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NN Ul

Abstract: In this research study, we establish some necessary conditions to check the uniqueness-
existence of solutions for a general multi-term -fractional differential equation via generalized -
integral boundary conditions with respect to the generalized asymmetric operators. To arrive at such
purpose, we utilize a procedure based on the fixed-point theory. We follow our study by suggesting
two numerical algorithms called the Dafterdar-Gejji and Jafari method (DGJIM) and the Adomian
decomposition method (ADM) techniques in which a series of approximate solutions converge to
the exact ones of the given -RLFBVP and the equivalent ¢-integral equation. To emphasize for
the compatibility and the effectiveness of these numerical algorithms, we end this investigation
by providing some examples showing the behavior of the exact solution of the existing (-RLFBVP
compared with the approximate ones caused by DGJIM and ADM techniques graphically.

Keywords: ADM numerical method; DGJIM numerical method; boundary value problem; existence

MSC: (2020) 34A08; 65R20

1. Introduction

Fractional calculus is extending quickly and its attractive applications are completely
used in various parts of the applied science [1-5]. It has appeared in financial
structures [6], optimal control [7], epidemiological models [8,9], chaotic systems [10],
engineering [11-14] and etc. Specifically, the fractional configurations of boundary prob-
lems (FBVPs) usually give a vast diversity of mathematical modelings for description of
physical, chemical and biological processes which one can refer to them in the newly-
published articles [15-19]. Besides these actual models caused by real phenomena, many
researchers do research on the existence theory of solutions for general constructions
of FBVPs furnished with boundary conditions involving multi-point nonlocal integral
ones [20-29]. The most number of mathematicians have also worked on the numerical
approaches to obtain the analytical and the approximate solutions of given FBVPs. In recent
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years, numerous numerical techniques are presented by researchers that have improved
the convergence rate and errors resulting from the approximate solutions. If we aim to
refer to some examples of these methods and how to apply them, we can consider some
techniques based on Haar Wavelet Method [30,31], HATM and g-HATM [32,33], Bernstein
Polynomials [34], Iterative Reproducing Kernel Hilbert Space Method [35] and etc.

Since fractional multi-term differential equations have appeared in vast applied do-
mains, many mathematicians and researchers have begun to study the specifications
and numerical solutions of this kind of FDEs. Additionally, because most of the time,
the exact solution cannot be obtained, or it is very difficult to find it, so numerous nu-
merical approaches have been utilized for such FBVPs to yield the approximate solutions.
For example, in 2016, Bolandtalat, Babolian and Jafari [36] compared the convergence effects
of exact and numerical solutions of multi-order FDEs by terms of Boubaker polynomials.
In the same year, Hesameddini, Rahimi, Asadollahifard [37] gave a novel configuration
of a reliable algorithm to solve multi-order FDEs and controlled its convergence. Firoozjaee,
Yousefi, Jafari and Baleanu [38] followed a numerical procedure for a multi order FDE fur-
nished with a combination of boundary-initial conditions. In 2017, Dabiri and Butcher [39]
suggested a numerical algorithm relying on the spectral collocation method and generated
the numerical solutions of given multi-order FDEs via multiple delays.

Besides these, in recent decades, many FBVPs involving abstract integral boundary
conditions are formulated by many mathematicians, and they investigated the existence
and the stability theory on their possible solutions. In 2018, Padhi, Graef and Pati [40]
worked on the properties of the positive solutions for a fractional equation furnished with
Riemann-Stieltjes integral conditions

D8, 0(z) +9(2)h(z,0(z)) =0, z€(0,1),

v(0) =v'(0) = --- = vlk=2)(0) =0, D v(1) = /0 1 p(r,v(r)) dA(r),

provided ¢ € (k—1,k] withk > 2and 1 < @ < ¢ — 1. In 2021, Thabet, Etemad and Reza-
pour [41] discussed the concept of the existence of solutions to a fractional system of the cou-
pled Caputo conformable BVPs of the pantograph equations in the following format

C%é’g’%(z) = Pi(z,m(z),m(lz)), z€ [z0,K], z0 >0,

CCOLm(z) = Pa(z,0(2), 0(42)),
via three-point-Riemann-Liouville (RL)-conformable integral conditions

v(zg) =0, c1o(K) + czRCJS(’Jg*v((S) = wj},

m(zo) =0,  cim(K) +c3RC m(v) = wy,

where ¢ € (0,1], of,05 € (1,2), 6,v € (20,K), c1,¢2,¢},¢5,wi,ws € R, £ € (0,1)
and Py, P, € C([zo,K] x R x R,R). As you observed, in all above fractional FBVPs
endowed with different combinations of integral boundary conditions, only the necessary
criteria of solution’s existence have been discussed and FBVPs have not been solved
numerically. Hence, in order of the complexity of the structure of such FBVPs involving
integral boundary conditions, and due to the difficulty of the computation process of
the exact solution, several numerical algorithms and techniques were substituted to find
approximate and analytical solutions.

In 2005, Dafterdar-Gejji and Jafari [42] used the Adomian decomposition method
(ADM) to find solutions of a generalized structure of an initial system of multi-order
FDEs. In 2006, these two mathematician [43] formulated an iterative algorithm to solve
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a functional equation approximately and called it as the Dafterdar-Gejji and Jafari method
(DGJIM). Among other numerical techniques, these two methods DGJIM and ADM are
known as two approximate tools with high accuracy and rapid convergence to the exact
solution. For more information, we can refer to some works in the relevant field [44—46].
We shall apply these strong numerical techniques to approximate possible solutions of our
generalized FBVP.

With the help of above ideas and mentioned techniques, in this research, we pro-
pose a generalized integral y-FBVP of the multi-term differential equation in the format
of asymmetric -RL-derivatives displayed as

Z‘Dgipu(z) = ﬁ(z,u(z),Qgﬁwu(z),nglpu(z),. : .,’Dgi"lpu(z)),

u(0) =0, 1)

u(1) = pabilhi (& u(@)) +q35 ko (7, u(n)),

where0<z<1,1<0<20<0 < <---<0y,<1l,0>0,+1,h:[0,1] xR SR,
kj : [0,1] xR — R, (j = 1,2) are continuous functions, ng,i)gﬂw, . ..,Dg’}:w are the -
RL-derivatives depending on an increasing function ¢ of orders ¢, oy, . . ., 0y, respectively,
and jgﬁp is the i-RL-integral depending on the special function ¢ of order v € {y, v} with
wv,p,q > 0and 0 < ¢, < 1. To begin, we first establish the corresponding y-integral
equation of the given multi-term -RLFBVP (1) by means of a theoretical proof and then
verify the existence-uniqueness results with the aid of the fixed point approach. After that,
we propose two numerical iterative algorithms named the DGJIM along with the ADM
to find solutions approximately.

In fact, we must emphasize that the novelty and the main motivation of our research
is that unlike other articles in which the ADM and the DGJIM techniques have been
utilized to solve initial value problems, we here aim to explore approximate solutions for
a complicated generalized multi-term (-RLFBVP subject to boundary conditions endowed
with the generalized y-RL-fractional integrals. Also, notice that in the second boundary
condition, the value of the unknown function at the endpoint z = 1 is proportional to
a linear combination of 1-RL-integrals via different orders p, v > 0 at the intermediate
points z = &7 € (0,1), respectively. Besides this, we consider the nonlinear term #
as a multivariable function including the finite number of multi-order i-RL-derivatives.
This research presents two numerical methods based on simple algorithms which help us
to obtain approximate solutions of different generalized fractional mathematical models
caused by real phenomena.

The organization of the next sections and subsections of this research is arranged
by the following structure: Section 2 reviews fundamental notions on fractional calculus.
Section 3 is devoted to establishing some criteria and conditions proving the solutions’
existence. Section 4 proposes two numerical iterative ADM and DGJIM techniques in two
distinct subsections. In Section 5, the mentioned approximate techniques are employed
to show the compatibility and the accuracy of them in two separate stimulative examples.
The conclusion summarizes our approach in Section 6.

2. Preliminaries

In the first place, for convenience of the readers, we need some fundamental properties
and lemmas on the fractional calculus which are utilized further in this research.

Definition 1. [2] Let ¢ > 0 and ¢ : (0, +c0) — R. The following integral

(30+4’)(t) = r(l

5 | =99 ()5



Symmetry 2021, 13, 532

40f21

is called the Riemann—Liouville (RL-integral) fractional integral of order o, if the integral in the right
side exists.

Definition 2. [2] The RL-derivative of order ¢ for a continuous function ¢ : (0, +0c0) — R
is presented as

0800 = oo () [ =9 os = (&) 30,

where n = [o] + 1.

Definition 3. [1] Let ¢ : [a,b] — R be integrable and 1 € C"[a, b] be an increasing mapping
which satisfies Y'(z) # 0, for any z € [a, b]. The Y-RL-integral of order ¢ > 0 of the function ¢
is represented as

310902) = i [ WO W) —9E) ol
and the y-RL-derivative of order ¢ > 0 for the same function is defined by

1 d
Y/(z) dz

7 p(z) = < ) 3 (2)

- r(rzlfe) (wlcz) er) / Y (=) — ()" p(s)ds,

where n = [o] + 1.
The following semigroup specification holds. For all 1, v > 0
I3 u(z) = 3 u(z).

If p(z) = z, then y-operators displayed in Definition 3 coincide respectively with
the classical RL-integral and RL-derivative given in Definitions 1 and 2. When ¢(z) =
Inz, then the same ¢-operators reduce repectively to the Hadamard fractional integral
and Hadamard fractional derivative [1-3].

Definition 4. [1] Let ¢ € C"[a, b] such that ¢’ (z) # 0 for all z € [a, b]. Then we define

1 d
Y/(z) dz

n—1
AC"™¥[a,b] = {5: [a,b] > R, o1 = < > , 6 € AC[a, b}}.

Lemmal. [1]Let u > Oand v > 0. If u(r) = [p(r) — tp(a)}v_l, then

W _ T v=p—1
(D un) @) = 1y = 0@ — @] @)
and
S _ ' ptv-1
(280u)) @) = 5y 1 [002) — (@] )
As a particular case of (2) and (3), we have respectively the following expressions
27 o(v-1) _ F(V) oc(v—pu-1)
<©g+ r )(Z) - F(v _ F)Z " /
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and ()
~z7 o (v—1) _ v o(utv—1)
<J0+ r )(Z) I‘(v—i—y)z '

Lemma 2. [47] Let ¢ > n withn € N. Then

1A\ oy g0
<¢’(Z)'dz> T(z) =3, (2).

Lemma 3. [47]Let y >v,n—1<v <mn,n € N. Then

DWW (2) = I p(2);

In particular

DIV (2) = ¢(2).

Lemmad. [47] Let p > 0,n = [u] +1, ¢ € L[a,b] and 3""Y ¢ € AC"¥[a, b]. Then

n ~] l“/’ .
(¥l )9(z) = ; - ]4;( 1)) () — ()" .
In special case if 0 < p < 1, we have
~U ; j:f:y,lqu(a) -1
(5401 )0(2) = 0(2) — 7 5 (9(2) —p(@)"

Lemma 5. [47] Let ¢ > 0 and ’Dgip(f) € AC"¥[a.b] N L[a,b], then

DY p(2) = p(2) + k1 (p(2) — (@) +ha((z) = (@) 4+ ka(9(2) — p(a)* ",
whereky, ..., ky, € Randn = [o] + 1.

3. Results on the Existence Criteria

In this part, we first derive a y-integral equation corresponding to the suggested
multi-term -RLFBVP (1) and then establish some conditions to admit the existence of
solutions for (1).

Definition 5. We call u(z) as a solution for the supposed multi-term p-RLFBVP (1) if u satisfies
(1) and Dgipu(z) € AC"¥[0,1] and u(z) € AC"¥[0,1].

Theorem 1. Let 1 < 0 < 2,0< o < < -~ <o, <1, 0>0x+1 uv,pqg>0
and 0 < &, n < 1. Then a function u(z) is a solution of the multi-term 1-RLFBVP

@gipu(z) = fi(z,u(z), Z‘Dglwu(z) @gﬁwu(z) ,’Dgi"wu(z)),
u(0) =0, @)
u(1) = pIyPka (& u(@)) + g3y ko, u(n)),

if and only if v(z) = ’Doiwu( ) satisfies the following -integral equation
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o(z) = 32,30 0(2), 37 o(z),...,0(z))

oo ><J<(f>)¢<o>>“ lf@) J5 ¥/ 6) @) = ()" k(5,95 0(s))ds
®)

-1

ity S ¥ ) (W 0n) = ()" ka(s, 307 0(s))ds

—Jg’lpﬁ(z, Jgf‘pv(z),fig”fﬁ"pv(z), .., 0(2))

] (9(z) — (0))* .

z=1

Proof. Let u(z) € AC"¥[0,1] be a solution of the multi-term (-RLFBVP (4), then we get

v(z) = @giﬂpu(z) € AC"¥[0,1]. Taking the operator Tjgﬁf ¥ to both sides of equation
N

0(z) = D, u(z), we get

,.0'7,,'1[} Unﬂ/} ‘711/'1/1 (j(l):%?ll’u) (0) o, —1
Tt o(z) = 3,070 u(z) = u(z) — W(gb(z) —9(0))™" . (6)
Since (3(1):0”; l/}u) (0) = 0, then it follows that
u(z) = Jgi;wv(z). (7)
From Lemma 3, we get
o5Yu(z) = D' e(z) = 0(2),
@g’fl;wu(z) = Qgi_l;wﬁgi;lpv(z) = jgi_‘r"’l"lpv(z),
@gﬁwu(z) = ’Dgl"lpﬁgflpv(z) = figi_al;wv(z).

Since 1 < ¢ < 2, so by utilizing a property of the ¢-RL-derivative and by (7) and by
exploiting the semigroup specification, we can write

; 2 ~2—0; 2P ~2— 0 ~0On;
C‘Dglpu(z) = ’DoipJOJrglpu(z) = ®0f30+g¢38+‘/}v(z)

2P ~2—0+0n;

= ’QOi’bﬁm ot lPv(z)
= @S;U””Pv(z).

Consequently, the multi-term equation illustrated by (4) can be written as

@8;0’“‘/’0(,2) = f(z, Jgi"lpv(z),Jgi_Ul”/’v(z), .,0(z)), 0<z<1 ®)

Putting A = ¢ —0y > 1, Aj = 0y —0j, 09 = 0 (j = 0,1,...n), then (8) can be
represented as

Da\ﬁpv(z) = ﬁ(z,ﬁgﬂ;wv(z)ﬂgflpv(z), ,0(z), 0<z<1L )
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Hence by (7), as u(0) = 0, thus we can find the value of the initial condition v(0).
Therefore, because of v(z) € AC"¥[0,1] and

3o v

) —(s))" o(0)ds,

O+

we can derive the initial value of v(z) arbitrarily in which u(0) = Jgi Yo (z) . and we have
z=

v(0) = 0. (10)
Applying the ¢-Riemann-Liouville fractional integral Jgjrw to both sides of (9), we find
0N 0(2) = 3P 0(z, 3 0(2), 33 0(2), ... 0(z)), 0<z< 1. (11)
Since A = ¢ — 0, > 1, then from Lemma 5, the left-side of (11) becomes
A— A—
5D 0(2) = v(z) + a1 (¥(x) — ()" +ea((x) — ()", 12)
and (11) gives
)\ Al ~A
v(z) = lph(z Joﬂlpv( ), Joilpv(z) ..,0(z))
A1 A=2
—a(p() - 9(0)" —ea(p(z) —p(0)"

In this place, we focus to find constants ¢; and ¢;. From v(0) = 0 and A > 1 and by
(10), it follows that cp = 0; consequently, Equation (13) can be written as

(13)

A; A A A-1
o(z) = 35V h(z, 350 0(2), 351 0(2), ., 0(2)) — e1 ((2) — (0) " (14)
Using the second boundary condition in (4) and by (7), we get

~Tn P

u(l) = J0+ v(2) 1
z= (15)
= Pk 0(2) + g3 ka(, 37 0 ().

By Lemma 1 and from (14) and (15), we get

u(l) = 331%(2)(221

~On AP 2 Ao; A1
= I lph(z,ﬁoﬁwv(z),fioilpv(z),...,v(z))‘

— 307 (p(z) — p(0))*!

z=1 ‘z:l

nt A 2 Ao; A;
= Jg++ lph(z,joﬁwv(z),ﬁoilpv(z) ..... v(z))

=l (16)

Aoy —1

- clr&%( (z) — $(0)) .
=l Js W) (0 — ()" ks, 357 o(s) )ds

+ Wfo (s)(y (W)*¢(S))V71k (S,Jgi v(s))ds.

We know that A +0, —1=0—0,4+0, —1 =0 —1 > 0, then we have

e J§ W 5) (9(©) = (s)" 1k1( 3o (5))ds
Lfﬂn () () — ()"~ kz(S,jo+ v(s))ds

i Atay—1
= jgj-/\l/’h( é‘g‘l’v(z) Jé\}r’/’z}( ), . .,v(z))‘zzl—clr(igi‘()fn)(w(l)_lp(o)) +o

= 3%hi(z,37Y0(2), 37 "’v(z),...,v(z))]Z:1 — M (p (1) — (0) ¢
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Then we conclude that

o = (Q - (z;f((f))w(m)g 3 5i(2,37Y0(2), 30 o (2), ..., 0(2)) »
— i S ) (@) — 9(s)" ki (s, 357 o(s))ds a7)
— YO ) — 9(s) s 331%@»4.
By inserting ¢; into Equation (14), we get
o(z) = 35 h(z, 30V 0(z), 30 o(z),. .., 0(2))
i F(e—on)(wr((li)—w(O))“ lra) Js @ 6) (@) = 9()" ka5, 35" (s) )ds

+ iy ) () = (s)" ka(s, 357 o (s) ) ds

o o(z),...,0(z))

—op—1
oo
z=1
which yields that v(z) = @gi lpu( ) € AC™¥|0,1] is a solution of the ip-integral Equation (5).

For the opposite direction, suppose that v(z) = @giﬂpu(z) € AC"¥[0,1] is a solution of
the y-integral Equation (5). Then in view of Lemma 3, we have

u(z) = jg”ﬂ’v(z),
o Puz) = 2g P ez) = 55" (), a8
@gﬂrw u(z) = @g}r"bjg’f,wv(z) :jgf”l;lpv(z).

By applying the ¢-RL-integral Jg’f ¥ on both sides of the y-integral Equation (5), we get

o(z) = 3 h(z 90 0(2), 90 Vo(a), .., 0(2))
I'e) P Sy . p— 1k ﬁgnw J
T e G-po)” l”’” Jo ¥ (5) (@) = ()™ Tals, 3pi M0 (s))ds

+ il ) () = (s)" kas, 357 o (s))ds

— SQ‘pﬁ(z 30+¢v( ), It “o(2),...,0(z))

2_1‘| jgi;‘P (41(2) — 1/)(0))9—0,1_1
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and thus

uz) =

Taking now the ¢-Riemann-Liouville derivative Qgip

3R 3 0@, 3 0(z), . 0(2)

T'(o) . P s k ,~¢7n+1pv $))ds
Moo ($1)—90))" [F(;{) Jo ' (5)(w(&) — ()" k(5,357 0(s))
s S W () () = (s))" ka(s, 35V 0(s))ds

2_1] 37 (=) —9(0) "

(19)
to both sides of (19) we find

o u(z) =083 k(2,377 0(z), 30 o(2), ..., v(2))
(o) P Sy . p—1 T
S [r(m JEW ) (9(2) - 9(6)" ka5, 3577 (s))ds
oy I 5) () = 9(s))" ka(s, 3570 (s) s
~30h(z, 937 0(2), 30 " o(2), ... 0(2) | (DI (=) — p(0) "
By Lemma 1, 377 Lp(lp(z) —p(0))e 1 = Iﬂ(%(_Q;T”)(l,b(z) —1(0))?7! and due to
the equality @0; (p(z) — 9(0))2~1 =0, we get
Dgipu(z) = ﬁ(z,Jgflpv(z),jgfal;wv(z),...,v(z))
¢ ~(7n1/7
+ W tt Jo ¥'6) (9(E) — ()" Yea (s, 357 0(s) )ds
+ i ) () = (s)" " ka(s, 35 o (s) ) ds
— 3h(z 00 0(2), 90 M o(2), ... 0(=) || DFF (9(z) —9(0)*
= h(z ,”gilpv(z),JgTU“lpU(z),...,v(z)). 20
20
Based on (18), since Jgi‘pv(z) = u(z), 30+ “WWy(z) = Dgﬂpu( ), ...and v(z) =

T

Do+ u(z), so the fractional differential Equation (20) is transformed into

o8 u(z) = hi(z,u(z), 95 u(z), 97 u(z), ..., 97 u(z)).
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Now, it remains to review the boundary conditions of our multi-term -RLFBVP (4).
From y-integral Equation (5), we can write

00 = 3 "Vh( @), 3 0@ 0 @)
(o) & -1 g
* r(efg,1)(w<1g>’w<o>)e—1 lF&) Jo ' () () — ()" k(5,355 0(s))ds

+ il W) () = (s)" " ka(s, 357 o (s) ) ds

— ﬁgwﬁ(z Ty Yo (z ),jgfmﬂpv(z),...,v(z))

= 0.
So v(0) = 0. On the other side, we also have u(z) = jgi;wv(z), then
u(0) = 3970 (z)|,_, =0

and so u(0) = 0. This states that the first boundary condition holds. At this moment, to investi-
gate the second boundary condition, by inserting z = 1 into (19), we arrive at the following

u(1) = I¢h(E I e(), 35 (@), 0(@) ],
I'(o) Y — pt
T e () [r(a) Js #'6) (@) = ()" Tkals, 35 0 (s) )ds

+ % foﬂ ¥ (s)(p(n) — lP(S))v_lkz(S Tigilpv(s))ds

P £ ns ~Tn—071; ns —oy—1
— 3% h(z, 37 0(2), 30 "Wv(z),...,v<z>>|z_1]:fgﬁ”(¢<z>—w(o»g o
0
0

I'(o) P (S (s _ p—1 A9 () ) ds
! F(Q*‘Tn)(llf(lg)*w(O))gil [ny) fO ¥ ( )(IIJ((:) l[J( )) kl( Jo+ ( ))d
+ % 0;7 110/(5)(47(77) - lp(s))v_lkz(s, 3gi;¢v(5))ds

— jgﬂ?ﬁ(z, Z]gﬁ‘r;wv(z),jgfﬁ;wv(z), .., 0(z))

=PIk (& u(©)) + 43 ko (7, u ()

In consequence, we understand that u(z) satisfies the multi-term -RLFBVP (4) and ac-
cordingly u is a solution of the multi-term ¢-RLFBVP (4). O

Here, we introduce some new notations based on above theorem. Consider the Banach
space B = AC"¥[0,1] via ||v|| = rn[ax] |v(z)| and besides this, by Theorem 1, we define
z€[0,1

the operator K : B — B by
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(Ko)(z) = 357Yh(z,377%0(z2), 30 o(z2),...,0(2))
T'(0) PGS p—1 O
+ — |6 Jo () (W(&) —9(s))" ki(s, Ty v(s))ds
Flo—a) (#(1)—p(©)" [W‘) Jo ) ) o

+ i ) (0 —$s)" a(s, 3 0(s))ds

- ngpﬁ(z mev( ),jgi_al"lpv(z),...,v(z))

] (9(z) — p(0))* ™.
(21)

z=1

Clearly, the equation
Kv=wv, ©v€B, (22)

and the ¢-integral Equation (5) are equivalent. When K involves a fixed point, in that case,
it will be the solution of the multi-term -RLFBVP (1). On the other direction, note that
the continuity of f, k; and k, implies the one of the operator K. In this position, we would
like to express the existence theorem.

Theorem 2. Assume that the following assertions occur:
(H1) There exist M; €R,j=0,1,..., 1 such that

n
h(z,up,uq, ..., un) — h(z, Uy, Ul,...,lln)| < ZM]-\u]- -u
=

forany z € [0,1] and (ug,uy, ..., un), (Uo, Uy, ..., U,) € RML,
(H2) There exist two mtegmblefunctzons i :[0,1] = RT and I : [0,1] — R such that

k1(z,0) —ki(z,u)] < h(z)lv—u|, vuck,
lka(z,0) —ko(z,u)| < hL(z)lv—u|, vueck.
(H3) We have 0 < ® < 1, where
T : r
> = p (Q) j}‘:lpll ((;r) 4 q (Q) 12(17)

(o —ow)T (o +1)70" F(Q_‘Tn)r(gn"‘l)

P(1) —9(0)* 7 MT(e)(p(1) — (0)*7
+2< F(Q ci+1) + (Q Un)l“(g+(7n—0]+1))<l'

Then the multi-term -RLFBVP (1) includes a unique solution.

Proof. From Theorem 1 and as it said above, it follows that the existence of solutions to
the multi-term ¢-RLFBVP (1) is equivalent to the existence of the solutions for Equation (21).
Therefore it is sufficient to establish that the Equation (21) involves a fixed point uniquely.
Setting A = ¢ — 0y, 00 = 0, Aj = 0y — 0}, (j=0,1,...,n), then from (H1), we have for any
01,02 €B

‘ﬁ(z N0, (2),...,01(2)) - fi(z, 30 (2), ...,vz(z))]

(23)
<ZM’J+01 —J’lp (z)‘
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Applying the ip-Riemann-Liouville integral J Y to both sides of Inequality (23), we ob-

tain

36\1/) hi(z, Jgﬁ’tpv (z),...01(2)) —fi(z, Ja\ﬁ’lpvz( ), . .,vz(z))‘
< 5 EM ’J To,(2) 0]{%2( )‘
n (24)
o)t
=0

o M) —po))™h
< o vzHJ;J T(o—o; 1) .

Also, from (H2), it follows that

IN

IN

IN

O)M [r(’;) fg'f ¥ (9(0) —9(s)" k(s 3G 01 (5))ds

) (#(
ri Jw' ) (@) —w(s)" ka(s, 35 01 (s))ds

n+A; ~A A1
I (2,3, 01 (2), 3 01(2), . 1 (2))

T u-1 P
T<A)(¢(1)7¢( >)a T |:r fo (4’(6 lP(S)) kl(srj(yr UZ(S))ds

s J 9 ) (W07) = (5)" ™ kas, 3 0 (5) s

nt A 2 Ao; A;
ﬁgf lph(z, Tyt vaz(z),fiollpvz(z), <, 02(2))

} ($(z) — )"

) (p0 )"
s T $) () = 9(5)" a(s) |37

z=1
r() [ 1 O Un
W(‘PU)W{F&) Jsv' () (w(@) —w(s)" ‘kl 5,391 v1(s)) —ki(s, 3y oa(s ‘ds
%foi7 1//(5)(1/1(17) 71/](5 )kZ 5r30+ Ul( )) (S/ oilpUZ ‘ds (25)
””Mlp‘ﬁ 2,333‘/) 1(z ),3ollp 1(2), ..., v1(2)) —ﬁ(z,jgﬂ;wvz(z),jgftpvz(z),,..,vz(z)) }
z=1
o), {W S5 #') (#(0) = ()" ()35 01 (5) — 377 0n(s)|ds

~t7n Ul( ) j On 4)02 ’dS

y

D=p(0)" ..
(o) {p(‘”) $(0) 591,

MIPZ" OM30> |vl(z —0y(z )|

[(oy+1)

n

(‘P(l)*lP(O))’ W Mv(¢(1)7¢(0))(7n+A+A/v
T~ Tt ot L(n) + Xjo W} [lo1r — |

AHA;
vip M (p)-p()" 7
% [ ([rfﬂ) 0+ "n() + (0,7+1) () + Lo 7]r(m+A+M+1) [[o1 = v2]|.
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Therefore, by (24) and (25) we conclude that

ko)~ Koa(a) | < | sy P )+ i )

a (M=) T M) (pa)-p©)" 7
+Ej—0( : F(Q—U']--i-l)) + Fég—(rn()r(g-&-(rn—(rj-&-l) HU1 _UZH’

By using (H3), we figure out that

HKUl — K02H < CDHl)l — U2

4

where ® € (0,1). We deduce that K will be a contraction. Thus, By Banach’s principle,
we conclude that K admits a fixed point uniquely which it interprets the existence of
a solution uniqyely for the multi-term ®»-RLFBVP (1). [

4. Numerical Solutions via DGJIM and ADM Methods

This section is assigned for the formulation and the analysis of algorithms of two
numerical techniques called DGJIM and ADM. In fact, we here express how we can
implement these techniques to our supposed multi-term -RLFBVP. In each algorithm,
appropriate recursion relations are obtained to approximate the solutions of (4) as well
as their convergence. Our methods are motivated by [42,43].

4.1. The Numerical Technigue DGJIM

As you saw before, we showed that the solutions of Equations (1) and (5) are equiv-
alent. Let’s write the right-hand side of (22) under the following decomposition (this
decomposition is not unique)

(Kv)(z) = Lo(z)) + N(v(z)) + 0(2),

where L is a linear operator, the operator N represents the nonlinear terms and © is a known
function. Then, Equation (5) can be written in the decomposed format

v(z) = L(v(z)) + N(o(2)) + O(2). (26)
Suppose that the solution of (26) is expanded in the form of a series as follows
—+00
0(z) = Y va(2). (27)
n=0
By replacing (27) in (26), we get
—+o0o

ivn(z) =L(Zvn(z)) +N(§vn(z)) +0(2). (28)

n=0
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Because of the linearity of L. and by a simple computation we get the following
numerical algorithm named DGJIM method:

01(z) = L(vo(z)) + N(vo(2)),
02(2z) = L(v1(2)) + N(vo(z) + v1(2)) — N(vo(2)),

v3(z) = L(v2(2)) + N(vo(2) +v1(2) + v2(2)) — N(vo(2) +v1(2)),
(29)

Yu(z) = ivi(z). (30)

From expression (30), we easily reach
on(2) = Yn(z) = Yu-1(2). (31)
By combining (29) and (31),
Yu(2) = Yoo1(2) + L(Yy_1(2) = Yu_2(2)) + N(Y,_1(2)) — N(Yn_2(2)). (32)

Now, let us write

IN

Lo — Lu|| pillo—ul, 0<u <1,
|INo —Nul| < pmollo—ul, 0<wu<1,

where 1 + pp < 1. Therefore, the Banach’s fixed point theorem ensures the existence
of a unique solution Y(z) for Equation (26) and so for the ip-integral Equation (5). Based
on (32), we can write the following iterative inequalities

1Yn = Yooa|| < ][ Yno1 = Yoo + p2]| a1 — Ya2||

= (11 +12)|[Yn-1 = Yua

IN

(1 + Plz)zHYnfz — Y3
<

< (1 +m)" Y1 =Y,

which points out the absolute convergence and the uniform one of the sequence {Y,} to
the exact solution Y(z).
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4.2. The Numerical Technique ADM
+o0
To establish the numerical technique ADM, the nonlinear term N( Y oy (z)) in (28)

can be decomposed into a series of Adomian polynomials displayed by

—+o0 —+o0
N( Z vn(z)) = Z A (v0,01,...,0n),
n=0 n=0

in which A, (vo, v1, . ..,vs) is generated by
1 9" +o0 k
Ay (vg,01,...,04) = 3 [N(gvkz )L_O, n=0,1,... (33)
Therefore, Equation (28) is transformed into
+00 +00 +o0
Y oa(z) = ]L( y vn(z)> +Y A, (vo(z),vl(z), . .,vn(z)> +0(2),
n=0 n=0 n=0

which yields the following iterative structures named as ADM technique:

v1(z) = L(v0(2)) + Ao(v0(2),v1(2),...,va(2)),
02(z) = L(v1(2)) + A1 (v0(2),v1(2), ..., vn(2)),

v3(z) = L(v2(2)) + Az (v0(2),v1(2), ..., 0a(2)), o

0 (2) = L(v,-1(2)) + Au_1(v0(2),01(2), ..., 0 (2)),

Eventually, by representing K-term approximate solution of the p-integral Equa-

tion (5) as
K
Yk(z) = Z vy (2), (35)
n=0
the exact solution of (5) is given by
v(z) = K1—1>I—I‘r100 Yk (2). (36)

Finally, we figure out that the approximate solutions and the exact solution of the multi-
term ¢-RLFBVP (1) are explored by u,(z) = 3 Yu(2) and u(z) = 371 v(z), respectively.

5. Examples

At this moment, we give two illustrative and distinct applied examples. In the first
one, the theoretical existence results are checked and in the second one, the numerical
solutions of the supposed ¢-RLFBVP are extracted caused by the numerical techniques
DGJIM and ADM formulated above.
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Example 1. Consider the following y-RLFBVP which has a structure as

@éf;zzu(z) =z+ 1 sin(2u(z)) + 1@8& (z) + L sin (Dp?u(z)), z€[0,1],
16 8 10
u(0) =0,
_2/ f—sz (14 1000u(s ds+2/ ——52 (14 2¢° sin (u(s)))ds.

In this example, we have (z) 0=18 00 =000 =01, 00 =02 ¢ = %,
n=1r=T4),q=T05),u=4v=>5and ki(z,u(z)) =1+ 1000u(z)e?, k(z,u(z)) =
1+ 2¢*sin (u(z)).

Then My = 0.125, M; = 0.125, M, = 0.1, I;(z) = 1000¢%, I(z) = 2¢*. A simple
computation gives us

pr(e) 51 qr (o)
® = I l
F(Q_Un)r(an"‘l) )+ (Q_‘Tn)r(‘fn"‘l) 2(1)

(1) —p(0)* 7 MT 1) — (0))*
. Z( (= #O) | MO0 = 0N Y o
I(o—0j+1) (@—0n)l(¢+0on —0j+1)
Hence, by Theorem 2 it follows that our Y-RLFBVP designed in the current example involves

a solution uniquely.
In the next example, we consider a case of the suggested -RLFBVP and compare ap-

proximate numerical results with exact outcomes which states the effectiveness and the com-
patibility of both numerical techniques DGJIM and ADM

Example 2. Let us consider the following $-RLFBVP which has a format as

0 u(z) + x(2), € [0,1],

D77 u(z) = 1+ D)7 u

u(O) = 0, (37)

1 1
(2 1 /1 3 /1 \2/1
u(l)f/o S(Z s )(1 u(s))ds+2/0 s<§ s) (§ u(s))ds,
where . 1
-14
= — - ——z—1L
O r(15)"

In the above structure, we have chosen parameters P(z) =z,0=17,6 =1/2,31 =1/3
2,v=23p=1land q = 2. It is evident that o — 0, = 1.2 > 1. Also

on = 05, u =
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ki(z,u(z)) = } —u(z) and ky(z,u(z)) = § —u(z) for z € [0,1]. By assuming v(z) =
©8f;‘zzu(z), the corresponding -integral equation of the Y-RLFBVP (37) is displayed as

v(z) = Ciéf;zz [1+0(z) + x(2)] 4+ L r 12 {foz 25(7 — 52> (% — Jgf"zzv(s)>ds
+ fo% 25(% — 52)2<1 — TJOSZ v(s ))ds — ”1 7Z [1+0(z) + x(z)] ’ZJ (z2)02

. 1 .
= 900 + 95 () + TR S s (3 2) (3 - 2070 Jas

2) 0F
(32 oo i

x z04
=1
r(17) ~1.7; . N |
7ﬁJO+Z o(@) 1 O F e ( 370 X(Z) i 704,
(38)
Now, we decompose the right side of (38) as
v(z) = L(v(z)) + N(v(z)) + O(z),
where

"2
L) = - HE]

z ZO4 0 .ZZ
N(o(z)) = 3,751+ (1(7)) fo S(%_Sz) (%—Jgf’ v(s))ds

2r(1.7)04 2 o 17)
S 01 o

.ZZ

O(z) = Z](l)f’ x(z) — E g L 204

In this case, the sequence of approximate solutions of (37) and (38) are obtained based on
algorithms of numerical techniques DGJIM and ADM as follows:

e Numerical solutions via DGJIM method:

By using the algorithms of DGJIM and after some computations, we obtain four approximate
solutions as

Yo(z) = 1.1284z — 0.6474z>4 — 0.90762%* — 0.64072%4

Y1(z) = 1.1284z — 1.8152z%* — 1.23062%* — 0.18872°% — 0.33542*% — 0.47362%8

Yo(z) = 1.1284z — 1.8152z%4 — 3.43152%4 — 0.6708z*8 — 0.04722%% — 0.0747272
—0.1583z>2

Y3(z) = 1.1284z — 1.8152z%4 — 0.0039z%4 — 0.67082*8 + 2.0.69922>8 — 0.149477

—3.3022z°2 — 0.0050z1%¢ — 0.01172%¢
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and

ug(z) = 2% — 0.4126z4* — 0.6474z3* — 0.6474z*

uq(z) = 2% — 1.29482>4 — 1.2435z14 — 0.03402°8 — 0.18872>% — 0.23002>8

U (z) = 2% — 1.29482>4 — 3.4675z14 — 0.37742°>8 — 0.03212%% — 0.0358252
— 0.08642°%2

us(z) = 2% —1.2948234 — 0.0039z"* — 0.37742°8 + 1.83482%8 — 0.07162%2

—0.16492z%2 — 0.0020z'10 — 0.0050z1%°.

e Numerical solutions via ADM method:

By the algorithms of ADM along with some computations, we obtain four approximate
solutions as

Yo(z) = 1.1284z — 0.6474z>* — 0.90762>* — 0.64072*

Yi(z) = 1.1284z — 1.8152z>4 — 1.41062%* — 0.18872>% — 0.3354z*8 — 0.47362>%

Y, (z) = 1.1284z — 1.8152z>4 — 0.82122%* — 0.6718z*® — 0.90962*8 — 0.03582°2
—0.074727% — 0.1583z°2

Y3(z) = 1.1284z — 1.8152z%* — 0.01382%* — 0.67182z*® + 2.67642%*® — 0.149477

—0.30222°2 — 0.0050z'% — 0.0117z%¢ — 0.0295
and

up(z) = 2% — 0.4126z** — 0.6474z34 — 0.64742'4

uq(z) = 2% — 1.2948234 — 1.42547"4 — 0.6215258 — 0.18872%% — 0.3219238

U (z) = 2% — 1.2948234 — 0.8298z' — 0.37742°>8 — 0.61832%% — 0.0162272
—0.03582z5% — 0.08642°2

u3(z) = 2% — 1.2948z%4 + 0.1394z'4 — 0.37742°8 4-1.81932>% — 0.07162%2

—0.1649z°2 — 0.0020z'° — 0.0050z'%¢ — 0.0138z%°.

In the final step, you can see the graphs of the fourth approximate solution caused by the DGJIM
and the ADM algorithms for the supposed -RLFBVP (37) and the p-integral Equation (38) plotted
in Figures 1 and 2 in which these approximate solutions are compared with the exact solution of
the y-RLBVP (37) given by u(z) = z? and the exact solution of the -integral equation given
byv(z) = ﬁz, respectively.
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Exact solution of our BWP compared to fourth-DGJIM and fourth-ADM-solutions
T P S RTINS PP e ,

e Ecact s0l.0f our El\-f’F' /, :
Dg L FDUHh-DGJlM-SDl Df our B\‘II.P ......... ........ . ..... , SR S
=== Foyth-ADM-s0l, of our BYP : : : p

0.8

0.7

0.6

0.a

0.4

0.3

0.2

0.1

0

Figure 1. The graph of the exact solution of the -RLFBVP (37) compared with the graphs of the fourth
Dafterdar-Gejji and Jafari method (DGJIM)-approximate solution and the fourth Adomian decompo-
sition method (ADM)-approximate one.

Exact solution of int. eq. compared with fourth-DGJIM and fourth-ADM-solutions
1

—E}{act sal Ufmtegral equatmn : : /':-\ :
03r Fourth-DGJIN-sol. of integral equation |5 % S W
= Eoypth-A0M-s0l.of integral equation / : :

Figure 2. The graph of the exact solution of the y-integral Equation (38) compared with the graphs
of the fourth DGJIM-approximate solution and the fourth ADM-approximate one.

6. Conclusions

In this research, in the first step, we reviewed the existence of solutions for a gener-
alized multi-term -RLFBVP subject to the generalized ¢-integral boundary conditions.
Then, we implemented two numerical techniques called DGJIM and ADM algorithms for
solving the supposed multi-term ¢-RLBVP via a decomposition approach. In the sequel,
we have illustrated by a numerical example that the approximate solutions caused by these
numerical techniques are in excellent compatibility with the exact solutions. These algo-
rithms give the approximate solution as a series that converges to the exact one quickly
whenever it exists. Consequently, the current research study emphasizes that these numer-
ical techniques can be implemented in many other various fractional multi-term FBVPs
subject to different boundary conditions by means of some symmetric and asymmetric
derivation operators.
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