, Rahimi, Asadollahifard [37] gave a novel configuration of a reliable algorithm to solve multi-order FDEs and controlled its convergence. Firoozjaee, Yousefi, Jafari and Baleanu [38] followed a numerical procedure for a multi order FDE furnished with a combination of boundary-initial conditions. In 2017, Dabiri and Butcher [39] suggested a numerical algorithm relying on the spectral collocation method and generated the numerical solutions of given multi-order FDEs via multiple delays.

Besides these, in recent decades, many FBVPs involving abstract integral boundary conditions are formulated by many mathematicians, and they investigated the existence and the stability theory on their possible solutions. In 2018, Padhi, Graef and Pati [40] worked on the properties of the positive solutions for a fractional equation furnished with Riemann-Stieltjes integral conditions

$$
\left\{\begin{array}{l}
\mathfrak{D}_{0^{+}}^{\varrho} v(z)+\psi(z) h(z, v(z))=0, \quad z \in(0,1), \\
v(0)=v^{\prime}(0)=\cdots=v^{(k-2)}(0)=0, \quad \mathfrak{D}_{0^{+}}^{\omega} v(1)=\int_{0}^{1} \varphi(r, v(r)) \mathrm{d} A(r),
\end{array}\right.
$$

provided $\varrho \in(k-1, k]$ with $k>2$ and $1 \leq \omega \leq \varrho-1$. In 2021, Thabet, Etemad and Rezapour [41] discussed the concept of the existence of solutions to a fractional system of the coupled Caputo conformable BVPs of the pantograph equations in the following format

$$
\left\{\begin{array}{l}
\mathcal{C C} \mathfrak{D}_{z_{0}}^{\varrho, \sigma_{1}^{*}} v(z)=\tilde{\mathcal{P}}_{1}(z, m(z), m(\ell z)), \quad z \in\left[z_{0}, \tilde{K}\right], z_{0} \geq 0 \\
\mathcal{C C} \mathfrak{D}_{z_{0}}^{\ell, \sigma_{2}^{*}} m(z)=\tilde{\mathcal{P}}_{2}(z, v(z), v(\ell z))
\end{array}\right.
$$

via three-point-Riemann-Liouville (RL)-conformable integral conditions

$$
\begin{cases}v\left(z_{0}\right)=0, & c_{1} v(\tilde{K})+c_{2} \mathcal{R C} \mathfrak{I}_{z_{0}}^{\rho, \theta^{*}} v(\delta)=w_{1}^{*} \\ m\left(z_{0}\right)=0, & c_{1}^{*} m(\tilde{K})+c_{2}^{* \mathcal{R}} \mathcal{I}_{z_{0}}^{, \theta^{*}} m(v)=w_{2}^{*}\end{cases}
$$

where $\varrho \in(0,1], \sigma_{1}^{*}, \sigma_{2}^{*} \in(1,2), \delta, v \in\left(z_{0}, \tilde{K}\right), c_{1}, c_{2}, c_{1}^{*}, c_{2}^{*}, w_{1}^{*}, w_{2}^{*} \in \mathbb{R}, \ell \in(0,1)$ and $\tilde{\mathcal{P}}_{1}, \tilde{\mathcal{P}}_{2} \in C\left(\left[z_{0}, \tilde{K}\right] \times \mathbb{R} \times \mathbb{R}, \mathbb{R}\right)$. As you observed, in all above fractional FBVPs endowed with different combinations of integral boundary conditions, only the necessary criteria of solution's existence have been discussed and FBVPs have not been solved numerically. Hence, in order of the complexity of the structure of such FBVPs involving integral boundary conditions, and due to the difficulty of the computation process of the exact solution, several numerical algorithms and techniques were substituted to find approximate and analytical solutions.

In 2005, Dafterdar-Gejji and Jafari [42] used the Adomian decomposition method (ADM) to find solutions of a generalized structure of an initial system of multi-order FDEs. In 2006, these two mathematician [43] formulated an iterative algorithm to solve
a functional equation approximately and called it as the Dafterdar-Gejji and Jafari method (DGJIM). Among other numerical techniques, these two methods DGJIM and ADM are known as two approximate tools with high accuracy and rapid convergence to the exact solution. For more information, we can refer to some works in the relevant field [44-46]. We shall apply these strong numerical techniques to approximate possible solutions of our generalized FBVP.

With the help of above ideas and mentioned techniques, in this research, we propose a generalized integral ψ-FBVP of the multi-term differential equation in the format of asymmetric ψ-RL-derivatives displayed as

$$
\left\{\begin{array}{l}
\mathfrak{D}_{0^{+}}^{\varrho ; \psi} u(z)=\hat{\hbar}\left(z, u(z), \mathfrak{D}_{0^{+}}^{\sigma_{1} ; \psi} u(z), \mathfrak{D}_{0^{+}}^{\sigma_{2} ; \psi} u(z), \ldots, \mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi} u(z)\right) \tag{1}\\
u(0)=0, \\
u(1)=p \mathfrak{I}_{0^{+}}^{\mu ; \psi} k_{1}(\xi, u(\xi))+q \mathfrak{I}_{0^{+}}^{v ; \psi} k_{2}(\eta, u(\eta)),
\end{array}\right.
$$

where $0 \leq z \leq 1,1<\varrho<2,0<\sigma_{1}<\sigma_{2}<\cdots<\sigma_{n}<1, \varrho>\sigma_{n}+1, \hat{\hbar}:[0,1] \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, $k_{j}:[0,1] \times \mathbb{R} \rightarrow \mathbb{R},(j=1,2)$ are continuous functions, $\mathfrak{D}_{0^{+}}^{\varrho ; \psi}, \mathfrak{D}_{0^{+}}^{\sigma_{1} ; \psi}, \ldots, \mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi}$ are the ψ -RL-derivatives depending on an increasing function ψ of orders $\varrho, \sigma_{1}, \ldots, \sigma_{n}$, respectively, and $\mathfrak{I}_{0^{+}}^{\gamma ; \psi}$ is the ψ-RL-integral depending on the special function ψ of order $\gamma \in\{\mu, v\}$ with $\mu, v, p, q>0$ and $0<\xi, \eta \leq 1$. To begin, we first establish the corresponding ψ-integral equation of the given multi-term ψ-RLFBVP (1) by means of a theoretical proof and then verify the existence-uniqueness results with the aid of the fixed point approach. After that, we propose two numerical iterative algorithms named the DGJIM along with the ADM to find solutions approximately.

In fact, we must emphasize that the novelty and the main motivation of our research is that unlike other articles in which the ADM and the DGJIM techniques have been utilized to solve initial value problems, we here aim to explore approximate solutions for a complicated generalized multi-term ψ-RLFBVP subject to boundary conditions endowed with the generalized ψ-RL-fractional integrals. Also, notice that in the second boundary condition, the value of the unknown function at the endpoint $z=1$ is proportional to a linear combination of ψ-RL-integrals via different orders $\mu, v>0$ at the intermediate points $z=\xi, \eta \in(0,1)$, respectively. Besides this, we consider the nonlinear term $\hat{\hbar}$ as a multivariable function including the finite number of multi-order ψ-RL-derivatives. This research presents two numerical methods based on simple algorithms which help us to obtain approximate solutions of different generalized fractional mathematical models caused by real phenomena.

The organization of the next sections and subsections of this research is arranged by the following structure: Section 2 reviews fundamental notions on fractional calculus. Section 3 is devoted to establishing some criteria and conditions proving the solutions' existence. Section 4 proposes two numerical iterative ADM and DGJIM techniques in two distinct subsections. In Section 5, the mentioned approximate techniques are employed to show the compatibility and the accuracy of them in two separate stimulative examples. The conclusion summarizes our approach in Section 6.

2. Preliminaries

In the first place, for convenience of the readers, we need some fundamental properties and lemmas on the fractional calculus which are utilized further in this research.

Definition 1. [2] Let $\varrho>0$ and $\phi:(0,+\infty) \longrightarrow \mathbb{R}$. The following integral

$$
\left(\mathfrak{I}_{0^{+}}^{\varrho} \phi\right)(t)=\frac{1}{\Gamma(\varrho)} \int_{0}^{t}(t-s)^{\varrho-1} \phi(s) d s
$$

is called the Riemann-Liouville (RL-integral) fractional integral of order ϱ, if the integral in the right side exists.

Definition 2. [2] The RL-derivative of order ϱ for a continuous function $\phi:(0,+\infty) \longrightarrow \mathbb{R}$ is presented as

$$
\mathfrak{D}_{0^{+}}^{\varrho} \phi(t)=\frac{1}{\Gamma(n-\varrho)}\left(\frac{d}{d t}\right)^{n} \int_{0}^{t}(t-s)^{n-\varrho-1} \phi(s) d s=\left(\frac{d}{d t}\right)^{n} \mathfrak{I}_{0^{+}}^{n-\varrho} \phi(t)
$$

where $n=[\varrho]+1$.
Definition 3. [1] Let $\phi:[a, b] \rightarrow \mathbb{R}$ be integrable and $\psi \in C^{n}[a, b]$ be an increasing mapping which satisfies $\psi^{\prime}(z) \neq 0$, for any $z \in[a, b]$. The ψ-RL-integral of order $\varrho>0$ of the function ϕ is represented as

$$
\mathfrak{I}_{a^{+}}^{\varrho ; \psi} \phi(z)=\frac{1}{\Gamma(\varrho)} \int_{a}^{z} \psi^{\prime}(s)(\psi(z)-\psi(s))^{\varrho-1} \phi(s) d s
$$

and the ψ-RL-derivative of order $\varrho>0$ for the same function is defined by

$$
\begin{aligned}
\mathfrak{D}_{a^{+}}^{\varrho ; \psi} \phi(z) & =\left(\frac{1}{\psi^{\prime}(z)} \frac{d}{d z}\right)^{n} \mathfrak{I}_{a^{+}}^{n-\varrho ; \psi} \phi(z) \\
& =\frac{1}{\Gamma(n-\varrho)}\left(\frac{1}{\psi^{\prime}(z)} \frac{d}{d z}\right)^{n} \int_{a}^{z} \psi^{\prime}(s)(\psi(z)-\psi(s))^{n-\varrho-1} \phi(s) d s
\end{aligned}
$$

where $n=[\varrho]+1$.
The following semigroup specification holds. For all $\mu, v>0$

$$
\mathfrak{I}_{a^{+}}^{\mu ; \psi} \Im_{a^{+}}^{v ; \psi} u(z)=\Im_{a^{+}}^{\mu+v ; \psi} u(z)
$$

If $\psi(z)=z$, then ψ-operators displayed in Definition 3 coincide respectively with the classical RL-integral and RL-derivative given in Definitions 1 and 2. When $\psi(z)=$ $\ln z$, then the same ψ-operators reduce repectively to the Hadamard fractional integral and Hadamard fractional derivative [1-3].

Definition 4. [1] Let $\psi \in C^{n}[a, b]$ such that $\psi^{\prime}(z) \neq 0$ for all $z \in[a, b]$. Then we define

$$
A C^{n ; \psi}[a, b]=\left\{\delta:[a, b] \rightarrow \mathbb{R}, \quad \delta^{[n-1]}=\left(\frac{1}{\psi^{\prime}(z)} \frac{d}{d z}\right)^{n-1}, \delta \in A C[a, b]\right\}
$$

Lemma 1. [1] Let $\mu>0$ and $v>0$. If $u(r)=[\psi(r)-\psi(a)]^{v-1}$, then

$$
\begin{equation*}
\left(\mathfrak{D}_{a^{+}}^{\mu ; \psi} u(r)\right)(z)=\frac{\Gamma(v)}{\Gamma(v-\mu)}[\psi(z)-\psi(a)]^{v-\mu-1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathfrak{I}_{a^{+}}^{\mu ; \psi} u(r)\right)(z)=\frac{\Gamma(v)}{\Gamma(v+\mu)}[\psi(z)-\psi(a)]^{\mu+v-1} \tag{3}
\end{equation*}
$$

As a particular case of (2) and (3), we have respectively the following expressions

$$
\left(\mathfrak{D}_{0^{+}}^{\mu ; z^{\sigma}} r^{\sigma(v-1)}\right)(z)=\frac{\Gamma(v)}{\Gamma(v-\mu)} z^{\sigma(v-\mu-1)}
$$

and

$$
\left(\mathfrak{I}_{0^{+}}^{\mu, z^{\sigma}} r^{\sigma(v-1)}\right)(z)=\frac{\Gamma(v)}{\Gamma(v+\mu)} z^{\sigma(\mu+v-1)}
$$

Lemma 2. [47] Let $\varrho>n$ with $n \in \mathbb{N}$. Then

$$
\left(\frac{1}{\psi^{\prime}(z)} \cdot \frac{d}{d z}\right)^{n} \mathfrak{I}_{a^{+}}^{\rho ; \psi} \phi(z)=\mathfrak{I}_{a^{+}}^{\varrho-n ; \psi} \phi(z)
$$

Lemma 3. [47] Let $\mu>v, n-1<v<n, n \in \mathbb{N}$. Then

$$
\mathfrak{D}_{a^{+}}^{v ; \psi} \Im_{a^{+}}^{\mu ; \psi} \phi(z)=\Im_{a^{+}}^{\mu-v ; \psi} \phi(z)
$$

In particular

$$
\mathfrak{D}_{a^{+}}^{\mu ; \psi} \mathfrak{I}_{a^{+}}^{\mu ; \psi} \phi(z)=\phi(z)
$$

Lemma 4. [47] Let $\mu>0, n=[\mu]+1, \phi \in L[a, b]$ and $\mathfrak{I}_{a^{+}}^{\mu ; \psi} \phi \in A C^{n ; \psi}[a, b]$. Then

$$
\left(\mathfrak{I}_{a^{+}}^{\mu ; \psi} \mathfrak{D}_{a^{+}}^{\mu ; \psi}\right) \phi(z)=\phi(z)-\sum_{j=1}^{n} \frac{\mathfrak{S}_{a^{+}}^{j-\mu ; \psi} \phi(a)}{\Gamma(\mu-j+1)}(\psi(z)-\psi(a))^{\mu-j}
$$

In special case if $0<\mu<1$, we have

$$
\left(\mathfrak{I}_{a^{+}}^{\mu ; \psi} \mathfrak{D}_{a^{+}}^{\mu ; \psi}\right) \phi(z)=\phi(z)-\frac{\mathfrak{I}_{a^{+}}^{1-\mu ; \psi} \phi(a)}{\Gamma(\mu)}(\psi(z)-\psi(a))^{\mu-1}
$$

Lemma 5. [47] Let $\varrho>0$ and $\mathfrak{D}_{a^{+}}^{\varrho ; \psi} \phi \in A C^{n ; \psi}[a . b] \cap L^{1}[a, b]$, then
$\mathfrak{I}_{a^{+}}^{\varrho ; \psi} \mathfrak{D}_{a^{+}}^{\varrho ; \psi} \phi(z)=\phi(z)+k_{1}(\psi(z)-\psi(a))^{\varrho-1}+k_{2}(\psi(z)-\psi(a))^{\varrho-2}+\cdots+k_{n}(\psi(z)-\psi(a))^{\varrho-n}$, where $k_{1}, \ldots, k_{n} \in \mathbb{R}$ and $n=[\varrho]+1$.

3. Results on the Existence Criteria

In this part, we first derive a ψ-integral equation corresponding to the suggested multi-term ψ-RLFBVP (1) and then establish some conditions to admit the existence of solutions for (1).

Definition 5. We call $u(z)$ as a solution for the supposed multi-term $\psi-R L F B V P$ (1) if u satisfies (1) and $\mathfrak{D}_{0^{+}}^{\varrho ; \psi} u(z) \in A C^{n ; \psi}[0,1]$ and $u(z) \in A C^{n ; \psi}[0,1]$.

Theorem 1. Let $1<\varrho<2,0<\sigma_{1}<\sigma_{2}<\cdots<\sigma_{n}<1, \varrho>\sigma_{n}+1, \mu, v, p, q>0$ and $0<\xi, \eta<1$. Then a function $u(z)$ is a solution of the multi-term ψ-RLFBVP

$$
\left\{\begin{array}{l}
\mathfrak{D}_{0^{+}}^{\varrho ; \psi} u(z)=\hat{\hbar}\left(z, u(z), \mathfrak{D}_{0^{+}}^{\sigma_{1} ; \psi} u(z), \mathfrak{D}_{0^{+}}^{\sigma_{2} ; \psi} u(z), \ldots, \mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi} u(z)\right), \tag{4}\\
u(0)=0, \\
u(1)=p \mathfrak{I}_{0^{+}}^{\mu ; \psi} k_{1}(\xi, u(\xi))+q \mathfrak{I}_{0^{+}}^{v ; \psi} k_{2}(\eta, u(\eta)),
\end{array}\right.
$$

if and only if $v(z)=\mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi} u(z)$ satisfies the following ψ-integral equation

$$
\begin{align*}
v(z)= & \mathfrak{I}_{0^{+}}^{\varrho-\sigma_{n} ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right) \\
& +\frac{\Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right)(\psi(1)-\psi(0))^{\varrho-1}}\left[\frac{p}{\Gamma(\mu)} \int_{0}^{\tau} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \Im_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s\right. \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \tag{5}\\
& \left.-\left.\Im_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}\right](\psi(z)-\psi(0))^{\varrho-\sigma_{n}-1} .
\end{align*}
$$

Proof. Let $u(z) \in A C^{n ; \psi}[0,1]$ be a solution of the multi-term ψ-RLFBVP (4), then we get $v(z)=\mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi} u(z) \in A C^{n ; \psi}[0,1]$. Taking the operator $\mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi}$ to both sides of equation $v(z)=\mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi} u(z)$, we get

$$
\begin{equation*}
\mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z)=\mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} \mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi} u(z)=u(z)-\frac{\left(\mathfrak{I}_{0^{+}}^{1-\sigma_{n} ; \psi} u\right)(0)}{\Gamma\left(\sigma_{n}\right)}(\psi(z)-\psi(0))^{\sigma_{n}-1} \tag{6}
\end{equation*}
$$

Since $\left(\mathfrak{I}_{0^{+}}^{1-\sigma_{n} ; \psi} u\right)(0)=0$, then it follows that

$$
\begin{equation*}
u(z)=\mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z) \tag{7}
\end{equation*}
$$

From Lemma 3, we get

$$
\begin{aligned}
\mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi} u(z) & =\mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi} \mathfrak{J}_{0^{+}}^{\sigma_{n} ; \psi} v(z)=v(z), \\
\mathfrak{D}_{0^{+}}^{\sigma_{n}-1 ; \psi} u(z) & =\mathfrak{D}_{0^{+}}^{\sigma_{n}-1 ; \psi} \mathfrak{J}_{0^{+}}^{\sigma_{n} ; \psi} v(z)=\mathfrak{J}_{0^{+}}^{\sigma_{n}-\sigma_{n-1} ; \psi} v(z), \\
\vdots & =\vdots \\
\mathfrak{D}_{0^{+}}^{\sigma_{1} ; \psi} u(z) & =\mathfrak{D}_{0^{+}}^{\sigma_{1} ; \psi} \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z)=\mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z) .
\end{aligned}
$$

Since $1<\varrho<2$, so by utilizing a property of the ψ-RL-derivative and by (7) and by exploiting the semigroup specification, we can write

$$
\begin{aligned}
\mathfrak{D}_{0^{+}}^{\varrho ; \psi} u(z) & =\mathfrak{D}_{0^{+}}^{2 ; \psi} \mathfrak{I}_{0^{+}}^{2-\varrho ; \psi} u(z)=\mathfrak{D}_{0^{+}}^{2 ; \psi} \mathfrak{I}_{0^{+}}^{2-\varrho ; \psi} \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z) \\
& =\mathfrak{D}_{0^{+}}^{2 ; \psi} \mathfrak{I}_{0^{+}}^{2-\varrho+\sigma_{n} ; \psi} v(z) \\
& =\mathfrak{D}_{0^{+}}^{\varrho-\sigma_{n} ; \psi} v(z)
\end{aligned}
$$

Consequently, the multi-term equation illustrated by (4) can be written as

$$
\begin{equation*}
\mathfrak{D}_{0^{+}}^{\varrho-\sigma_{n} ; \psi} v(z)=\hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right), \quad 0 \leq z \leq 1 . \tag{8}
\end{equation*}
$$

Putting $\lambda=\varrho-\sigma_{n}>1, \lambda_{j}=\sigma_{n}-\sigma_{j}, \sigma_{0}=0(j=0,1, \ldots n)$, then (8) can be represented as

$$
\begin{equation*}
\mathfrak{D}_{0^{+}}^{\lambda ; \psi} v(z)=\hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\lambda_{0} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\lambda_{1} ; \psi} v(z), \ldots, v(z)\right), \quad 0 \leq z \leq 1 . \tag{9}
\end{equation*}
$$

Hence by (7), as $u(0)=0$, thus we can find the value of the initial condition $v(0)$. Therefore, because of $v(z) \in A C^{n ; \psi}[0,1]$ and

$$
\mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z)=\frac{1}{\Gamma\left(\sigma_{n}\right)} \int_{0}^{z} \psi^{\prime}(s)(\psi(z)-\psi(s))^{\sigma_{n}-1} v(\theta) d s,
$$

we can derive the initial value of $v(z)$ arbitrarily in which $u(0)=\left.\Im_{0^{+}}^{\sigma_{n} ; \psi} v(z)\right|_{z=0}$ and we have

$$
\begin{equation*}
v(0)=0 \tag{10}
\end{equation*}
$$

Applying the ψ-Riemann-Liouville fractional integral $\mathfrak{I}_{0^{+}}^{\lambda ; \psi}$ to both sides of (9), we find

$$
\begin{equation*}
\mathfrak{I}_{0^{+}}^{\lambda ; \psi} \mathfrak{D}_{0^{+}}^{\lambda ; \psi} v(z)=\mathfrak{I}_{0^{+}}^{\lambda ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\lambda_{0} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\lambda_{1} ; \psi} v(z), \ldots, v(z)\right), \quad 0 \leq z \leq 1 \tag{11}
\end{equation*}
$$

Since $\lambda=\varrho-\sigma_{n}>1$, then from Lemma 5, the left-side of (11) becomes

$$
\begin{equation*}
\mathfrak{I}_{0^{+}}^{\lambda ; \psi} \mathfrak{D}_{0^{+}}^{\lambda ; \psi} v(z)=v(z)+c_{1}(\psi(z)-\psi(0))^{\lambda-1}+c_{2}(\psi(z)-\psi(0))^{\lambda-2} \tag{12}
\end{equation*}
$$

and (11) gives

$$
\begin{align*}
v(z)= & \mathfrak{I}_{0^{+}}^{\lambda ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\lambda_{0} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\lambda_{1} ; \psi} v(z), \ldots, v(z)\right) \\
& -c_{1}(\psi(z)-\psi(0))^{\lambda-1}-c_{2}(\psi(z)-\psi(0))^{\lambda-2} . \tag{13}
\end{align*}
$$

In this place, we focus to find constants c_{1} and c_{2}. From $v(0)=0$ and $\lambda>1$ and by (10), it follows that $c_{2}=0$; consequently, Equation (13) can be written as

$$
\begin{equation*}
v(z)=\mathfrak{I}_{0^{+}}^{\lambda ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\lambda_{0} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\lambda_{1} ; \psi} v(z), \ldots, v(z)\right)-c_{1}(\psi(z)-\psi(0))^{\lambda-1} \tag{14}
\end{equation*}
$$

Using the second boundary condition in (4) and by (7), we get

$$
\begin{align*}
u(1) & =\left.\Im_{0^{+}}^{\sigma_{n} ; \psi} v(z)\right|_{z=1} \tag{15}\\
& =p \mathfrak{I}_{0^{+}}^{\mu ; \psi} k_{1}\left(\xi, \Im_{0^{+}}^{\sigma_{n} ; \psi} v(\xi)\right)+q \mathfrak{I}_{0^{+}}^{\nu ; \psi} k_{2}\left(\eta, \Im_{0^{+}}^{\sigma_{n} ; \psi} v(\eta)\right) .
\end{align*}
$$

By Lemma 1 and from (14) and (15), we get

$$
\begin{align*}
u(1) & =\left.\mathfrak{J}_{0^{+}}^{\sigma_{n} ; \psi} v(z)\right|_{z=1} \\
& =\left.\mathfrak{J}_{0^{+}}^{\sigma_{n}+\lambda ; \psi} \hat{\hbar}\left(z, \mathfrak{J}_{0^{+}}^{\lambda_{0} ; \psi} v(z), \mathfrak{J}_{0^{+}}^{\lambda_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}-\left.c_{1} \mathfrak{J}_{0^{+}}^{\sigma_{n} ; \psi}(\psi(z)-\psi(0))^{\lambda-1}\right|_{z=1} \\
& =\left.\mathfrak{J}_{0^{+}}^{\sigma_{n}+\lambda ; \psi} \hat{\hbar}\left(z, \mathfrak{J}_{0^{+}}^{\lambda_{0} ; \psi} v(z), \mathfrak{J}_{0^{+}}^{\lambda_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1} \tag{16}\\
& -\left.c_{1} \frac{\Gamma(\lambda)}{\Gamma\left(\lambda+\sigma_{n}\right)}(\psi(z)-\psi(0))^{\lambda+\sigma_{n}-1}\right|_{z=1} \\
& =\frac{p}{\Gamma(\mu)} \int_{0}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \mathfrak{J}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \mathfrak{J}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s .
\end{align*}
$$

We know that $\lambda+\sigma_{n}-1=\varrho-\sigma_{n}+\sigma_{n}-1=\varrho-1>0$, then we have

$$
\begin{aligned}
& \frac{p}{\Gamma(\mu)} \int_{0}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \Im_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \\
= & \left.\mathfrak{I}_{0^{+}+\lambda ; \psi}^{\sigma^{+}} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\lambda_{0} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\lambda_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}-c_{1} \frac{\Gamma(\lambda)}{\Gamma\left(\lambda+\sigma_{n}\right)}(\psi(1)-\psi(0))^{\lambda+\sigma_{n}-1} \\
= & \left.\mathfrak{I}_{0^{+}}^{\rho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}-c_{1} \frac{\Gamma\left(\varrho-\sigma_{n}\right)}{\Gamma(\varrho)}(\psi(1)-\psi(0))^{\varrho-1} .
\end{aligned}
$$

Then we conclude that

$$
\begin{align*}
c_{1} & =\frac{\Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right)(\psi(1)-\psi(0))^{\varrho-1}}\left[\left.\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}\right. \\
& -\frac{p}{\Gamma(\mu)} \int_{0}^{\tilde{\xi}} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \tag{17}\\
& \left.-\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s\right] .
\end{align*}
$$

By inserting c_{1} into Equation (14), we get

$$
\begin{aligned}
v(z) & =\mathfrak{I}_{0^{+}}^{\varrho-\sigma_{n} ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right) \\
& +\frac{\Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right)(\psi(1)-\psi(0))^{\varrho-1}}\left[\frac{p}{\Gamma(\mu)} \int_{0}^{\tilde{\zeta}} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s\right. \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \\
& \left.-\left.\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \Im_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}\right](\psi(z)-\psi(0))^{\varrho-\sigma_{n}-1}
\end{aligned}
$$

which yields that $v(z)=\mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi} u(z) \in A C^{n ; \psi}[0,1]$ is a solution of the ψ-integral Equation (5). For the opposite direction, suppose that $v(z)=\mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi} u(z) \in A C^{n ; \psi}[0,1]$ is a solution of the ψ-integral Equation (5). Then in view of Lemma 3, we have

$$
\begin{array}{ll}
u(z) & =\mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z) \\
\mathfrak{D}_{0^{+}}^{\sigma_{n-1} ; \psi} u(z) & =\mathfrak{D}_{0^{+}}^{\sigma_{n-1} ; \psi} \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z)=\mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{n-1} ; \psi} v(z), \tag{18}\\
\ldots & =\ldots \\
\mathfrak{D}_{0^{+}}^{\sigma_{1} ; \psi} u(z) & =\mathfrak{D}_{0^{+}}^{\sigma_{1} ; \psi} \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z)=\mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z)
\end{array}
$$

By applying the ψ-RL-integral $\Im_{0^{+}}^{\sigma_{n} ; \psi}$ on both sides of the ψ-integral Equation (5), we get

$$
\begin{aligned}
\mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z) & =\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right) \\
& +\frac{\Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right)(\psi(1)-\psi(0))^{\varrho-1}}\left[\frac{p}{\Gamma(\mu)} \int_{0}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \Im_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s\right. \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \Im_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \\
& \left.-\left.\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{J}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}\right] \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi}(\psi(z)-\psi(0))^{\varrho-\sigma_{n}-1}
\end{aligned}
$$

and thus

$$
\begin{align*}
u(z) & =\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{J}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \Im_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right) \\
& +\frac{\Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right)(\psi(1)-\psi(0))^{\varrho-1}}\left[\frac{p}{\Gamma(\mu)} \int_{0^{\xi}}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \Im_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s\right. \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \Im_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \\
& \left.-\left.\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{J}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \Im_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}\right] \mathfrak{J}_{0^{+}}^{\sigma_{n} ; \psi}(\psi(z)-\psi(0))^{\varrho-\sigma_{n}-1} . \tag{19}
\end{align*}
$$

Taking now the ψ-Riemann-Liouville derivative $\mathfrak{D}_{0^{+}}^{\varrho ; \psi}$ to both sides of (19) we find

$$
\begin{aligned}
\mathfrak{D}_{0^{+}}^{\varrho ; \psi} u(z) & =\mathfrak{D}_{0^{+}}^{\varrho ; \psi} \mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right) \\
& +\frac{\Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right)(\psi(1)-\psi(0))^{\varrho-1}}\left[\frac{p}{\Gamma(\mu)} \int_{0}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s\right. \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \\
& \left.-\left.\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \Im_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}\right] \mathfrak{D}_{0^{+}}^{\varrho ; \psi} \Im_{0^{+}}^{\sigma_{n} ; \psi}(\psi(z)-\psi(0))^{\varrho-\sigma_{n}-1} .
\end{aligned}
$$

By Lemma 1, $\Im_{0^{+}}^{\sigma_{n} ; \psi}(\psi(z)-\psi(0))^{\varrho-\sigma_{n}-1}=\frac{\Gamma\left(\varrho-\sigma_{n}\right)}{\Gamma(\varrho)}(\psi(z)-\psi(0))^{\varrho-1}$ and due to the equality $\mathfrak{D}_{0^{+}}^{\varrho ; \psi}(\psi(z)-\psi(0))^{\varrho-1}=0$, we get

$$
\begin{align*}
\mathfrak{D}_{0^{+}}^{\varrho ; \psi} u(z) & =\hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right) \\
& +\frac{1}{(\psi(1)-\psi(0))^{\varrho-1}}\left[\frac{p}{\Gamma(\mu)} \int_{0^{\xi}}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \mathfrak{J}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s\right. \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \\
& -\mathfrak{I}_{0^{+}}^{\left.\varrho ;\left.\psi \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}\right]{ }_{D_{0}}^{\varrho ; \psi}(\psi(z)-\psi(0))^{\varrho-1}} \\
& =\hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right) . \tag{20}
\end{align*}
$$

Based on (18), since $\mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z)=u(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z)=\mathfrak{D}_{0^{+}}^{\sigma_{1} ; \psi} u(z), \ldots$ and $v(z)=$ $\mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi} u(z)$, so the fractional differential Equation (20) is transformed into

$$
\mathfrak{D}_{0^{+}}^{\varrho ; \psi} u(z)=\hat{\hbar}\left(z, u(z), \mathfrak{D}_{0^{+}}^{\sigma_{1} ; \psi} u(z), \mathfrak{D}_{0^{+}}^{\sigma_{2} ; \psi} u(z), \ldots, \mathfrak{D}_{0^{+}}^{\sigma_{n} ; \psi} u(z)\right)
$$

Now, it remains to review the boundary conditions of our multi-term ψ-RLFBVP (4). From ψ-integral Equation (5), we can write

$$
\begin{aligned}
v(0) & =\left.\mathfrak{I}_{0^{+}}^{\varrho-\sigma_{n} ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{J}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=0} \\
& +\frac{\Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right)(\psi(1)-\psi(0))^{\varrho-1}}\left[\frac{p}{\Gamma(\mu)} \int_{0^{\xi}}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s\right. \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \mathfrak{J}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \\
& \left.-\left.\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \Im_{0^{+}}^{\sigma_{n} ; \psi} v(z), \Im_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}\right]\left.(\psi(z)-\psi(0))^{\varrho-\sigma_{n}-1}\right|_{z=0} . \\
& =0 .
\end{aligned}
$$

So $v(0)=0$. On the other side, we also have $u(z)=\mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z)$, then

$$
u(0)=\left.\mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z)\right|_{z=0}=0
$$

and so $u(0)=0$. This states that the first boundary condition holds. At this moment, to investigate the second boundary condition, by inserting $z=1$ into (19), we arrive at the following

$$
\begin{aligned}
u(1) & =\left.\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1} \\
& +\frac{\Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right)(\psi(1)-\psi(0))^{\varrho-1}}\left[\frac{p}{\Gamma(\mu)} \int_{0}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s\right. \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \\
& \left.=\left.\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}\right]\left.\mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi}(\psi(z)-\psi(0))^{\varrho-\sigma_{n}-1}\right|_{z=1} \\
& =\left.\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1} \\
& +\frac{\Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right)(\psi(1)-\psi(0))^{\varrho-1}}\left[\frac{p}{\Gamma(\mu)} \int_{0^{\prime}}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s\right. \\
& \frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \\
& \left.\left.\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}\right]\left.\frac{\Gamma\left(\varrho-\sigma_{n}\right)}{\Gamma(\varrho)}(\psi(z)-\psi(0))^{\varrho-1}\right|_{z=1} \\
& p \mathfrak{I}_{0^{+}}^{u ; \psi} k_{1}(\xi, u(\xi))+q \mathfrak{I}_{0^{+}}^{v ; \psi} k_{2}(\eta, u(\eta)) .
\end{aligned}
$$

In consequence, we understand that $u(z)$ satisfies the multi-term ψ-RLFBVP (4) and accordingly u is a solution of the multi-term ψ-RLFBVP (4).

Here, we introduce some new notations based on above theorem. Consider the Banach space $\mathbf{B}=A C^{n ; \psi}[0,1]$ via $\|v\|=\max _{z \in[0,1]}|v(z)|$ and besides this, by Theorem 1, we define the operator $K: \mathbf{B} \rightarrow \mathbf{B}$ by

$$
\begin{align*}
(K v)(z) & =\mathfrak{I}_{0^{+}}^{\varrho-\sigma_{n} ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right) \\
& +\frac{\Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right)(\psi(1)-\psi(0))^{\varrho-1}}\left[\frac{p}{\Gamma(\mu)} \int_{0}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s\right. \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(s)\right) d s \\
& \left.-\left.\mathfrak{I}_{0^{+}}^{\varrho ; \psi} \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v(z), \mathfrak{I}_{0^{+}}^{\sigma_{n}-\sigma_{1} ; \psi} v(z), \ldots, v(z)\right)\right|_{z=1}\right](\psi(z)-\psi(0))^{\varrho-\sigma_{n}-1} . \tag{21}
\end{align*}
$$

Clearly, the equation

$$
\begin{equation*}
K v=v, \quad v \in \mathbf{B}, \tag{22}
\end{equation*}
$$

and the ψ-integral Equation (5) are equivalent. When K involves a fixed point, in that case, it will be the solution of the multi-term ψ-RLFBVP (1). On the other direction, note that the continuity of $\hat{\hbar}, k_{1}$ and k_{2} implies the one of the operator K. In this position, we would like to express the existence theorem.

Theorem 2. Assume that the following assertions occur:
(H1) There exist $M_{j} \in \mathbb{R}, j=0,1, \ldots, n$ such that

$$
\left|\hat{\hbar}\left(z, u_{0}, u_{1}, \ldots, u_{n}\right)-\hat{\hbar}\left(z, U_{0}, U_{1}, \ldots, U_{n}\right)\right| \leq \sum_{j=0}^{n} M_{j}\left|u_{j}-U_{j}\right|
$$

for any $z \in[0,1]$ and $\left(u_{0}, u_{1}, \ldots, u_{n}\right),\left(U_{0}, U_{1}, \ldots, U_{n}\right) \in \mathbb{R}^{n+1}$.
(H2) There exist two integrable functions $l_{1}:[0,1] \rightarrow \mathbb{R}^{+}$and $l_{2}:[0,1] \rightarrow \mathbb{R}^{+}$such that

$$
\begin{aligned}
& \left|k_{1}(z, v)-k_{1}(z, u)\right| \leq l_{1}(z)|v-u|, \quad v, u \in \mathbb{R}, \\
& \left|k_{2}(z, v)-k_{2}(z, u)\right| \leq l_{2}(z)|v-u|, \quad v, u \in \mathbb{R} .
\end{aligned}
$$

(H3) We have $0<\Phi<1$, where

$$
\begin{aligned}
\Phi= & \frac{p \Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right) \Gamma\left(\sigma_{n}+1\right)} \Im_{0^{+}}^{\mu ; \psi} l_{1}(\xi)+\frac{q \Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right) \Gamma\left(\sigma_{n}+1\right)} \Im_{0^{+}}^{v ; \psi} l_{2}(\eta) \\
& +\sum_{j=0}^{n}\left(\frac{M_{j}(\psi(1)-\psi(0))^{\varrho-\sigma_{j}}}{\Gamma\left(\varrho-\sigma_{j}+1\right)}+\frac{M_{j} \Gamma(\varrho)(\psi(1)-\psi(0))^{\varrho-\sigma_{j}}}{\Gamma\left(\varrho-\sigma_{n}\right) \Gamma\left(\varrho+\sigma_{n}-\sigma_{j}+1\right)}\right)<1
\end{aligned}
$$

Then the multi-term ψ-RLFBVP (1) includes a unique solution.
Proof. From Theorem 1 and as it said above, it follows that the existence of solutions to the multi-term ψ-RLFBVP (1) is equivalent to the existence of the solutions for Equation (21). Therefore it is sufficient to establish that the Equation (21) involves a fixed point uniquely. Setting $\lambda=\varrho-\sigma_{n}, \sigma_{0}=0, \lambda_{j}=\sigma_{n}-\sigma_{j},(j=0,1, \ldots, n)$, then from (H1), we have for any $v_{1}, v_{2} \in \mathbf{B}$

$$
\begin{align*}
\mid \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\lambda_{0} ; \psi} v_{1}(z), \ldots, v_{1}(z)\right) & -\hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\lambda_{0} ; \psi} v_{2}(z), \ldots, v_{2}(z)\right) \mid \\
& \leq \sum_{j=0}^{n} M_{j}\left|\mathfrak{I}_{0^{+}}^{\lambda_{j} ; \psi} v_{1}(z)-\mathfrak{I}_{0^{+}}^{\lambda_{j} ; \psi} v_{2}(z)\right| . \tag{23}
\end{align*}
$$

Applying the ψ-Riemann-Liouville integral $\mathfrak{I}_{0^{+}}^{\lambda ; \psi}$ to both sides of Inequality (23), we obtain

$$
\begin{align*}
\mathfrak{I}_{0^{+}}^{\lambda ; \psi} \mid \hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\lambda_{0} ; \psi} v_{1}(z), \ldots,\right. & \left.v_{1}(z)\right)-\hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\lambda_{0} ; \psi} v_{2}(z), \ldots, v_{2}(z)\right) \mid \\
& \leq \mathfrak{I}_{0^{+}}^{\lambda ; \psi} \sum_{j=0}^{n} M_{j}\left|\mathfrak{I}_{0^{+}}^{\lambda_{j} ; \psi} v_{1}(z)-\mathfrak{I}_{0^{+}}^{\lambda_{j} ; \psi} v_{2}(z)\right| \\
& \leq \sum_{j=0}^{n} M_{j} \mathfrak{I}_{0^{+}}^{\lambda+\lambda_{j} ; \psi}\left|v_{1}(z)-v_{2}(z)\right| \tag{24}\\
& \leq\left\|v_{1}-v_{2}\right\| \sum_{j=0}^{n} \frac{M_{j}(\psi(1)-\psi(0))^{\lambda+\lambda_{j}}}{\Gamma\left(\varrho-\sigma_{j}+1\right)}
\end{align*}
$$

Also, from (H2), it follows that

$$
\begin{align*}
& \left\lvert\, \frac{\Gamma(\varrho)}{\Gamma(\lambda)(\psi(1)-\psi(0))^{\rho-1}}\left[\frac{p}{\Gamma(\mu)} \int_{0}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \Im_{0^{+}}^{\sigma_{n} ; \psi} v_{1}(s)\right) d s\right.\right. \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, \mathcal{J}_{0^{+}}^{\sigma_{n} ;} v_{1}(s)\right) d s \\
& \left.-\left.\mathfrak{J}_{0^{+}}^{\sigma_{n}+\lambda ; \psi} \hat{\hbar}\left(z, \mathfrak{J}_{0^{+}}^{\lambda_{0} ; \psi} v_{1}(z), \mathfrak{J}_{0^{+}}^{\lambda_{1} ; \psi} v_{1}(z), \ldots, v_{1}(z)\right)\right|_{z=1}\right](\psi(z)-\psi(0))^{\lambda-1} \\
& -\frac{\Gamma(\rho)}{\Gamma(\lambda)(\psi(1)-\psi(0))^{\varrho-1}}\left[\frac{p}{\Gamma(\mu)} \int_{0}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} k_{1}\left(s, \mathrm{I}_{0^{+}}^{\sigma_{n} ; \psi} v_{2}(s)\right) d s\right. \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} k_{2}\left(s, J_{0^{+}}^{\sigma_{n} ; \psi} v_{2}(s)\right) d s \\
& \left.-\left.\mathfrak{J}_{0^{+}}^{\sigma_{n}+\lambda ; \psi} \hat{\hbar}\left(z, \mathfrak{J}_{0^{+}}^{\lambda_{0} ; \psi} v_{2}(z), \mathfrak{J}_{0^{+}}^{\lambda_{1} ; \psi} v_{2}(z), \ldots, v_{2}(z)\right)\right|_{z=1}\right](\psi(z)-\psi(0))^{\lambda-1} \mid \\
& \leq \frac{\Gamma(\rho)}{\Gamma(\lambda)(\psi(1)-\psi(0))^{\sigma_{n}}}\left[\left.\frac{p}{\Gamma(\mu)} \int_{0}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} \right\rvert\, k_{1}\left(s, J_{0^{+}}^{\sigma_{n} ; \psi} v_{1}(s)\right)-k_{1}\left(s, J_{0^{+}}^{\sigma_{n} ; \psi} v_{2}(s) \mid d s\right.\right. \\
& \left.+\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} \right\rvert\, k_{2}\left(s, J_{0^{+}}^{\sigma_{n} ; \psi} v_{1}(s)\right)-k_{2}\left(s, J_{0^{+}}^{\sigma_{n} ; \psi} v_{2}(s) \mid d s\right. \tag{25}\\
& \left.+\left.\mathfrak{J}_{0^{+}}^{\sigma_{n}+\lambda ; \psi}\left|\hat{\hbar}\left(z, \mathfrak{J}_{0^{+}}^{\lambda_{0} ; \psi} v_{1}(z), \mathfrak{J}_{0^{+}}^{\lambda_{1} ; \psi} v_{1}(z), \ldots, v_{1}(z)\right)-\hat{\hbar}\left(z, \mathfrak{I}_{0^{+}}^{\lambda_{0} ; \psi} v_{2}(z), \mathfrak{J}_{0^{+}}^{\lambda_{1} ; \psi} v_{2}(z), \ldots, v_{2}(z)\right)\right|\right|_{z=1}\right] \\
& \leq \frac{\Gamma(e)}{\Gamma(\lambda)(\psi(1)-\psi(0))^{\sigma_{n}}}\left[\frac{p}{\Gamma(\mu)} \int_{0}^{\xi} \psi^{\prime}(s)(\psi(\xi)-\psi(s))^{\mu-1} l_{1}(s)\left|\mathfrak{J}_{0^{+}}^{\sigma_{n} ;} v_{1}(s)-\mathfrak{I}_{0^{+}}^{\sigma_{n} ; \psi} v_{2}(s)\right| d s\right. \\
& +\frac{q}{\Gamma(v)} \int_{0}^{\eta} \psi^{\prime}(s)(\psi(\eta)-\psi(s))^{v-1} l_{2}(s)\left|\int_{0^{+}}^{\sigma_{n} ; \psi} v_{1}(s)-\Im_{0^{+}}^{\sigma_{n} ; \psi} v_{2}(s)\right| d s \\
& \left.+\left.\mathcal{I}_{0^{+}}^{\sigma_{n}+\lambda ; \psi} \sum_{j=0}^{n} M_{j} \mathfrak{J}_{0^{+}}^{\lambda_{j} ; \psi}\left|v_{1}(z)-v_{2}(z)\right|\right|_{z=1}\right] \\
& \leq \frac{\Gamma(0)}{\Gamma(\lambda)(\psi(1)-\psi(0))^{\sigma_{n}}}\left[p \frac{(\psi(1)-\psi(0))^{\sigma_{n}}}{\Gamma\left(\sigma_{n}+1\right)} \mathfrak{I}_{0^{+}}^{\mu ; \psi} l_{1}(\xi)\right. \\
& \left.+q \frac{(\psi(1)-\psi(0))^{\sigma_{n}}}{\Gamma\left(\sigma_{n}+1\right)} \mathfrak{J}_{0^{j}, l_{2}} l_{2}(\eta)+\sum_{j=0}^{n} \frac{M_{j}(\psi(1)-\psi(0))^{\sigma_{n}+\lambda+\lambda_{j}}}{\Gamma\left(\sigma_{n}+\lambda+\lambda_{j}+1\right)}\right]\left\|v_{1}-v_{2}\right\| \\
& =\frac{\Gamma(\rho)}{\Gamma(\lambda)}\left[\frac{p}{\Gamma\left(\sigma_{n}+1\right)} \Im_{0^{+}}^{\mu ; \psi} l_{1}(\xi)+\frac{q}{\Gamma\left(\sigma_{n}+1\right)} \Im_{0^{+}}^{v ; \psi} l_{2}(\eta)+\sum_{j=0}^{n} \frac{M_{j}(\psi(1)-\psi(0))^{\lambda+\lambda} \lambda_{j}}{\Gamma\left(\sigma_{n}+\lambda+\lambda_{j}+1\right)}\right]\left\|v_{1}-v_{2}\right\| .
\end{align*}
$$

Therefore, by (24) and (25) we conclude that

$$
\begin{aligned}
\left\|K v_{1}(z)-K v_{2}(z)\right\| & \leq\left[\frac{p \Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right) \Gamma\left(\sigma_{n}+1\right)} \mathfrak{I}_{0^{+}}^{u ; \psi} l_{1}(\xi)+\frac{q \Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right) \Gamma\left(\sigma_{n}+1\right)} \Im_{0^{+}}^{v ; \psi} l_{2}(\eta)\right. \\
& \left.+\sum_{j=0}^{n}\left(\frac{M_{j}(\psi(1)-\psi(0))^{\varrho-\sigma_{j}}}{\Gamma\left(\varrho-\sigma_{j}+1\right)}+\frac{M_{j} \Gamma(\varrho)(\psi(1)-\psi(0))^{\varrho-\sigma_{j}}}{\Gamma\left(\varrho-\sigma_{n}\right) \Gamma\left(\varrho+\sigma_{n}-\sigma_{j}+1\right)}\right)\right]\left\|v_{1}-v_{2}\right\| .
\end{aligned}
$$

By using (H3), we figure out that

$$
\left\|K v_{1}-K v_{2}\right\| \leq \Phi\left\|v_{1}-v_{2}\right\|,
$$

where $\Phi \in(0,1)$. We deduce that K will be a contraction. Thus, By Banach's principle, we conclude that K admits a fixed point uniquely which it interprets the existence of a solution uniqyely for the multi-term ψ-RLFBVP (1).

4. Numerical Solutions via DGJIM and ADM Methods

This section is assigned for the formulation and the analysis of algorithms of two numerical techniques called DGJIM and ADM. In fact, we here express how we can implement these techniques to our supposed multi-term ψ-RLFBVP. In each algorithm, appropriate recursion relations are obtained to approximate the solutions of (4) as well as their convergence. Our methods are motivated by [42,43].

4.1. The Numerical Technique DGJIM

As you saw before, we showed that the solutions of Equations (1) and (5) are equivalent. Let's write the right-hand side of (22) under the following decomposition (this decomposition is not unique)

$$
(K v)(z)=\mathbb{L} v(z))+\mathbb{N}(v(z))+\Theta(z)
$$

where \mathbb{L} is a linear operator, the operator \mathbb{N} represents the nonlinear terms and Θ is a known function. Then, Equation (5) can be written in the decomposed format

$$
\begin{equation*}
v(z)=\mathbb{L}(v(z))+\mathbb{N}(v(z))+\Theta(z) \tag{26}
\end{equation*}
$$

Suppose that the solution of (26) is expanded in the form of a series as follows

$$
\begin{equation*}
v(z)=\sum_{n=0}^{+\infty} v_{n}(z) . \tag{27}
\end{equation*}
$$

By replacing (27) in (26), we get

$$
\begin{equation*}
\sum_{n=0}^{+\infty} v_{n}(z)=\mathbb{L}\left(\sum_{n=0}^{+\infty} v_{n}(z)\right)+\mathbb{N}\left(\sum_{n=0}^{+\infty} v_{n}(z)\right)+\Theta(z) \tag{28}
\end{equation*}
$$

Because of the linearity of \mathbb{L} and by a simple computation we get the following numerical algorithm named DGJIM method:

$$
\left\{\begin{array}{l}
v_{0}(z)=\Theta(z), \tag{29}\\
v_{1}(z)=\mathbb{L}\left(v_{0}(z)\right)+\mathbb{N}\left(v_{0}(z)\right), \\
v_{2}(z)=\mathbb{L}\left(v_{1}(z)\right)+\mathbb{N}\left(v_{0}(z)+v_{1}(z)\right)-\mathbb{N}\left(v_{0}(z)\right), \\
v_{3}(z)=\mathbb{L}\left(v_{2}(z)\right)+\mathbb{N}\left(v_{0}(z)+v_{1}(z)+v_{2}(z)\right)-\mathbb{N}\left(v_{0}(z)+v_{1}(z)\right), \\
\vdots=\quad \vdots \\
v_{n}(z)=\mathbb{L}\left(v_{n-1}(z)\right)+\mathbb{N}\left(\sum_{i=0}^{n-1} v_{i}(z)\right)-\mathbb{N}\left(\sum_{i=0}^{n-2} v_{i}(z)\right), \\
\vdots=\quad \vdots
\end{array}\right.
$$

Accordingly, we obtain the n-term approximate solution of the ψ-integral Equation (5) by

$$
\begin{equation*}
\mathrm{Y}_{n}(z)=\sum_{i=0}^{n} v_{i}(z) \tag{30}
\end{equation*}
$$

From expression (30), we easily reach

$$
\begin{equation*}
v_{n}(z)=Y_{n}(z)-Y_{n-1}(z) . \tag{31}
\end{equation*}
$$

By combining (29) and (31),

$$
\begin{equation*}
\mathrm{Y}_{n}(z)=\mathrm{Y}_{n-1}(z)+\mathbb{L}\left(\mathrm{Y}_{n-1}(z)-\mathrm{Y}_{n-2}(z)\right)+\mathbb{N}\left(\mathrm{Y}_{n-1}(z)\right)-\mathbb{N}\left(\mathrm{Y}_{n-2}(z)\right) \tag{32}
\end{equation*}
$$

Now, let us write

$$
\begin{aligned}
\|\mathbb{L} v-\mathbb{L} u\| & \leq \mu_{1}\|v-u\|, \quad 0<\mu_{1}<1 \\
\|\mathbb{N} v-\mathbb{N} u\| & \leq \mu_{2}\|v-u\|, \quad 0<\mu_{2}<1
\end{aligned}
$$

where $\mu_{1}+\mu_{2}<1$. Therefore, the Banach's fixed point theorem ensures the existence of a unique solution $\widetilde{Y}(z)$ for Equation (26) and so for the ψ-integral Equation (5). Based on (32), we can write the following iterative inequalities

$$
\begin{aligned}
\left\|\mathrm{Y}_{n}-\mathrm{Y}_{n-1}\right\| & \leq \mu_{1}\left\|\mathrm{Y}_{n-1}-\mathrm{Y}_{n-2}\right\|+\mu_{2}\left\|\mathrm{Y}_{n-1}-\mathrm{Y}_{n-2}\right\| \\
& =\left(\mu_{1}+\mu_{2}\right)\left\|\mathrm{Y}_{n-1}-\mathrm{Y}_{n-2}\right\| \\
& \leq\left(\mu_{1}+\mu_{2}\right)^{2}\left\|\mathrm{Y}_{n-2}-\mathrm{Y}_{n-3}\right\| \\
& \leq \vdots \quad \vdots \quad \vdots \\
& \leq\left(\mu_{1}+\mu_{2}\right)^{n-1}\left\|\mathrm{Y}_{1}-\mathrm{Y}_{0}\right\|
\end{aligned}
$$

which points out the absolute convergence and the uniform one of the sequence $\left\{\mathrm{Y}_{n}\right\}$ to the exact solution $\widetilde{Y}(z)$.

4.2. The Numerical Technique ADM

To establish the numerical technique ADM, the nonlinear term $\mathbb{N}\left(\sum_{n=0}^{+\infty} v_{n}(z)\right)$ in (28) can be decomposed into a series of Adomian polynomials displayed by

$$
\mathbb{N}\left(\sum_{n=0}^{+\infty} v_{n}(z)\right)=\sum_{n=0}^{+\infty} \mathbf{A}_{n}\left(v_{0}, v_{1}, \ldots, v_{n}\right)
$$

in which $\mathbf{A}_{n}\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ is generated by

$$
\begin{equation*}
\mathbf{A}_{n}\left(v_{0}, v_{1}, \ldots, v_{n}\right)=\frac{1}{n!} \frac{\partial^{n}}{\partial z^{n}}\left[\mathbb{N}\left(\sum_{k=0}^{+\infty} v_{k} z^{k}\right)\right]_{z=0}, \quad n=0,1, \ldots \tag{33}
\end{equation*}
$$

Therefore, Equation (28) is transformed into

$$
\sum_{n=0}^{+\infty} v_{n}(z)=\mathbb{L}\left(\sum_{n=0}^{+\infty} v_{n}(z)\right)+\sum_{n=0}^{+\infty} \mathbf{A}_{n}\left(v_{0}(z), v_{1}(z), \ldots, v_{n}(z)\right)+\Theta(z)
$$

which yields the following iterative structures named as ADM technique:

$$
\left\{\begin{align*}
v_{0}(z) & =\Theta(z) \tag{34}\\
v_{1}(z) & =\mathbb{L}\left(v_{0}(z)\right)+\mathbf{A}_{0}\left(v_{0}(z), v_{1}(z), \ldots, v_{n}(z)\right) \\
v_{2}(z) & =\mathbb{L}\left(v_{1}(z)\right)+\mathbf{A}_{1}\left(v_{0}(z), v_{1}(z), \ldots, v_{n}(z)\right), \\
v_{3}(z) & =\mathbb{L}\left(v_{2}(z)\right)+\mathbf{A}_{2}\left(v_{0}(z), v_{1}(z), \ldots, v_{n}(z)\right), \\
\vdots & \vdots \\
\vdots & \vdots \vdots \\
v_{n}(z) & =\mathbb{L}\left(v_{n-1}(z)\right)+\mathbf{A}_{n-1}\left(v_{0}(z), v_{1}(z), \ldots, v_{n}(z)\right) \\
\vdots & \vdots \\
\vdots & \vdots
\end{align*}\right.
$$

Eventually, by representing K-term approximate solution of the ψ-integral Equation (5) as

$$
\begin{equation*}
\mathrm{Y}_{K}(z)=\sum_{n=0}^{K} v_{n}(z) \tag{35}
\end{equation*}
$$

the exact solution of (5) is given by

$$
\begin{equation*}
v(z)=\lim _{K \rightarrow+\infty} Y_{K}(z) \tag{36}
\end{equation*}
$$

Finally, we figure out that the approximate solutions and the exact solution of the multiterm ψ-RLFBVP (1) are explored by $u_{n}(z)=\mathfrak{I}_{0^{+}}^{\sigma_{n}} \mathrm{Y}_{n}(z)$ and $u(z)=\mathfrak{I}_{0^{+}}^{\sigma_{n}} v(z)$, respectively.

5. Examples

At this moment, we give two illustrative and distinct applied examples. In the first one, the theoretical existence results are checked and in the second one, the numerical solutions of the supposed ψ-RLFBVP are extracted caused by the numerical techniques DGJIM and ADM formulated above.

Example 1. Consider the following $\psi-R L F B V P$ which has a structure as

$$
\left\{\begin{array}{l}
\mathfrak{D}_{0^{+}}^{1.8 ; z^{2}} u(z)=z+\frac{1}{16} \sin (2 u(z))+\frac{1}{8} \mathfrak{D}_{0^{+}}^{0.1} u(z)+\frac{1}{10} \sin \left(\mathfrak{D}_{0^{+}}^{0.2} u(z)\right), \quad z \in[0,1] \\
u(0)=0 \\
u(1)=2 \int_{0}^{\frac{1}{2}} s\left(\frac{1}{4}-s^{2}\right)^{3}\left(1+1000 u(s) e^{s}\right) d s+2 \int_{0}^{\frac{1}{4}} s\left(\frac{1}{16}-s^{2}\right)^{4}\left(1+2 e^{s} \sin (u(s))\right) d s .
\end{array}\right.
$$

In this example, we have $\psi(z)=z^{2}, \varrho=1.8, \sigma_{0}=0, \sigma_{1}=0.1, \sigma_{2}=0.2, \xi=\frac{1}{2}$, $\eta=\frac{1}{4}, p=\Gamma(4), q=\Gamma(5), \mu=4, v=5$ and $k_{1}(z, u(z))=1+1000 u(z) e^{z}, k_{2}(z, u(z))=$ $1+2 e^{z} \sin (u(z))$.

Then $M_{0}=0.125, M_{1}=0.125, M_{2}=0.1, l_{1}(z)=1000 e^{z}, l_{2}(z)=2 e^{z}$. A simple computation gives us

$$
\begin{aligned}
\Phi & =\frac{p \Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right) \Gamma\left(\sigma_{n}+1\right)} \Im_{0^{+}}^{\mu ; \psi} l_{1}(\xi)+\frac{q \Gamma(\varrho)}{\Gamma\left(\varrho-\sigma_{n}\right) \Gamma\left(\sigma_{n}+1\right)} \mathfrak{I}_{0^{+}}^{\nu ; \psi} l_{2}(\eta) \\
& +\sum_{j=0}^{n}\left(\frac{M_{j}(\psi(1)-\psi(0))^{\varrho-\sigma_{j}}}{\Gamma\left(\varrho-\sigma_{j}+1\right)}+\frac{M_{j} \Gamma(\varrho)(\psi(1)-\psi(0))^{\varrho-\sigma_{j}}}{\Gamma\left(\varrho-\sigma_{n}\right) \Gamma\left(\varrho+\sigma_{n}-\sigma_{j}+1\right)}\right) \approx 0.9003<1
\end{aligned}
$$

Hence, by Theorem 2 it follows that our ψ-RLFBVP designed in the current example involves a solution uniquely.

In the next example, we consider a case of the suggested ψ-RLFBVP and compare approximate numerical results with exact outcomes which states the effectiveness and the compatibility of both numerical techniques DGJIM and ADM.

Example 2. Let us consider the following ψ-RLFBVP which has a format as

$$
\left\{\begin{array}{l}
\mathfrak{D}_{0^{+}}^{1.7 ; z^{2}} u(z)=1+\mathfrak{D}_{0^{+}}^{0.5 ; z^{2}} u(z)+\chi(z), \quad z \in[0,1] \tag{37}\\
u(0)=0 \\
u(1)=\int_{0}^{\frac{1}{2}} s\left(\frac{1}{4}-s^{2}\right)\left(\frac{1}{4}-u(s)\right) d s+2 \int_{0}^{\frac{1}{3}} s\left(\frac{1}{9}-s^{2}\right)^{2}\left(\frac{1}{9}-u(s)\right) d s,
\end{array}\right.
$$

where

$$
\chi(z)=\frac{1}{\Gamma(0.3)} z^{-1.4}-\frac{1}{\Gamma(1.5)} z-1
$$

In the above structure, we have chosen parameters $\psi(z)=z^{2}, \varrho=1.7, \xi=1 / 2, \eta=1 / 3$, $\sigma_{n}=0.5, \mu=2, v=3, p=1$ and $q=2$. It is evident that $\varrho-\sigma_{n}=1.2>1$. Also
$k_{1}(z, u(z))=\frac{1}{4}-u(z)$ and $k_{2}(z, u(z))=\frac{1}{9}-u(z)$ for $z \in[0,1]$. By assuming $v(z)=$ $\mathfrak{D}_{0^{+}}^{0.5 ; z^{2}} u(z)$, the corresponding ψ-integral equation of the ψ-RLFBVP (37) is displayed as

$$
\begin{align*}
v(z)= & \mathfrak{I}_{0^{+}}^{1.2 ; z^{2}}[1+v(z)+\chi(z)]+\frac{\Gamma(1.7)}{\Gamma(1.2)}\left[\int_{0^{\frac{1}{2}}}^{\frac{1}{2}} 2 s\left(\frac{1}{4}-s^{2}\right)\left(\frac{1}{4}-\mathfrak{I}_{0^{+}}^{0.5 ; z^{2}} v(s)\right) d s\right. \\
& \left.+\int_{0^{\frac{1}{3}}}^{\frac{1}{3}} 2 s\left(\frac{1}{9}-s^{2}\right)^{2}\left(\frac{1}{9}-\mathfrak{I}_{0^{+}}^{0.5 ; z^{2}} v(s)\right) d s-\left.\mathfrak{I}_{0^{+}}^{1.7 ; z^{2}}[1+v(z)+\chi(z)]\right|_{z=1}\right]\left(z^{2}\right)^{0.2} \\
= & \mathfrak{I}_{0^{+}}^{1.2 ; z^{2}} 1+\mathfrak{I}_{0^{+}}^{1.2 ; z^{2}} v(z)+\mathfrak{I}_{0^{+}}^{1.2 ; z^{2}} \chi(z)+\frac{2 \Gamma(1.7) z^{0.4}}{\Gamma(1.2)} \int_{0^{\frac{1}{2}}}^{\frac{1}{2}} s\left(\frac{1}{4}-s^{2}\right)\left(\frac{1}{4}-\mathfrak{I}_{0^{+}}^{0.5 ; z^{2}} v(s)\right) d s \\
& +\frac{2 \Gamma(1.7) z^{0.4}}{\Gamma(1.2)} \int_{0^{3}}^{\frac{1}{3}} s\left(\frac{1}{9}-s^{2}\right)^{2}\left(\frac{1}{9}-\mathfrak{I}_{0^{+}}^{0.5 ; z^{2}} v(s)\right) d s-\left.\frac{\Gamma(1.7)}{\Gamma(1.2)} \mathfrak{I}_{0^{+}}^{1.7 ; z^{2}} 1\right|_{z=1} \times z^{0.4} \\
& -\left.\frac{\Gamma(1.7)}{\Gamma(1.2)} \mathfrak{I}_{0^{+}}^{1.7 ; z^{2}} v(z)\right|_{z=1} \times z^{0.4}-\left.\frac{\Gamma(1.7)}{\Gamma(1.2)} \mathfrak{I}_{0^{+}}^{1.7 ; z^{2}} \chi(z)\right|_{z=1} \times z^{0.4} \tag{38}
\end{align*}
$$

Now, we decompose the right side of (38) as

$$
v(z)=\mathbb{L}(v(z))+\mathbb{N}(v(z))+\Theta(z)
$$

where

$$
\begin{aligned}
& \mathbb{L}(v(z))=\mathfrak{I}_{0^{+}}^{1.2 ; z^{2}} v(z)-\left.\frac{\Gamma(1.7)}{\Gamma(1.2)} \mathfrak{J}_{0^{+}}^{1.7 ; z^{2}} v(z)\right|_{z=1} \times z^{0.4}, \\
& \mathbb{N}(v(z))=\mathfrak{I}_{0^{+}}^{1.2 ; z^{2}} 1+\frac{2 \Gamma(1.7) z^{0.4}}{\Gamma(1.2)} \int_{0}^{\frac{1}{2}} s\left(\frac{1}{4}-s^{2}\right)\left(\frac{1}{4}-\mathfrak{I}_{0^{+}}^{0.5 ; z^{2}} v(s)\right) d s \\
& +\frac{2 \Gamma(1.7) z^{0.4}}{\Gamma(1.2)} \int_{0}^{\frac{1}{3}} s\left(\frac{1}{9}-s^{2}\right)^{2}\left(\frac{1}{9}-\mathfrak{I}_{0^{+}}^{0.5 ; z^{2}} v(s)\right) d s-\left.\frac{\Gamma(1.7)}{\Gamma(1.2)} \mathfrak{I}_{0^{+}}^{1.7 ; z^{2}} 1\right|_{z=1} \times z^{0.4}, \\
& \Theta(z)=\mathfrak{I}_{0^{+}}^{1.2 ; z^{2}} \chi(z)-\left.\frac{\Gamma(1.7)}{\Gamma(1.2)} \mathfrak{I}_{0^{+}}^{1.7 ; z^{2}} 1\right|_{z=1} \times z^{0.4} .
\end{aligned}
$$

In this case, the sequence of approximate solutions of (37) and (38) are obtained based on algorithms of numerical techniques DGIIM and ADM as follows:

- Numerical solutions via DGJIM method:

By using the algorithms of DGJIM and after some computations, we obtain four approximate solutions as

$$
\begin{aligned}
\mathrm{Y}_{0}(z) & =1.1284 z-0.6474 z^{3.4}-0.9076 z^{2.4}-0.6407 z^{0.4} \\
\mathrm{Y}_{1}(z) & =1.1284 z-1.8152 z^{2.4}-1.2306 z^{0.4}-0.1887 z^{5.8}-0.3354 z^{4.8}-0.4736 z^{2.8} \\
\mathrm{Y}_{2}(z) & =1.1284 z-1.8152 z^{2.4}-3.4315 z^{0.4}-0.6708 z^{4.8}-0.0472 z^{2.8}-0.0747 z^{7.2} \\
& -0.1583 z^{5.2} \\
\mathrm{Y}_{3}(z) & =1.1284 z-1.8152 z^{2.4}-0.0039 z^{0.4}-0.6708 z^{4.8}+2.0 .6992 z^{2.8}-0.1494 z^{7.2} \\
& -3.3022 z^{5.2}-0.0050 z^{10.6}-0.0117 z^{9.6}
\end{aligned}
$$

and

$$
\begin{aligned}
u_{0}(z) & =z^{2}-0.4126 z^{4.4}-0.6474 z^{3.4}-0.6474 z^{1.4} \\
u_{1}(z) & =z^{2}-1.2948 z^{3.4}-1.2435 z^{1.4}-0.0340 z^{6.8}-0.1887 z^{5.8}-0.2300 z^{3.8} \\
u_{2}(z) & =z^{2}-1.2948 z^{3.4}-3.4675 z^{1.4}-0.3774 z^{5.8}-0.0321 z^{3.8}-0.0358 z^{8.2} \\
& -0.0864 z^{6.2} \\
u_{3}(z) & =z^{2}-1.2948 z^{3.4}-0.0039 z^{1.4}-0.3774 z^{5.8}+1.8348 z^{3.8}-0.0716 z^{8.2} \\
& -0.1649 z^{6.2}-0.0020 z^{11.6}-0.0050 z^{10.6}
\end{aligned}
$$

- Numerical solutions via ADM method:

By the algorithms of ADM along with some computations, we obtain four approximate solutions as

$$
\begin{aligned}
\mathrm{Y}_{0}(z) & =1.1284 z-0.6474 z^{3.4}-0.9076 z^{2.4}-0.6407 z^{0.4} \\
\mathrm{Y}_{1}(z) & =1.1284 z-1.8152 z^{2.4}-1.4106 z^{0.4}-0.1887 z^{5.8}-0.3354 z^{4.8}-0.4736 z^{2.8} \\
\mathrm{Y}_{2}(z) & =1.1284 z-1.8152 z^{2.4}-0.8212 z^{0.4}-0.6718 z^{4.8}-0.9096 z^{2.8}-0.0358 z^{8.2} \\
& -0.0747 z^{7.2}-0.1583 z^{5.2} \\
\mathrm{Y}_{3}(z) & =1.1284 z-1.8152 z^{2.4}-0.0138 z^{0.4}-0.6718 z^{4.8}+2.6764 z^{2.8}-0.1494 z^{7.2} \\
& -0.3022 z^{5.2}-0.0050 z^{10.6}-0.0117 z^{9.6}-0.0295
\end{aligned}
$$

and

$$
\begin{aligned}
u_{0}(z) & =z^{2}-0.4126 z^{4.4}-0.6474 z^{3.4}-0.6474 z^{1.4} \\
u_{1}(z) & =z^{2}-1.2948 z^{3.4}-1.4254 z^{1.4}-0.6215 z^{6.8}-0.1887 z^{5.8}-0.3219 z^{3.8} \\
u_{2}(z) & =z^{2}-1.2948 z^{3.4}-0.8298 z^{1.4}-0.3774 z^{5.8}-0.6183 z^{3.8}-0.0162 z^{9.2} \\
& -0.0358 z^{8.2}-0.0864 z^{6.2} \\
u_{3}(z) & =z^{2}-1.2948 z^{3.4}+0.1394 z^{1.4}-0.3774 z^{5.8}+1.8193 z^{3.8}-0.0716 z^{8.2} \\
& -0.1649 z^{6.2}-0.0020 z^{11.6}-0.0050 z^{10.6}-0.0138 z^{8.6} .
\end{aligned}
$$

In the final step, you can see the graphs of the fourth approximate solution caused by the DGJIM and the ADM algorithms for the supposed ψ-RLFBVP (37) and the ψ-integral Equation (38) plotted in Figures 1 and 2 in which these approximate solutions are compared with the exact solution of the ψ-RLBVP (37) given by $u(z)=z^{2}$ and the exact solution of the ψ-integral equation given by $v(z)=\frac{1}{\Gamma(1.5)} z$, respectively.

Figure 1. The graph of the exact solution of the ψ-RLFBVP (37) compared with the graphs of the fourth Dafterdar-Gejji and Jafari method (DGJIM)-approximate solution and the fourth Adomian decomposition method (ADM)-approximate one.

Figure 2. The graph of the exact solution of the ψ-integral Equation (38) compared with the graphs of the fourth DGJIM-approximate solution and the fourth ADM-approximate one.

6. Conclusions

In this research, in the first step, we reviewed the existence of solutions for a generalized multi-term ψ-RLFBVP subject to the generalized ψ-integral boundary conditions. Then, we implemented two numerical techniques called DGJIM and ADM algorithms for solving the supposed multi-term ψ-RLBVP via a decomposition approach. In the sequel, we have illustrated by a numerical example that the approximate solutions caused by these numerical techniques are in excellent compatibility with the exact solutions. These algorithms give the approximate solution as a series that converges to the exact one quickly whenever it exists. Consequently, the current research study emphasizes that these numerical techniques can be implemented in many other various fractional multi-term FBVPs subject to different boundary conditions by means of some symmetric and asymmetric derivation operators.

Author Contributions: Data curation, S.R.; Formal analysis, B.T.; Investigation, S.E.; Methodology, S.E.; Project administration, J.L.G.G.; Resources, S.R., B.T. and J.L.G.G.; Validation, P.A.; Writingoriginal draft, S.E.; Writing-review and editing, P.A. All authors have read and agreed to the published version of the manuscript.
 Funding: This paper has been partially supported by Ministerio de Ciencia, Innovacion y Universidades grant number PGC2018-0971-B-100 and Fundacion Seneca de la Region de Murcia grant number 20783/PI/18.
 Institutional Review Board Statement: Not applicable.
 Informed Consent Statement: Not applicable.
 Data Availability Statement: Not applicable.
 Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies: Amsterdam, The Netherlands, 2006; Volume 204.
2. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999.
3. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993.
4. Kaur, D.; Agarwal, P.; Rakshit, M.; Chand, M. Fractional calculus involving (p, q)-Mathieu type series. Appl. Math. Nonlinear Sci. 2020, 5, 15-34. [CrossRef]
5. Gençoğlu, M.T.; Agarwal, P. Use of Quantum Differential Equations in Sonic Processes. Appl. Math. Nonlinear Sci. 2020, 1, 1-8. [CrossRef]
6. Jajarmi, A.; Hajipour, M.; Baleanu, D. New aspects of the adaptive synchronization and hyperchaos suppression of a financial model. Chaos Solitons Fractals 2017, 99, 285-296. [CrossRef]
7. Baleanu, D.; Jajarmi, A.; Hajipour, M. A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel. J. Optim. Theory Appl. 2017, 175, 718-737. [CrossRef]
8. Dokuyucu, M.A.; Celik, E.; Bulut, H.; Baskonus, H.M. Cancer treatment model with the Caputo-Fabrizio fractional derivative. Eur. Phys. J. Plus 2018, 133, 92. [CrossRef]
9. Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 2018, 316, 504-515. [CrossRef]
10. Hajipour, M.; Jajarmi, A.; Baleanu, D. An efficient nonstandard finite difference scheme for a class of fractional chaotic systems. J. Comput. Nonlinear Dyn. 2017, 13, 021013. [CrossRef]
11. Abbas, M.I.; Ragusa, M.A. Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag-Leffler functions. Appl. Anal. 2021. [CrossRef]
12. Kosmatov, N.; Jiang, W. Resonant functional problems of fractional order. Chaos Solitons Fractals 2016, 91, 573-579. [CrossRef]
13. Lu, C.; Fu, C.; Yang, H. Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions. Appl. Math. Comput. 2018, 327, 104-116. [CrossRef]
14. Sudsutad, W.; Alzabut, J.; Nontasawatsri, S.; Thaiprayoon, C. Stability analysis for a generalized proportional fractional Langevin equation with variable coefficient and mixed integro-differential boundary conditions. J. Nonlinear Funct. Anal. 2020, 2020, 1-24.
15. Abdo, M.S.; Shah, K.; Wahash, H.A.; Panchal, S.K. On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative. Chaos Solitons Fractal 2020, 135, 109867. [CrossRef]
16. Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [CrossRef]
17. Khan, S.A.; Shah, K.; Zaman, G.; Jarad, F. Existence theory and numerical solutions to smoking model under Caputo-Fabrizio fractional derivative. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 013128. [CrossRef] [PubMed]
18. Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [CrossRef]
19. Thabet, S.T.M.; Etemad, S.; Rezapour, S. On a new structure of the pantograph inclusion problem in the Caputo conformable setting. Bound. Value Probl. 2020, 2020, 171. [CrossRef]
20. Abbas, M.I.; Ragusa, M.A. On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry 2021, 13, 264. [CrossRef]
21. Adjabi, Y.; Samei, M.E.; Matar, M.M.; Alzabut, J. Lengevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions. AIMS Math. 2021, 6, 2796-2843. [CrossRef]
22. Afshari, H.; Kalantari, S.; Karapinar, E. Solution of fractional differential equations via coupled fixed point. Electron. J. Differ. Equ. 2015, 286, 2015.
23. Afshari, H.; Karapinar, E. A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces. Adv. Differ. Equ. 2020, 2020, 616. [CrossRef]
24. Ahmad, B.; Ntouyas, S.K.; Alsaedi, A.; Agarwal, R.P. A study of nonlocal integro-multi-point boundary value problems of sequential fractional integro-differential inclusions. Dyn. Contin. Disc. Impuls. Syst. Ser. A Math. Anal. 2018, 25, 125-140.
25. Baleanu, D.; Etemad, S.; Rezapour, S. On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 2020. [CrossRef]
26. Baleanu, D.; Rezapour, S.; Etemad, S.; Alsaedi, A. On a time-fractional integro-differential equation via three-point boundary value conditions. Math. Probl. Eng. 2015, 2015, 785738. [CrossRef]
27. Boucenna, D.; Boulfoul, A.; Chidouh, A.; Ben Makhlouf, A.; Tellab, B. Some results for initial value problem of nonlinear fractional equation in Sobolev space. J. Appl. Math. Comput. 2021. [CrossRef]
28. Boulfoul, A.; Tellab, B.; Abdellouahab, N.; Zennir, K. Existence and uniqueness results for initial value problem of nonlinear fractional integro-differential equation on an unbounded domain in a weighted Banach space. Math. Methods Appl. Sci. 2020. [CrossRef]
29. Etemad, S.; Rezapour, S.; Samei, M.E. On a fractional Caputo-Hadamard inclusion problem with sum boundary value conditions by using approximate endpoint property. Math. Methods Appl. Sci. 2020. [CrossRef]
30. Chen, Y.M.; Han, X.N.; Liu, L.C. Numerical solution for a class of linear system of fractional differential equations by the Haar wavelet method and the convergence analysis. Comput. Model. Eng. Sci. 2014, 97, 391-405.
31. Jong, K.; Choi, H.; Jang, K.; Pak, S. A new approach for solving one-dimensional fractional boundary value problems via Haar wavelet collocation method. Appl. Num. Math. 2021, 160, 313-330. [CrossRef]
32. Kumar, D.; Singh, J.; Baleanu, D. A new numerical algorithm for fractional Fitzhugh-Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 2018, 91, 307-317. [CrossRef]
33. Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method. Math. Sci. 2019, 13, 115-125. [CrossRef]
34. Chen, Y.M.; Liu, L.Q.; Li, B.F.; Sun, Y.N. Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl. Math. Comput. 2014, 238, 329-341. [CrossRef]
35. Sakar, M.G.; Akgül, A.; Baleanu, D. On solutions of fractional Riccati differential equations. Adv. Differ. Equ. 2017, 2017, 39. [CrossRef]
36. Bolandtalat, A.; Babolian, E.; Jafari, H. Numerical solutions of multi-order fractional differential equations by Boubaker polynomials. Open Phys. 2016, 14, 226-230. [CrossRef]
37. Hesameddini, E.; Rahimi, A.; Asadollahifard, E. On the convergence of a new reliable algorithm for solving multi-order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2016, 34, 154-164. [CrossRef]
38. Firoozjaee, M.A.; Yousefi, S.A.; Jafari, H.; Baleanu, D. On a numerical approach to solve multi order fractional differential equations with boundary initial conditions. J. Comput. Nonlinear Dynam. 2015, 10, 061025. [CrossRef]
39. Dabiri, A.; Butcher, E.A. Stable fractional Chebyshev differentiation matrix for the numerical solution of multi-order fractional differential equations. Nonlinear Dyn. 2017, 90, 185-201. [CrossRef]
40. Padhi, S.; Graef, J.R.; Pati, S. Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions. Fract. Calc. Appl. Anal. 2018, 21, 716-745. [CrossRef]
41. Thabet, S.T.M.; Etemad, S.; Rezapour, S. On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 2021, 45, 496-519. [CrossRef]
42. Daftardar-Gejii, V.; Jafari, H. Adomian decomposition: A tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 2005, 301, 508-518. [CrossRef]
43. Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753-763. [CrossRef]
44. Babolian, E.; Vahidi, A.R.; Shoja, A. An efficient method for nonlinear fractional differential equations: Combination of the Adomian decomposition method and spectral method. Indian J. Pure Appl. Math. 2014, 45, 1017-1028. [CrossRef]
45. Khodabakhshi, N.; Vaezpour, S.M.; Baleanu, D. Numerical solutions of the initial value problem for fractional differential equations by modification of the Adomian decomposition method. Fract. Calc. Appl. Anal. 2014, 17, 382-400. [CrossRef]
46. Loghmani, G.B.; Javanmardi, S. Numerical methods for sequential fractional differential equations for Caputo operator. Bull. Malays. Math. Sci. Soc. 2012, 35, 315-323.
47. Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 709-722. [CrossRef]
