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Abstract: Under pure quantum evolution, for a wave packet that diffuses (like a Gaussian), scattering
can cause localization. Other forms of the wave function, spreading more rapidly than a Gaussian,
are unlikely to localize.
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What is the size and shape of a wave packet? I am talking about a wave packet of
a particle (atom or molecule) in a gas. Is it a plane wave that fills the container? Or is it
a microscopic (perhaps ≤ 100 nm) object? I am not talking about a situation where there
is a potential holding the particle in some region, like a hydrogen atom. The only things
around are other particles, the same or different. (Please see Appendix A). Strangely, this
subject has not attracted a lot of attention.

Our conclusion considers a number of possibilities. Should the eventual wave func-
tions be Gaussian or Gaussian-like (to be later defined) then, yes, there is localization. If
not, probably no. However, we give an argument that the wave function most likely does
become Gaussian. (Generally speaking, people use Gaussians in descriptions, but this is
not always warranted.)

This paper has three parts: arguments for a Gaussian, localization in that case and
the case(s) that it is not a Gaussian. We emphasize that the first part (eventually) treats
non-Gaussians that become Gaussian after a number of collisions.

Arguments for a Gaussian. The wave function for a Gaussian would be

ψ(r) =
1

(πσ2)3/4 exp
(
− (r− r0)

2

2σ2 +
i
h̄

p0(r + r0)

)
. (1)

In one dimension, a Gaussian in momentum space is

φ(p) =
(

σ2

πh̄2

)1/4

exp
(
−σ2(p− p0)

2

2h̄2 − i
h̄

px0

)
. (2)

(The following paragraph is the treatment in [1]; for more details, see that reference.) We
suppose there is a particle of a different mass and that they scatter. The conservation laws
(once they are far enough apart that they do not interact) are

Pfinal = Pinitial and pfinal = −pinitial , (3)

where P and p are collective coordinates: P = p1 + p2 and p = (m2 p1 − m1 p2)/M. In
these relations, pj and mj (j = 1, 2) are the momenta and masses of each of the particles,
1
µ = 1

m1
+ 1

m2
and M = m1 +m2. Furthermore, we let µi =

mi
M (i = 1, 2). It turns out that, for

calculation of the spread, all that matters is the real part of the (2× negative) exponent. This
changes from

[
σ2

1 p2
1 + σ2

2 p2
2
]
=
[
σ2

1 (µ1P + p) + σ2
2 (µ2P− p)

]
, following Equation (3), to

Q(p1, p2) ≡ p2
1[σ

2
1 (µ1 − µ2)

2 + 4µ2
2σ2

2 ] + p2
2[σ

2
2 (µ2 − µ1)

2 + 4µ2
1σ2

1 ]

+4(µ1 − µ2)p1 p2(µ1σ2
1 − µ2σ2

2 ) , (4)
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As shown in [1], provided µ1 and µ2 are significantly different from one another, within a
few scattering events the “cross” term in p1 p2 vanishes. This means that the wave functions
have ratio of spread such that mσ2 is constant and there is no cross term—nothing to
decohere (and the von Neumann entropy is maximum). In three dimensions the same
thing happens, but is more difficult to show [2–4]. That, however, is not our main point.

What happens in one dimension if the initial functions are not a Gaussian? We suppose
the wave function has the form exp(−∑∞

2 anxn). This form can fit various other functional
forms, e.g., 1/(1 + x2)2 to within 0.06 using 4 coefficients (i.e., elements of the set {an}).
(Please see Appendix B) . Following the earlier method (based on Equation (3)), we find
that 4th order terms obey

a(1)
′

4 = a(1)4 (µ1 − µ2)
4 + a(2)4 24µ4

2

a(2)
′

4 = a(2)4 (µ1 − µ2)
4 + a(1)4 24µ4

1 , (5)

with a(j)
4 (j = 1, 2) the coefficients of x4 for the respective wave functions. In general, if the

deviation from a Gaussian begins with a term p2n
k there is a matrix that takes one from the

values of the coefficients multiplying these terms from before scattering to after scattering.
That matrix is  (µ1 − µ2)

2n (2µ2)
2n

(2µ1)
2n (µ1 − µ2)

2n

 . (6)

The eigenvalues of this matrix are (for all n > 1) below 1 for m1 6= m2 and mj 6= 0 (j = 1, 2).
What happens if there is no other-mass particle? I do not know. I would not have

thought it should make a difference, but I do not have a proof. In practice, there is almost
always some impurity, but it may scatter rarely.

Thus, there is an indication that in one dimension the wave function approaches a
Gaussian. In higher dimension—in particular 3—I do not have definitive results. It is still
true [1] that for Gaussians the spread approaches a maximum of von Neumann entropy
and (if there are two types of particles, #1 and #2 then) m1σ2

1 = m2σ2
2 .

For three dimensions, there are many ways that nth power terms can occur; for #1
one can have anything of the form p1

n1
x p1

n2
y p1

n3
z with n1 + n2 + n3 = n, and similarly for

#2, leading to (n + 2)(n + 1) coefficients for the two of them. (Please see Appendix C).
Moreover, as discussed in [1], the post-scattering values of p1 and p2 involve a rotation,
R ∈ SO(3), not just a flip. Thus, p′1 = (µ1 I + µ2R)p1 + µ1(I − R)p2 (and 1↔ 2 for p′2).

I have examined cubic and quartic components of the logarithm of the wave function.
All the indicated operations have been carried out, the cross terms involving momenta
of #1 and of #2 have been dropped, and a rather complex recursion for the plethora of
coefficients evaluated numerically. Sample results are shown in Figures 1 and 2. The “time”
represents the number of scattering events, and the ordinate is the sum total of the absolute
values of all cubic or quartic coefficients. Remarkably, they all tend to zero.

Evaluations beyond quartic represent a further problem in symbolic manipulation,
but based on the higher-power evidence of one dimension together with the cubic and
quartic evidence in three dimensions, it is reasonable to make the claim that all higher
power coefficients tend to zero under decoherence.

Is this a proof that eventually everything decoheres to a Gaussian? Absolutely not,
but it is an indication.

Localization with Gaussian-like behavior. Scattering can localize. This may be surprising,
since some may hold that a wave function can only spread. It turns out (as shown in [2])
that scattering can act like a measurement, that scattering alone can localize. Here we
extend that result.

I do not deal with the effects of temperature (cf. [5]), nor with off-diagonal elements
of the density matrix [6,7]. I am concerned with pure quantum behavior. Nor do the
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conclusions depend on interpretation, i.e., they are independent of whether one subscribes
to the Copenhagen interpretation (in its many variants), Many Worlds, or some other theory.

Figure 1. Reduction of non-Gaussian terms with unequal mass scattering in three dimensions.Because
that the problem has an intrinsic nonlinearity, the initial coefficients were varied. Usually they were
taken as random between 0 and 1, but on some occasions they were taken to be 20 times that. In all
cases there was convergence to zero. The programs to establish this were combinations of symbolic
manipulation and numerical evaluation.

Figure 2. As in Figure 1, except that this looks at quartic terms. As in the other example, all terms
shrink to zero.

I will briefly review the results of [2] and then turn to the extension. (There is a slight
change in notation: instead of σ2, we use 2∆2 for convenience in matching results.) The
principal consequence of [2] is that, assuming the wave function is a Gaussian, particles do
not spread indefinitely. The proof in [2] is a self-consistency argument. We assume two
normalized Gaussians in 3 dimensions of the form

ψ(r1, r2, 0) =
1

(2π∆2)3/2 exp
(
− (r1 + r0)

2

4∆2 +
i
h̄

p1(r1 + r0)−
(r2 − r0)

2

4∆2 +
i
h̄

p2(r2 − r0)

)
. (7)
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with parameters r0, p1, p2 and ∆. We assume p1 ≈ −p2, so that at time m|r/p1| they
scatter. Assuming no interaction, at time t this becomes

ψ(r1, r2, t) =

(
∆4 + ( h̄t

2m )2

2π∆2

)−3/2

exp

− (r1 + r0 − p1t
m )2

4
(

∆2 + i h̄t
2m

) +
i
h̄

p1(r1 + r0)−
i
h̄

p2
1t

2m


× exp

− (r2 − r0 − p2t
m )2

4
(

∆2 + i h̄t
2m

) +
i
h̄

p2(r2 − r0)−
i
h̄

p2
2t

2m

 . (8)

using center of mass coordinates, the exponent is

−
(R + Pt

2m )2

2
(

∆2 + i h̄t
2m

) − (r + 2r0 +
pt

m/2 )
2

2
(

4∆2 + i h̄t
m/2

) − i
h̄
(RP + (r− 2r0)p)− i

h̄

(
P2

4m
+

p2

m

)
t , (9)

where R = 1
2 (r1 + r2), r = r1 − r2, and correspondingly for P and p. Now set t ≈ m|r/p1|

(or just afterward). They scatter, but nothing happens to P. In the center of mass, we use
the Born approximation. Up to normalization, the new wave function is δt i

h̄ V(r)Ψ(R, r, t),
where we also assumed the interaction was brief, taking place during a short time δt. With
a further condition that V(r) = V0 exp

(
− r2

4a2

)
, for convenience in integrating, we obtain

|Ψ|2 = exp

− r2

2a2 −
(R + Pt

2m )2∣∣∣∆2 + i h̄t
2m

∣∣∣ −
(r + 2r0 +

pt
m/2 )

2∣∣∣4∆2 + i h̄t
m/2

∣∣∣
 . (10)

(Normalization cancels and can be ignored.) Using this wave function, one can calculate
the spread in r (∆r), in R (∆R) and from them ∆r1 and ∆r2. The latter quantities are then
set equal to the original ∆r1 and ∆r2 (both equal to ∆). Using as the time between collisions
scattering length

velocity (and mass values) we find that indeed the original ∆ can be set equal to

the final values of spread. To make equations simpler, we define

θ ≡ h̄t
m

=
h̄`
mv

, (11)

where ` is the scattering length and v a typical velocity. For any given gas, the range of θ
is fixed.

The essential steps in the foregoing derivation are the estimation of ∆r, R and ∆R. It
is these that can be generalized.

The first step is to formalize V. Instead of an exponential of range a, we take a potential
that is cut off at distance a. This restricts the location of r to be within a distance a of R. In
other words, ∆r ≤

√
r · r = 3a2. This is an additional assumption and may require a larger

“a” than was previously posited.
The expectation of R is simply 〈R〉 = Pt

2m , since it is unaffected by the interac-
tion/scattering.

The spread in R is another matter and is the principal source of uncertainty in our
calculation. For a Gaussian-like initial wave function, we can give estimates. From our
previous work [1], we have

〈(∆R)2〉 = 〈R2〉 − 〈R〉2 = 3
4∆4 + θ2

8∆2 . (12)

Now we would like to weaken the assumptions. It turns out that the most important
property (for our purposes) of the Gaussian is its diffusive behavior. This assumption
about the spread in the center of mass coordinate is weakened in a specific way: in place of
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the 8 that appears in the denominator, we allow smaller values, γ. (In this sense, the wave
function is Gaussian-like.) Specifically, 4 < γ ≤ 8 and

〈(∆R)2〉 = 3
4∆4 + θ2

γ∆2 . (13)

We now use 〈∆r2
1〉 = 〈∆r2

2〉 = 〈∆R2〉+ 1
4 〈∆r2〉 to arrive at the denominators for the new

wave functions of r1 and r2:

〈(∆rnew)
2〉 = 〈(∆rk)

2〉 = 3a2 + 3
4∆4 + θ2

γ∆2 , k = 1.2 . (14)

Setting the old ∆ equal to the new one, we arrive at a self-consistency criterion for the spread

3∆2 = 3a2 + 3
4∆4 + θ2

γ∆2 . (15)

This is a quadratic equation whose solution is

∆2 =
a2γ

4(γ− 4)
±

√
θ2

γ− 4
+

(
a2γ

4(γ− 4)

)2

. (16)

Taking ` = 70 nm, v = 500 m/s, a = 1 nm and m = 29 gm/6× 1023 ≈ 5× 10−23 gm and
γ = 4.1 gives a value of 4.5 nm, much less than the mean free path. (Please see Appendix D).
These are typical parameters for the air and the wave function is localized. Note though
that (for air) there is overlap: (number density)1/3 ≈ (0.025× 10−27)1/3 ≈ 3 Å. Therefore,
although the wave functions occupy common volumes, they mostly do not interact.

Not a Gaussian. The essential feature of non-Gaussian wave functions is that the spread
in R grows. I have not examined the “boundary,” that is, the form of, or parameters in, wave
functions that eventually become Gaussian and those that do not. I will though examine
various wave functions that are non-Gaussian. Consider, for example, an exponential

ψ(r, 0) =
λ3

8π
exp(−λr) . (17)

We assume that both scattering particles have this form, with the same value of λ. The
spread in the relative coordinate ∆r is still bounded by a (or 3a) but the center of mass
coordinate grows. The spread for each, before collision, is 1/λ. The center of mass
coordinate for equal mass particles is R = (r1 + r2)/2, so that the spread for of the center
of mass coordinate is also 1/λ. As a result, the center of mass can also be taken of the
form Equation (17). Now apply the free propagator numerically and fit the result to an
exponential. Except for particular values of λ the value of the spread has increased. This
means there can be no self-consistent solution (as there was for a Gaussian).

The same happens for the wave function taken as a power.

Conclusions. The point of this is not that no wave function spreads. Rather, it places
bounds on spreading for certain wave functions and makes it plausible that scattering is
sometimes like a measurement, pinning a particle to a small, localized region.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2021, 13, 527 6 of 6

Appendix A

In particular, we do not deal with chains of oscillators or single oscillators, which ac-
cording to [8,9] (and other literature) become, by decoherence, coherent states, i.e., Gaussian.

Appendix B

The function 1/(1 + x2)2 is not symmetric about x = 0; hence, it requires odd terms
in the expansion exp(−∑∞

2 anxn). This is accomplished with coefficients a3 and a5 that
are 10−8 or less. The fourth order term is about 1/100 of the quadratic term (which is
about 1.46).

Appendix C

This is the number of possibilities for both particles and is calculated by imagining
the interval [0, n] as having partitions at 2 (integer) locations (and multiplying by 2). Just to
be clear, the 3-dimensional tendency to have a Gaussian wave function is new material.

Appendix D

The minus sign in Equation (16) is spurious and gives an imaginary value for
√

∆2.
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