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Abstract: The median-type filter is an effective technique to remove salt and pepper (SAP) noise;
however, such a mechanism cannot always effectively remove noise and preserve details due to
the local diversity singularity and local non-stationarity. In this paper, a two-step SAP removal
method was proposed based on the analysis of the median-type filter errors. In the first step, a
median-type filter was used to process the image corrupted by SAP noise. Then, in the second
step, a novel-designed adaptive nonlocal bilateral filter is used to weaken the error of the median-
type filter. By building histograms of median-type filter errors, we found that the error almost
obeys Gaussian–Laplacian mixture distribution statistically. Following this, an improved bilateral
filter was proposed to utilize the nonlocal feature and bilateral filter to weaken the median-type
filter errors. In the proposed filter, (1) the nonlocal strategy is introduced to improve the bilateral
filter, and the intensity similarity is measured between image patches instead pixels; (2) a novel
norm based on half-quadratic estimation is used to measure the image patch- spatial proximity and
intensity similarity, instead of fixed L1 and L2 norms; (3) besides, the scale parameters, which were
used to control the behavior of the half-quadratic norm, were updated based on the local image
feature. Experimental results showed that the proposed method performed better compared with the
state-of-the-art methods.

Keywords: salt and pepper; median-type filter; bilateral filter; nonlocal

1. Introduction

Detail restoration is a challenging problem that is necessary for some image processing
tasks, such as feature extraction, object identification, and pattern recognition. The impulse
noise remains in the process of image acquisition and transmission [1,2], which is an
inevitable and unwanted phenomenon. The salt and pepper (SAP) noise is a type of
impulse noise where the corrupted pixel takes either the maximum or minimum gray
value. This noise appears as white and black pixels in the corrupted image [3–5]. Moreover,
the challenge in detail restoration is further amplified when the images are corrupted by
heavy SAP noise owing to the significant destruction of information detail.

In this work, a two-step SAP noise removal method is proposed. The aim of this
method is to study the denoising result of the median-type filter further, and propose a
novel method to improve the visual quality. First, by analyzing the error of the median-type
filter, it was observed to adhere to a Gaussian–Laplacian mixture distribution statistically.
Following this observation, in the second step, an adaptive nonlocal bilateral filter has
been proposed to utilize the nonlocal feature and bilateral filter to recover the result of
median-type filters. In the proposed filter, the difference between the image patch is
measured by a modified version of the adaptive norm proposed in [6], which is different
from the traditional methods. Moreover, the scale parameters, which were used to control
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the behavior of the adaptive norm, were updated based on the local feature for higher
estimation accuracy.

The contributions of this paper are summarized as follows:

(1) By analyzing the error of the median-type filter statistically, it is found that the error
is almost a Gaussian–Laplacian mixture distribution. Therefore, a two-step noise
removal method is designed to remove the SAP noise.

(2) A novel adaptive non-local bilateral filter is proposed to recover the median-type
filtered result. Owing to the drawbacks of traditional bilateral filter, a nonlocal
operator is used to extract image patches, and the adaptive norm is used to measure
the spatial proximity and intensity similarity between the patches.

(3) We propose a method to calculate the scale parameters in the adaptive norm. Using
this strategy, the context information can be utilized to make the norm adapt to the
patch feature.

2. Related Work

There are several methods proposed to reconstruct images corrupted by SAP noise
in the past. The research for nonlinear filter is actively pursued in the field of SAP noise
removal. Median-type filters [7–10] are the most popular nonlinear filters. Such as the
standard median filter (MF), which is one of the most popular nonlinear filters. MF
convolves a moving window with determined size over the image. If the pixel at the center
of the window is noisy, its value is replaced with the current window’s median value.
However, the noise-free pixels are treated similar to the noisy pixels when these filters
are used to restore the corrupted image. These pixels are also replaced with estimated
values, which lead to artifacts and blurring. This results in (1) the distortion of original
image details and (2) the increase in the computation, especially in the case of low signal–
noise ratio.

2.1. Switching Filters

To solve this problem, the switching median-type filters are proposed. The main
idea of switching filters is to use a switching process to select the optimal output in the
noise detection step or correction step. In [11], first, the authors propose impulse noise
detection methods based on evidential reasoning. Then, they design an adaptive switching
median filtering which could adaptively determine the size of filtering window according
to detection results. The quaternion switching vector median filter, introduced in [12],
detects impulse noise based on a quaternion-based color distance and local reachability
density. The quaternion-based color distance is used to calculate the local density of a
color pixel. Chanu and Singh [13] also propose a switching vector median filter based on
quaternion to remove impulse noise, which contains two stages. In the first stage, they
use a rank strategy to determine whether the central pixel of the filtering window is noisy
pixel or not. Then, in the second stage, the probably corrupted candidate is re-confirmed
by using four Laplacian convolution kernels. The noisy pixel is processed by a switching
vector median filter based on the quaternion distance.

2.2. Decision Filters

The decision-based method has attracted significant attention for removing SAP noise.
Decision filters assume that noisy pixels have a value of 0 or 255 while noise-free pixels
have a value between them. As presented in [14], a new filter is established on decision-
based filters. The method contains noise detection and restoration. In restoration phase,
the uncorrupted pixels keep unchanged and corrupted pixels are interpolated from sur-
rounding uncorrupted pixels using a two-dimensional scattered data interpolation, named
natural neighbor Galerkin method. In [15], the noise-free pixels are also left unprocessed
and the noisy pixels are replaced with the Kriging interpolation value. The noisy pixels are
interpolated from the noise-free pixels in a confined neighborhood. The weights of contrib-
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utors are calculated using semi-variance between the corrupted pixels and uncorrupted
pixels. Besides, an adaptive window size is used for the increasing noise densities.

2.3. Fuzzy Filters

Toh and Isa [16] propose the noise adaptive fuzzy switching median filter (NAFSMF),
which is a hybrid between the simple adaptive median filter [17] and the fuzzy switching
median filter [18]. NAFSMF contains two stages: noise detection and removal. In the
detection stage, the histogram of the corrupted image is utilized to identify noisy pixels.
In the removal stage, fuzzy reasoning is employed to deal with uncertainty and design a
correction term to estimate noisy pixels. In [19], the authors first improve the maximum
absolute luminance difference (ALD) method for detecting noisy pixels more accurately,
which helps to classify the pixels into three categories: uncorrupted ones, lightly corrupted
ones, and heavily corrupted ones. To restore corrupted pixels, a distance relevant adaptive
fuzzy switching weighted mean filter is implemented to remove noise. Afterward, the
uncertainty present in the extracted local information as introduced by noise is handled
via fuzzy reasoning [20,21].

2.4. Morphological Filters

Morphological filters are non-linear and it can modify the geometrical features lo-
cally [22,23]. Mediated morphological filters, introduced in [23], are a combination of
median filtering and classical gray-scale morphological operators. After, the mediated mor-
phological filters are applied to remove noise from adult and fetal electrocardiogram (ECG)
signal [24,25] and medical images [26]. In [24], mediated morphological filters are used as
an efficient preprocessing step to deal with adult and fetal ECG signals. Such a strategy
could suppress noise effectively and show low sensitivity to the changes of the structuring
element’s length. Compared with [24], the method presented in [25] further concludes the
preprocessing result by employing a morphological background normalization. In [26], the
mediated morphological filter ability is verified in removing SAP noise, Gaussian noise
and Speckle noise from medical images. Compared with the weighted MF, classical MF,
and linear filter, the mediated morphological filter shows better performance, even in high
abnormal condition of each kind of noise.

2.5. Cascade Filters

The cascade methods use the idea of combining different filters to improve the restora-
tion quality. Such as, the authors of [27] combine the switching adaptive median with
fixed weighted mean filter (SAMFWMF). This filter contains switching adaptive median
filtering and fixed weighted mean filtering with additional shrinkage window. This filter
can achieve optimal edge detection and preservation. In [28], a decision-based median
filter is combined with asymmetric trimmed mean filter. In this method, the pixel whose
value is equal to 0 or 255 is replaced with the median of the moving window; otherwise,
it is replaced with the mean of the window. Raza and Sawant [29] combine a decision-
based median filter with a modified decision-based partially trimmed global mean filter
(DBPTGMF). Esakkirajan et al. [30] combine a decision-based median filter with a modified
decision-based unsymmetrical trimmed median filter (MDBUTMF). Both DBPTGMF and
MDBUTMF contain two stages. The first stage is common for both approaches: detect the
noisy pixels and replace them with the window’s median. Two main differences exist in
the second stage: (I) when detecting the corrupted pixels in the window, if all the pixels
in the window (except for the central corrupted pixel) are 0 s (or 1 s), DBPTGMF replaces
the corrupted pixel with 0 (or 1). On the other hand, MDBUTMF replaces the corrupted
pixel with the window’s mean. (II) If the pixels in the window are a combination of 0 s and
1 s, DBPTGMF replaces the corrupted pixel with the mean of the window. However, the
corrupted pixel will be replaced with the median of the window if at least one pixel in the
window is different from 0 or 1. For both cases, MDBUTMF replaces the corrupted pixel
with the median of the window.
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2.6. Nonlocal Means Filter and Bilateral Filter for SAP Noise Removal

Most of the existing SAP noise removal methods are pixel-based methods, which
consider the image pixels in a fixed local region only and ignore the image self-similar
information. Thus, the image nonlocal structure or the texture structure cannot be pre-
served properly. To solve this problem, Wang et al. [31] propose the iterative nonlocal
means (INLM) filter to remove SAP noise. In this method, switching median filter is
first used to mark the pixels as noisy or noise-free pixels and performs filtering on the
noisy pixels only. Then, an iterative nonlocal means framework is used to estimate the
noisy pixels. In [31], they iteratively exploited the nonlocal similarity feature of the image.
They also obtain higher accuracy by updating the similarity weights and the estimated
values simultaneously. The bilateral filter is a widely used method for Gaussian noise
suppression, and it is barely discussed for SAP noise removal. Veerakumar et al. [32]
propose an adaptive bilateral filter by modifying the spatial proximity-based and intensity
similarity-based Gaussian function. In the intensity similarity-based Gaussian function,
the difference between different pixels is measured by the L2 norm, which penalizes the
high-frequency component, and this may blur the edge and texture.

3. Error Analysis and Bilateral Filter
3.1. Error Analysis

In this work, we focused on the statistical characteristics of the results other than the
method itself. Based on this idea, we first add salt and pepper noise with various intensities
to the image and then remove the noise using the median type filter (i.e., MF, NAFSM)

Îm f = MedianFilter(I) (1)

where Îm f denotes the filtered image and I is the image corrupted by the SAP noise. Then,
we calculated the error image

Ierr = Îm f − Iori (2)

where Ierr is the error image between the filtered image Îm f and the original image Iori.
Then, we compute the normalized histogram for the error image. Take the image

“Lena” as an example, Figure 1a is the error image between I and the original image Iori,
Figure 1b is the histogram for Figure 1a, Figure 1c is the error image between the filtered
image Îm f and the original image Iori. To verify our hypothesis, we repeated these ex-
periments in different images with different sizes and noise intensities. Furthermore, the
histogram of the error of these images is shown in Figure 1d. It can be seen that the curves
corresponding to different images are all very close to the red curve (i.e., Gaussian distribu-
tion defined in Equation (3)) at both ends, while close to the black curve (i.e., Laplacian
distribution defined in Equation (4)) near the peak area. It means that after prefiltering, the
noise remained in the image obeys a Gaussian–Laplacian mixture distribution.

If r obeys Gaussian distribution, i.e., r ∼ N(µG, σG), the distribution function is
defined as

ρG(r) =
1√

2πσG

exp(− (r− µG)
2

2σ2
G

) (3)

If t obeys Laplacian distribution, i.e., t ∼ La(µL, σL), the distribution function is
defined as

ρL(t) =
1

2σL
exp(−|t− µL|

σL
) (4)

where, µG and µL are position parameter, σG and σL are scale parameters.
Intuitively, we deduce that the image obtained by the median-type filter is similar to

an image with mixture noise, which can be written as

Îm f = Iori + nG&L (5)
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This phenomenon gives us an inspiration that a better denoising performance would
be achieved by successfully designing a Gaussian–Laplacian mixed noise filter and intro-
ducing it into a SAP noise removal problem. In this paper, this question will be discussed
and satisfactory results are obtained by applying the modified bilateral filter into salt-and-
pepper noise removal.
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Figure 1. Error image and the corresponding histogram. (a) Error image between I and Iori for image “Lena”; (b) histogram
of (a); (c) error image between Iori and Îm f for the image “Lena”; (d) histograms of the error image for 10 images.

3.2. Bilateral Filter

Bilateral filter [33,34] is a kind of nonlinear filter aimed at edge preservation, since
it simultaneously considers spatial proximity and the intensity similarity between image
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pixels. Mathematically, the corrupted image pixel can be estimated by the weighted average
of all the neighborhood pixels as

x(i, j) =

∑
(k,l)∈B(i,j)

ωd(i, j, k, l)ωr(i, j, k, l)I(k, l)

∑
(k,l)∈B(i,j)

ωd(i, j, k, l)ωr(i, j, k, l)
(6)

where x(i, j) denotes the estimated image pixel located at (i, j), B(i, j) denotes the patch
whose center pixel is located at (i, j), I(k, l) ∈ B(i, j), ωd and ωr are both Gaussian functions
to measure the spatial proximity and the intensity similarity, respectively. Formally, these
functions can be written as

ωd(i, j, k, l) = exp(− (i− k)2 + (j− l)2

2σ2
d

) (7)

ωr(i, j, k, l) = exp(−‖I(i, j)− I(k, l)‖2
2

2σ2
r

) (8)

where, σd and σr are smoothing parameters.

4. Proposed Two-Step Algorithm

This section presents a detailed explanation of the proposed two-step SAP noise
removal algorithm. In the first step, a median-type filter (i.e., NAFSMF) was used to
process the corrupted image. Then, in the second step, a novel-designed adaptive nonlocal
bilateral (ANB) filter is used to weaken the error of the median-type filter given that it is
found to have a Gaussian-like distribution statistically.

4.1. NAFSMF for Preprocessing

In this stage, the noisy image histogram is utilized so as to estimate the noisy pixels in
the image corrupted by SAP noise. The local maximum method [18] is first used to detect
the noisy pixels. By using this method, it can avoid mistaking noise free intensities in the
noisy image histogram for the noisy intensities in the case of low noise intensity. The local
maximum is the first peak encountered when traversing the noisy image histogram in a
particular direction. The search is started from both ends of the histogram and directed
towards the center of the histogram. Two noise intensities are found and used to identify
possible noisy pixels in the image. The two local maximums are denoted as NSalt and NPepper,
respectively. A noise mask M is designed as follows to mark the location of noisy pixels

M(i, j) =
{

0, I(i, j) = NSalt or I(i, j) = NPepper
1, otherwise

(9)

where I(i, j) records the gray value at point (i, j). M(i, j) = 1 denotes that the point (i, j) in I is
noise-free; otherwise, M(i, j) = 0 denotes that the point (i, j) in I is a noisy point.

To calculate the noisy point I(i, j), first, define a search window W2s+1(i, j) with size
(2s + 1) × (2s + 1)

W2s+1(i, j) = {I(i + m, j + n)|m, n ∈ (−s, s)} (10)

Then, T2s+1(i, j) is used to count the number of noise-free pixels in W2s+1(i, j)

T2s+1(i, j) = ∑
m,n∈(−s,s)

N(i + m, j + n) (11)

If T2s+1(i, j) > 1, the value of the noisy pixel is calculated using

IMed(i, j) = median{I(i + m, j + n)|M(i + m, j + n) = 1; m, n ∈ (−s, s)} (12)
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If T2s+1(i, j) < t, there is not enough noise-free pixels in the current window. In this
case, s + 1→ s until T2s+1(i, j) > 1. Finally, y is used to denote the filtering result and the
central pixel y(i, j) is calculated using the equation

y(i, j) = (1− F(i, j))I(i, j) + F(i, j)IMed(i, j) (13)

where F(i, j) is a fuzzy membership function that is defined as

F(i, j) =


0, D(i, j) < T1

D(i,j)−T1
T2−T1

T1 < D(i, j) < T2

1 D(i, j) > T2

(14)

In Equation (14), D(i, j) represents the local information defined as the maximum gray
value difference in a 3 × 3 window, and it is defined as

D(i, j) = max{|I(i + k, j + l)− I(i, j)|k, l ∈ (−2, 2), (i + k, j + l) 6= (i, j)} (15)

4.2. ANB Filter to Improve Result

The bilateral filter has local characteristics due to considering the pertinence of pixels
to estimate noisy pixels. The pertinence will be destroyed when encountering high noise
intensity, thus the denoising effect will be greatly reduced. To address this problem, we
first introduce the nonlocal strategy to the bilateral filter, and a new function to measure
the patch intensity similarity is obtained,

ωr(i, j, k, l) = exp(−

∑
y(p, q) ∈ Θ(i, j)
y(r, s) ∈ Θ(k, l)

Θ(i, j), Θ(k, l) ⊂ Ω

(y(p, q)− y(r, s))2

β
) (16)

where, Ω represents the search window, Θ(i, j) represents the patch centered by y(i, j),
Θ(k, l) represents the patch centered by y(k, l), β > 0 is a model parameter.

Suppose the vector v ∈ Rn, the Lp norm of v is defined as ‖v‖p =

(
n
∑

i=1
|vi|p

) 1
p
. For

the Gaussian noise and Laplacian noise, L2 norm is an excellent choice. However, the L2
norm is outliers, thus, the L2 norm does not perform as well as the L1 norm in preserving
sharp edges. Moreover, when using Equations (7) and (16) based method to deal with
the preprocessing result, there still exists some problems, such as, (1) all pixels need to be
estimated; (2) all pixels in the search window contribute to the estimation; and (3) fixed L2
norm used in Equation (16) is sensitive to high frequency information, which may blur the
image edge. Based on the above analysis, we further modified the spatial proximity-based
function and the intensity similarity-based function as

ω̂d(i, j, k, l) =

{
exp(− (i−k)2+(j−l)2

α )
0

(17)

ω̂r(i, j, k, l) =

 exp(−

∑
y(p, q) ∈ Θ(i, j)
y(r, s) ∈ Θ(k, l)

Θ(i, j), Θ(k, l) ⊂ Ω

ϕ(y(p,q)−y(r,s),a)

β )

0

(18)

where, Ω represents the search window, Θ(i, j) represents the patch centered by y(i, j), Θ(k,
l) represents the patch centered by y(k, l), α > 0 and β > 0 are model parameters, ϕ(t, a) is a
measure function defined by ϕ(t, a) = a

√
a2 + t2− a2 with scale parameter a > 0. ϕ(t, a) has
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self-adaptability of mimicking L1 and L2 norms, and the parameter a controls the transition
from L1 norm to L2 norm. Larger a denotes a larger range of difference values that can be
discriminated by the L2 norm. In the two patches, Θ(i, j) and Θ(k, l), the difference y(p, q)
− y(r, s) may be variational owing to the location. Thus, using the same a to measure the
difference is not an excellent choice. In this work, the parameter a is computed based on
the local image feature

ap,q,r,s =
1

(y(p, q)− y(r, s))2 + ε
(19)

where ε > 0, which is used to avoid making the dividend zero. Detail analysis about ap,q,r,s
is presented in Section 5.

Thus, by substituting a with Equation (19) in Equation (18), we can obtain new
functions for the distance in intensity space

ω̂r(i, j, k, l) =

 exp(−

∑
y(p, q) ∈ Θ(i, j)
y(r, s) ∈ Θ(k, l)

ψ(y(p,q)−y(r,s),ap,q,r,s)

β )

0

(20)

where ψ(t, ap,q,r,s) = ap,q,r,s

√
a2

p,q,r,s + t2 − a2
p,q,r,s.

Based on Equations (17) and (20), the ANB filter is proposed and defined as

x̂(i, j) =

∑
(k,l)∈Θ(i,j)

ω̂d(i, j, k, l)ω̂r(i, j, k, l)y(k, l)

∑
(k,l)∈Θ(i,j)

ω̂d(i, j, k, l)ω̂r(i, j, k, l)
(21)

In the following section, we will discuss the advantages of the adaptive norm com-
pared with L1 and L2 norms in theory. The experimental comparisons are also shown in
Section 6.

4.3. Proposed Two-Stage Noise Removal Algorithm

In this subsection, we summarized the whole salt and pepper noise removal algorithm.
The whole algorithm contains two stages: (1) median-type filter and (2) the proposed ANB
filter. The proposed algorithm is described as Algorithm 1:
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Algorithm 1: Proposed two-stage noise removal algorithm

Input: noisy image I, α, β;
First stage

1. Obtain M using Equation (9);
2. 1→ s

Obtain W2s+1(i, j) and T2s+1(i, j);
Do s→ s + 1 until T2s+1(i, j) > 1;

3. Calculate IMed(i, j) = median{I(i + m, j + n)|m, n ∈ (−s, . . . , 0 . . . , s)};
4. Calculate y = (1− F(i, j))I(i, j) + F(i, j)IMed(i, j) using Equations (14) and (15);

Second stage
5. Calculate the spatial proximity using

ω̂d(i, j, k, l) =

{
exp(− (i−k)2+(j−l)2

α )
0

6. Calculate the scale parameters using

ap,q,r,s =
1

(y(p, q)− y(r, s))2 + ε

7. Calculate the intensity similarity using

ω̂r(i, j, k, l) =

 exp(−

∑
y(p, q) ∈ Θ(i, j)
y(r, s) ∈ Θ(k, l)

ψ(y(p,q)−y(r,s),ap,q,r,s)

β )

0

8. Obtain the de-noised result

x(i, j) =

∑
(k,l)∈Θ(i,j)

ω̂d(i, j, k, l)ω̂r(i, j, k, l)y(k, l)

∑
(k,l)∈Θ(i,j)

ω̂d(i, j, k, l)ω̂r(i, j, k, l)

Output: de-noised image x

5. Efficiency Analysis

One of the main contributions of this manuscript is the establishment of the ANB
filter, which is based on the improved functions (ω̂d and ω̂r) with regard to the spatial
proximity and the intensity similarity, respectively. The efficiency analysis mainly includes
three aspects: (1) the error analysis, which provides an explanation to add the following
ANB step; (2) the weight analysis, which shows the efficiency of the introduction of ω̂d and
ω̂r into the ANB filter; and (3) the norm choice analysis, which presents the efficiency of
using the adaptive norm to improve ω̂r. The error analysis has been presented detailed in
Section 2, thus, in this section, the efficiency analysis mainly includes two parts: weight
analysis and norm choice.

5.1. Weight Analysis

Two improved weight functions were designed in the proposed filter. The two func-
tions were based on spatial proximity and intensity similarity. The efficiency of using the
two weights ω̂d and ω̂r was analyzed in three special situations as follows:

Case 1: Considering Equations (17) and (20), if the contributed pixel y(k, l) is corrupted,
ω̂d = (i, j, k, l) = 0 and ω̂r = (i, j, k, l) = 0. To this end, the pixel y(k, l) has no effect on
estimating y(i, j). This design can avoid misestimation owing to the corrupted points.

Case 2: If the contributed pixel y(k, l) is noise-free in the smooth region, but y(i, j) in an
area where the gray value changes dramatically (i.e., edge region), the difference between
the two pixels is large. Correspondingly, the difference between the patches centered by



Symmetry 2021, 13, 515 10 of 24

y(k, l) and y(i, j) may be large. In this case, the variable ω̂r is close to 0, and the value of ω̂d
is small. Thus, it is a double insurance to keep the weight of y(k, l) is small enough when
computing for y(i, j).

Case 3: If both y(k, l) and y(i, j) are in the smooth region, a small difference is shown
among the image pixels. In this situation, the difference between the patches tends to be
0 infinitely. Thus, the weight ω̂r approaches 1, and only the weight ω̂d works. Here, the
proposed filter works as a Gaussian filter.

5.2. Norm Choice

The proposed norm ψ(t, ap,q,r,s) = ap,q,r,s

√
a2

p,q,r,s + t2 − a2
p,q,r,s tends to utilize the

advantages of L1 norm and L2 norm, and it has a good adaptivity to the local information
by avoiding to set the threshold value to control the selection of the norm compared with
other estimators (i.e., the Huber norm, the Leclerc norm, and the Lorentzian norm).

From Equation (19), it is noted that when the difference between y(p, q) and y(r, s)
is small, the value of ap,q,r,s is large. Here, the modified adaptive norm contains a range
where it performs similar to the L2 norm as large as possible. Conversely, ap,q,r,s is small,
and the modified adaptive norm performs similar to the L1 norm, which can remove noise
and preserve edges. Thus, the proposed adaptive norm can work as L1 norm or L2 norm
automatically according to the local features.

In the following equation,

ψ(t) = ap,q,r,s

√
a2

p,q,r,s + t2 − a2
p,q,r,s. (22)

where ap,q,r,s is used to control the scope of the linear behavior as shown in Figure 2. This
norm is shown in Figure 2 with different ap,q,r,s-values where it can be seen that the adaptive
norm gets closer to the L1 norm when the sale parameter tends to zero. Specifically, larger
sale parameter results in a larger range of error values that can be discriminated by the
linear influence function. Moreover, in ψ(t), the sale parameter controls the transition from
L1 norm to L2 norm.
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In ωr(i, j, k, l), Equation (8), L2 norm was used to measure the difference between the
point y(i, j) and y(k, l). Theoretically, when the difference is large, the weight of y(k, l) is
correspondingly small, which means that y(k, l) has little impact on the estimation of y(i, j).
Meanwhile, when the difference is very small, especially close to 0, y(k, l) is similar to y(i, j).
Here, the L2 norm can enlarge the weight of y(k, l), which increases its contribution to y(i, j).
Sometimes, the expected effect may not be achieved using the L2 norm.
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The intensity difference in the smooth region tending to be zero is an ideal condition;
thus, using the L2 norm to control the weight based on the intensity similarity is not an
optimal choice. A simple example is shown in Figure 3 where the region in the red block is
an almost smooth area, which is noted as region A. Assuming that y(i, j) ∈ A, y(k, l) ∈ A,
y(i, j) is a corrupted pixel, and y(k, l) is uncorrupted. Intuitively, y(k, l) should make a large
contribution for estimating y(i, j), namely, ω(i, j, k, l)→ 1 , where y(i, j) is the center value
of region P1 and y(k, l) is the center value of region P2. However, in the real situation,
this assumption could not be achieved because the L2 norm will sharpen the difference.
However, the adaptive norm would have a good performance. The analysis is discussed
as follows.
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Let ω̂
adaptive
r and ω̂L2

r denote the Gaussian functions to measure the intensity similarity
based on the adaptive norm and L2 norm. Formally, they can be presented as

ω̂
adaptive
r (i, j, k, l) = exp(−

∑
y(p, q) ∈ P1
y(r, s) ∈ P2

ψ(y(p, q)− y(r, s), ap,q,r,s)

β
) (23)

ω̂L2
r (i, j, k, l) = exp(−

∑
y(p, q) ∈ P1
y(r, s) ∈ P2

(y(p, q)− y(r, s))2

β
) (24)

From these expressions, the difference measurement part of the two formulas is
(ψ(y(p, q)− y(r, s), ap,q,r,s) and (y(p, q)− y(r, s))2). Here, we need to prove that ψ(y(p, q)−
y(r, s), ap,q,r,s)<(y(p, q)− y(r, s))2 with the same σr. For convenience, denote y(p, q) −
y(r, s) = t, such that

g(t) = ap,q,r,s

√
a2

p,q,r,s + t2 − a2
p,q,r,s − t2

=
√

a2
p,q,r,s + t2 (ap,q,r,s −

√
a2

p,q,r,s + t2)
(25)

Obviously, g(t) < 0, ω̂
adaptive
r (i, j, k, l) > ω̂L2

r (i, j, k, l). Specifically, using the L2 norm
to measure the difference will weaken the contribution of y(k, l), which is contrary to the
proposed norm.
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6. Experimental Results and Discussion

To evaluate the proposed algorithm, several simulation experiments were performed
in this section to compare with many state-of-the-art methods. The noisy images are
generated by adding salt and pepper noise with nine different intensities from σ = 10%
to σ = 90% to the test images shown in Figure 4, which presents gray-scaled image with
sizes between 256 × 256 and 512 × 512. Denoising performance was measured by many
subjective and objective standards. The subjective standard included reconstructed images
and the corresponding error images. The objective standard included image enhancement
factor (IEF) [35], structure similarity index (SSIM) [36], and peak signal-to-noise ratio
(PSNR) to evaluate the performance of the proposed method.
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In this work, we first compared the proposed method using the adaptive norm with
L1 norm- and L2 norm-based methods. Then, we compared the proposed method with
eight previous works, including the median filter (MF), adaptive center weighted median
filter (ACWMF, 2001) [37], NAFSMF (2010) [16], an edge-preserving approach based on
adaptive fuzzy switching median filter (NASEPF, 2011) [38], INLM (2016) [31], different
applied median filter (DAMF, 2018) [39], decision-based algorithm (DBA, 2011) [40] and
adaptive type-2 fuzzy approach for salt-and-pepper noise (FSAP, 2018) [41].

In the proposed method, the related parameters are set as follows: T1 = 10, T2 = 30,
α = 50×noise intensity, β = 50× noise intensity, the similar patch size is 3 × 3, and the
searching window size is 7 × 7. For the other methods, the parameters are set for the best
performance. All codes were running in MATLAB 2015b using an i7-7500U CPU, 16 GB
RAM computer under Microsoft Windows 10 operation system. For each comparison
method, all parameters were selected under the declarations in their papers.

6.1. Comparison under Different Norm Choice

We will take Barbara and Man-made images shown in Figure 4 as examples to compare
our proposed method with the L1-based method and L2-based method. The main difference
between these three methods is the norm used to measure the intensity similarity in the
second stage.

Tables 1–3 show the PSNR value, SSIM value, and IEF value, respectively. According
to the results in Tables 1–3, the proposed method outperformed the other two methods in
most cases, especially in high-intensity noise. For example, the proposed method performs
better than the L1-based method (average PSNR(dB): 0.68, 0.66, and 0.12; average SSIM:
0.0151, 0.0178, and 0.0099; average IEF: 10.93, 5.85, and 1.09) in the case of σ= 70%, σ= 80%,
and σ= 90%, respectively. Moreover, the proposed method performs better than the L2-
based method (average PSNR(dB): 0.69, 1.1, and 1.1; average SSIM: 0.0029, 0.0132, and
0.0172; average IEF: 6.65, 13.74, and 13.14) in the case of σ= 70%, σ= 80%, and σ= 90%,



Symmetry 2021, 13, 515 13 of 24

respectively. The L1-based method has the advantage in edge preserving. However, the
detail region would be over-smooth. The L2-based method can remove noise effectively,
while it always makes the edges blur. The proposed method is based on an adaptive norm
which has self-adaptability of mimicking L1 and L2 norms. Thus, our method can balance
the noise removal and detail protection, even in high-intensity noise.

Table 1. PSNR comparison for our proposed method, L1-based method, and L2-based method with the noise intensity
varied from 10% to 90%.

Image Method σ = 10% σ = 20% σ = 30% σ = 40% σ = 50% σ = 60% σ = 70% σ = 80% σ = 90%

Barbara
OURS 36.28 32.93 31.07 29.60 28.64 27.42 26.38 25.21 23.47

L1-based 36.19 32.60 30.77 29.31 28.40 27.24 26.22 24.99 23.40
L2-based 36.78 33.38 30.87 29.21 27.95 26.53 25.46 24.23 22.34

Man-
made

OURS 43.61 38.83 35.96 33.13 31.05 29.33 27.44 25.74 22.39
L1-based 42.80 38.66 35.54 32.77 31.54 29.19 26.24 24.65 22.23
L2-based 42.34 38.48 35.16 32.28 30.59 28.22 26.99 24.46 21.30

Table 2. SSIM comparison for our proposed method, L1-based method, and L2-based method with the noise intensity
varied from 10% to 90%.

Image Method σ = 10% σ = 20% σ = 30% σ = 40% σ = 50% σ = 60% σ = 70% σ = 80% σ = 90%

Barbara
OURS 0.9837 0.9643 0.9431 0.9179 0.8955 0.8641 0.8250 0.7766 0.6927

L1-based 0.9829 0.9617 0.9392 0.9126 0.8898 0.8579 0.8178 0.7718 0.6901
L2-based 0.9863 0.9697 0.9448 0.9180 0.8880 0.8496 0.8079 0.7519 0.6639

Man-
made

OURS 0.9982 0.9945 0.9892 0.9795 0.9682 0.9529 0.9298 0.9018 0.8285
L1-based 0.9978 0.9943 0.9886 0.9796 0.9738 0.9560 0.9069 0.8711 0.8113
L2-based 0.9980 0.9952 0.9900 0.9820 0.9731 0.9549 0.9411 0.9001 0.8229

Table 3. IEF comparison for our proposed method, L1-based method, and L2-based method with the noise intensity varied
from 10% to 90%.

Image Method σ = 10% σ = 20% σ = 30% σ = 40% σ = 50% σ = 60% σ = 70% σ = 80% σ = 90%

Barbara
OURS 140.416 130.547 127.952 122.382 122.607 110.510 101.752 88.895 67.242

L1-based 139.339 121.283 120.390 114.770 116.538 106.415 98.443 85.115 66.178
L2-based 160.801 146.468 123.910 113.409 105.971 91.0615 83.418 71.694 52.399

Man-
made

OURS 631.958 582.068 443.847 341.676 299.842 208.344 131.921 97.475 58.901
L1-based 753.249 562.153 421.249 295.480 281.036 192.859 113.374 89.552 57.791
L2-based 678.310 542.347 388.393 265.755 226.931 154.95 136.959 87.188 47.458

6.2. Comparisons between Pre- and Post-Processed Images

In this sub-section, we would like to show the proposed method effectively reducing
the error for a preprocessed image. Figure 5 shows three examples based on Couple,
Pepper, and Street images. For better comparisons, we show the error images and the
enlarged detail parts. From Figure 5, we can see that the post-processed images have more
acceptable details and less error. Besides, the corresponding PSNR, SSIM, and IEF values
are presented in Tables 4–6.

According to these tales, it can be seen that the post-processed images achieves higher
PSNR, SSIM, and IEF values. For example, the post-processed images gains higher values
than the pre-processed images (average PSNR(dB): 1.41, 1.68, and 2.72; average SSIM:
0.0320, 0.0432, and 0.1031; average IEF: 36.47, 33.46, and 37.94) in the case of σ= 70%,
σ= 80%, and σ= 90%, respectively. This indicates that the proposed method could further
reduce the error in the preprocessed images. That is because in the proposed two-stage
method a novel bilateral filter is used to weaken the median-type filter errors is effective.
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Figure 5. Comparisons of the pre- and post-processed images. In each line, the left part is the original
image, the middle part is the zoomed details. The pre-processed marked “1”, the post-processed
marked “2”. The right part is the corresponding error images, the first one is pre-processed error, the
second one is post-processed error.

Table 4. PSNR Comparisons between pre- and post-processed images.

Image Method σ = 10% σ = 20% σ = 30% σ = 40% σ = 50% σ = 60% σ = 70% σ = 80% σ = 90%

Couple Pre-processed 38.10 34.08 31.48 29.68 28.07 26.53 25.27 23.52 20.48
Post-processed 39.10 35.29 32.73 30.86 29.21 27.79 26.64 25.06 22.86

Pepper Pre-processed 37.54 33.87 31.50 29.61 28.05 26.44 24.78 23.14 20.14
Post-processed 37.76 35.01 32.91 31.15 29.62 28.01 26.54 25.13 22.65

Street Pre-rocessed 39.36 35.82 33.47 31.95 30.50 29.24 27.80 26.25 22.57
Post-rocessed 40.24 36.40 34.07 32.48 31.14 30.08 28.90 27.76 25.84

Table 5. SSIM Comparisons between pre- and post-processed images.

Image Method σ = 10% σ = 20% σ = 30% σ = 40% σ = 50% σ = 60% σ = 70% σ = 80% σ = 90%

Couple Pre-processed 0.9859 0.9706 0.9500 0.9280 0.9026 0.8662 0.8269 0.7626 0.6148
Post-processed 0.9893 0.9764 0.9580 0.9368 0.9125 0.8803 0.8476 0.7789 0.6973

Pepper Pre-processed 0.9871 0.9707 0.9547 0.9300 0.9052 0.8727 0.8310 0.7735 0.6456
Post-processed 0.9883 0.9749 0.9617 0.9410 0.9221 0.8966 0.8687 0.8300 0.7590

Street Pre-processed 0.9871 0.9707 0.9547 0.9300 0.9052 0.8727 0.8310 0.7735 0.6456
Post-processed 0.9883 0.9749 0.9617 0.9410 0.9221 0.8966 0.8687 0.8300 0.7590

Table 6. IEF Comparisons between pre- and post-processed images.

Image Method σ = 10% σ = 20% σ = 30% σ = 40% σ = 50% σ = 60% σ = 70% σ = 80% σ = 90%

Couple Pre-processed 232.16 180.32 148.58 130.69 112.86 95.43 83.98 62.35 35.61
Post-processed 284.77 226.29 194.08 168.83 145.19 126.20 113.82 80.40 60.58

Pepper Pre-processed 221.37 197.51 163.91 141.82 122.67 102.06 81.17 63.20 35.82
Post-processed 248.20 248.25 222.90 199.28 174.44 145.03 120.45 98.71 63.11

Street Pre-processed 295.41 260.04 229.59 215.14 191.47 172.26 144.31 115.03 55.76
Post-processed 345.85 293.34 261.28 241.07 220.54 207.64 184.61 161.84 117.33
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6.3. Subjective Quality Analysis

In this sub-section, three evaluation measures (i.e., PSNR, IEF, and SSIM) were pre-
sented to validate the perception-based image quality assessment on different images
under different noise levels. We compared the proposed adaptive method with DBA, MF,
ACWMF, NASFM, NASEPF, INLM, DAMF, and FSAP. For far comparison, all parameters
in each algorithm are under their statements in published papers.

The graphs of IEF for different images with noise levels varying from σ = 10–90% are
shown in Figure 6. For the subfigures in Figure 6, x-axis means σ = 10–90% from left to
right. The y-axis denotes the IEF value. This figure confirmed that the proposed method
obtained better results compared with other considered methods in terms of higher IEF
value. Table 7 shows the PSNR values on the restored images corresponding to eight test
images, including those shown in Figure 4 with the noise intensity changes from 10% to
90% as well as Table 8 shows the corresponding SSIM values on the restored images. For
better comparisons, we have colored the best values into red.

From these tables, we can see that our proposed method gets the highest PSNR and
SSIM values both in the low noise intensity and high noise intensity, which demonstrates
the efficiency and necessity of incorporating a novel bilateral filter to weaken the median-
type filter errors. In the case of low noise intensity, taking σ = 10% as an example, all the
methods achieve high PSNR and SSIM values. The PSNR and SSIM values achieved by
different methods are shown in the following: MF (22.01 dB, 0.7025), ACWMF (31.20 dB,
0.9524), DBA (35.09 dB, 0.9828), NAFSM (36.71 dB, 0.9807), NASEPF (27.25 dB, 0.8077),
INLM (30.52 dB, 0.8750), DAMF (36.93 dB, 0.9850), FSAP (35.56 dB, 0.9831), and OURS
(38.15 dB, 0.9865). We can see that in the case of σ = 10%, the PSNR value of the proposed
method (38.15 dB) has outperformed that of the MF method, the ACWMF method, the
DBA method, the DAMF method, and the FSAP method more than 1.2. Even in the case
of σ = 90% (correspondingly a strong noise), the PSNR value of the proposed method
(22.81 dB) has outperformed the PSNR values of the MF method, the ACWMF method, the
DBA method, the DAMF method, and the FSAP method more than 1.4. In addition, the
proposed method also achieves slightly better reconstruction performance than the INLM
method (22.27 dB). Compared with the INLM, a novel bilateral filter is proposed in this
work, which is more efficient to suppress the Gaussian–Laplacian errors.
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Table 7. Comparison of PSNR values for test images under different noise intensities.

Image Method σ = 10% σ = 20% σ = 30% σ = 40% σ = 50% σ = 60% σ = 70% σ = 80% σ = 90%

Barbara MF 24.13 22.74 21.88 21.17 20.28 19.18 16.19 11.88 7.69
ACWMF 29.79 26.60 21.95 17.84 14.21 11.53 9.17 7.41 5.83

DBA 33.56 30.69 28.68 27.07 25.45 23.72 21.89 19.54 16.50
NAFSM 34.97 31.78 29.78 28.21 27.10 25.77 24.73 23.44 20.82
NASEPF 29.28 26.14 24.56 23.69 23.17 22.89 22.94 22.72 20.55

INLM 35.41 31.47 28.70 27.48 26.23 25.67 25.51 24.86 23.07
DAMF 34.97 31.78 29.78 28.21 27.12 25.80 24.82 23.64 21.79
FSAP 35.04 31.64 29.35 27.26 25.40 23.23 21.20 18.87 16.49
OURS 36.28 32.93 31.07 29.60 28.64 27.42 26.38 25.21 23.47

Baboon MF 19.58 19.32 18.98 18.65 18.26 17.34 15.27 11.31 7.48
ACWMF 25.76 23.45 20.16 16.81 13.75 11.14 9.02 7.24 5.80

DBA 28.02 25.96 24.24 22.84 21.59 20.24 19.04 17.74 16.15
NAFSM 30.87 27.80 25.90 24.35 23.05 21.88 20.72 19.49 17.69
NASEPF 26.56 23.62 22.03 21.01 20.36 19.94 19.57 19.05 17.55

INLM 28.93 26.79 25.06 23.56 22.49 21.73 21.08 20.38 19.20
DAMF 30.87 27.80 25.90 24.35 23.05 21.89 20.75 19.58 18.15
FSAP 30.35 27.45 25.60 24.03 22.62 21.37 20.13 18.97 17.49
OURS 31.23 28.04 26.08 24.53 23.33 22.35 21.41 20.49 19.35

Cameraman MF 21.95 21.10 20.11 19.18 18.43 17.53 15.17 11.42 7.58
ACWMF 27.76 25.24 21.31 17.63 14.38 11.60 9.55 7.59 6.09

DBA 34.17 30.40 27.86 26.04 24.16 22.44 20.97 18.74 16.34
NAFSM 35.01 31.73 29.24 27.69 26.12 24.75 23.59 21.82 19.73
NASEPF 27.70 24.69 23.11 22.16 21.68 21.43 21.56 21.01 19.48

INLM 31.51 29.66 27.85 26.31 25.23 24.42 23.94 22.86 21.54
DAMF 35.13 31.80 29.27 27.71 26.13 24.78 23.67 21.94 20.46
FSAP 34.42 31.14 28.58 26.35 24.25 22.45 20.69 18.67 16.43
OURS 37.71 32.62 30.07 28.49 26.93 25.74 24.62 23.09 21.78

Couple MF 22.79 21.75 21.06 20.24 19.66 18.45 15.48 11.52 7.56
ACWMF 32.10 26.98 22.15 17.65 14.20 11.29 8.90 7.15 5.69

DBA 35.84 32.34 29.68 27.11 25.38 23.64 21.34 19.22 16.13
NAFSM 38.10 34.08 31.48 29.68 28.07 26.53 25.27 23.52 20.48
NASEPF 32.34 29.45 27.73 26.65 25.73 25.18 24.40 23.41 20.49

INLM 36.28 32.37 30.62 29.29 28.02 27.07 26.18 24.41 22.66
DAMF 38.22 34.14 31.51 29.70 28.09 26.65 25.32 23.81 21.49
FSAP 36.27 32.80 29.92 27.53 25.19 22.80 20.86 18.59 15.87
OURS 39.10 35.29 32.73 30.86 29.21 27.79 26.64 25.06 22.86

Lena MF 25.00 23.39 22.32 21.15 20.49 18.81 16.26 12.11 8.20
ACWMF 33.45 28.29 22.53 18.26 14.79 11.94 9.68 7.76 6.35

DBA 37.54 33.34 30.96 28.24 27.02 24.89 22.64 20.33 17.48
NAFSM 38.54 34.73 32.46 30.66 29.10 27.56 26.31 24.71 21.55
NASEPF 27.99 24.84 23.40 22.47 22.13 22.17 22.72 23.03 21.25

INLM 30.43 27.24 25.85 25.09 25.07 25.30 25.90 25.68 23.39
DAMF 38.54 34.73 32.46 30.66 29.11 27.58 26.46 24.95 22.82
FSAP 37.25 33.37 30.84 28.23 26.08 23.62 21.62 19.27 17.00
OURS 39.25 35.73 33.46 31.63 30.30 28.76 27.77 26.36 24.15

Peppers MF 23.86 22.26 21.08 19.92 19.18 17.84 14.80 10.95 6.90
ACWMF 31.92 26.11 21.58 16.91 13.93 10.87 8.56 6.80 5.32

DBA 35.49 31.38 29.51 27.21 25.25 23.15 20.54 18.52 14.67
NAFSM 37.54 33.87 31.50 29.61 28.05 26.44 24.78 23.14 20.14
NASEPF 28.10 25.12 23.73 22.75 22.42 22.32 22.29 22.19 19.96

INLM 30.49 27.67 26.42 25.66 25.49 25.38 25.14 24.59 21.97
DAMF 37.55 33.89 31.51 29.62 28.07 26.45 24.93 23.36 21.17
FSAP 35.43 31.79 29.47 26.77 24.52 22.19 19.68 17.31 14.79
OURS 37.76 35.01 32.91 31.15 29.62 28.01 26.54 25.13 22.65
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Table 7. Cont.

Image Method σ = 10% σ = 20% σ = 30% σ = 40% σ = 50% σ = 60% σ = 70% σ = 80% σ = 90%

Street MF 26.12 24.94 23.64 22.73 21.88 20.45 17.01 12.06 7.60
ACWMF 35.74 29.04 22.77 18.02 14.43 11.46 9.19 7.36 5.82

DBA 38.26 34.61 32.19 30.20 28.33 26.62 24.64 22.34 19.47
NAFSM 39.36 35.82 33.47 31.95 30.50 29.24 27.80 26.25 22.57
NASEPF 27.34 24.42 22.88 22.11 21.84 22.12 22.86 23.74 22.13

INLM 29.67 26.62 24.88 24.08 23.98 24.89 26.12 26.82 24.88
DAMF 39.38 35.83 33.51 31.96 30.51 29.29 27.93 26.58 24.42
FSAP 38.36 34.95 32.47 30.27 28.23 26.29 24.32 22.36 19.87
OURS 40.24 36.40 34.07 32.48 31.14 30.08 28.90 27.76 25.84

Man-
made MF 23.59 20.57 18.51 17.21 16.30 15.02 13.10 10.19 6.47

ACWMF 33.04 26.93 21.64 17.32 13.91 10.74 8.63 6.81 5.22
DBA 37.81 33.02 30.40 27.43 24.65 22.75 20.09 17.59 14.38

NAFSM 39.29 35.26 32.83 30.54 28.89 27.35 25.40 23.69 19.63
NASEPF 18.69 15.76 14.24 13.47 13.35 13.83 15.01 16.77 17.98

INLM 21.43 18.27 17.10 16.99 17.63 18.83 20.82 22.60 21.48
DAMF 40.74 35.91 33.19 30.72 28.98 27.44 25.44 23.95 20.72
FSAP 37.35 33.26 30.59 27.86 24.98 23.11 20.56 18.13 15.41
OURS 43.61 38.83 35.96 33.13 31.05 29.33 27.44 25.74 22.39

Table 8. Comparison of SSIM values for test images under different noise intensities.

Image Method σ = 10% σ = 20% σ = 30% σ = 40% σ = 50% σ = 60% σ = 70% σ = 80% σ = 90%

Barbara

MF 0.7048 0.6969 0.6852 0.6749 0.6471 0.6084 0.4466 0.2035 0.0466
ACWMF 0.9494 0.8918 0.7373 0.5042 0.2947 0.1513 0.0785 0.0377 0.0155

DBA 0.9769 0.9507 0.9174 0.8797 0.8319 0.7729 0.6864 0.5678 0.3945
NAFSM 0.9790 0.9562 0.9288 0.8978 0.8659 0.8243 0.7781 0.7144 0.5882
NASEPF 0.8877 0.8280 0.7883 0.7539 0.7224 0.6946 0.6665 0.6379 0.5625

INLM 0.9701 0.9319 0.8837 0.8508 0.8184 0.7969 0.7794 0.7523 0.6743
DAMF 0.9790 0.9562 0.9288 0.8978 0.8662 0.8251 0.7809 0.7207 0.6285
FSAP 0.9798 0.9578 0.9265 0.8836 0.8289 0.7484 0.6433 0.5007 0.3509
OURS 0.9834 0.9641 0.9427 0.9174 0.8949 0.8633 0.8242 0.7757 0.6898

Baboon

MF 0.3842 0.3813 0.3777 0.3726 0.3630 0.3336 0.2545 0.1092 0.0253
ACWMF 0.9189 0.8578 0.7191 0.5211 0.3162 0.1706 0.0857 0.0412 0.0188

DBA 0.9673 0.9287 0.8802 0.8234 0.7536 0.6681 0.5676 0.4500 0.3101
NAFSM 0.9704 0.9373 0.8989 0.8557 0.8031 0.7428 0.6688 0.5745 0.4240
NASEPF 0.8633 0.7904 0.7342 0.6867 0.6388 0.5933 0.5462 0.4939 0.3964

INLM 0.9141 0.8785 0.8306 0.7759 0.7224 0.6733 0.6225 0.5618 0.4605
DAMF 0.9704 0.9373 0.8989 0.8557 0.8032 0.7432 0.6700 0.5789 0.4463
FSAP 0.9683 0.9345 0.8929 0.8407 0.7700 0.6868 0.5809 0.4632 0.3315
OURS 0.9711 0.9367 0.8956 0.8490 0.7949 0.7362 0.6666 0.5857 0.4724

Cameraman

MF 0.7256 0.7206 0.7120 0.6988 0.6788 0.6358 0.4842 0.1839 0.0360
ACWMF 0.9398 0.8774 0.7122 0.4772 0.2626 0.1323 0.0790 0.0398 0.0207

DBA 0.9840 0.9645 0.9373 0.9075 0.8676 0.8140 0.7649 0.6753 0.5723
NAFSM 0.9796 0.9629 0.9422 0.9228 0.8957 0.8636 0.8232 0.7633 0.6456
NASEPF 0.7435 0.6641 0.6221 0.5928 0.5697 0.5501 0.5431 0.5408 0.5597

INLM 0.8752 0.8514 0.8054 0.7627 0.7395 0.7315 0.7462 0.7450 0.7125
DAMF 0.9862 0.9705 0.9493 0.9277 0.8998 0.8673 0.8300 0.7727 0.7039
FSAP 0.9844 0.9668 0.9423 0.9107 0.8671 0.8089 0.7411 0.6466 0.5256
OURS 0.9870 0.9717 0.9513 0.9295 0.9035 0.8746 0.8423 0.7933 0.7362
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Table 8. Cont.

Image Method σ = 10% σ = 20% σ = 30% σ = 40% σ = 50% σ = 60% σ = 70% σ = 80% σ = 90%

Couple

MF 0.6941 0.6862 0.6758 0.6568 0.6365 0.5853 0.4275 0.2018 0.0521
ACWMF 0.9633 0.9022 0.7493 0.5330 0.3277 0.1694 0.0839 0.0420 0.0208

DBA 0.9861 0.9670 0.9378 0.8996 0.8568 0.7893 0.7024 0.5902 0.4184
NAFSM 0.9859 0.9706 0.9500 0.9280 0.9026 0.8662 0.8269 0.7626 0.6148
NASEPF 0.9397 0.9027 0.8697 0.8454 0.8192 0.7942 0.7652 0.7285 0.6169

INLM 0.9764 0.9500 0.9272 0.9043 0.8790 0.8514 0.8261 0.7616 0.6809
DAMF 0.9887 0.9740 0.9532 0.9311 0.9047 0.8686 0.8289 0.7696 0.6583
FSAP 0.9856 0.9686 0.9415 0.9023 0.8443 0.7588 0.6510 0.5156 0.3524
OURS 0.9893 0.9764 0.9580 0.9368 0.9125 0.8803 0.8476 0.7789 0.6973

Lena

MF 0.7651 0.7565 0.7480 0.7332 0.7092 0.6514 0.4768 0.1922 0.0400
ACWMF 0.9733 0.9172 0.7477 0.5051 0.2708 0.1411 0.0691 0.0365 0.0139

DBA 0.9856 0.9653 0.9416 0.9076 0.8692 0.8118 0.7326 0.6272 0.4832
NAFSM 0.9872 0.9716 0.9540 0.9314 0.9070 0.8728 0.8301 0.7763 0.6457
NASEPF 0.8310 0.7604 0.7202 0.6887 0.6689 0.6504 0.6437 0.6418 0.6035

INLM 0.8871 0.8441 0.8183 0.7926 0.7817 0.7777 0.7852 0.7834 0.7247
DAMF 0.9872 0.9716 0.9540 0.9314 0.9070 0.8734 0.8346 0.7848 0.6918
FSAP 0.9857 0.9677 0.9428 0.9039 0.8501 0.7676 0.6655 0.5319 0.3946
OURS 0.9887 0.9747 0.9588 0.9381 0.9176 0.8898 0.8596 0.8205 0.7461

Peppers

MF 0.7881 0.7765 0.7668 0.7469 0.7237 0.6674 0.4788 0.2234 0.0546
ACWMF 0.9694 0.8945 0.7453 0.4967 0.3105 0.1609 0.0796 0.0417 0.0220

DBA 0.9856 0.9633 0.9425 0.9058 0.8646 0.8064 0.7134 0.6150 0.4374
NAFSM 0.9871 0.9707 0.9547 0.9300 0.9052 0.8727 0.8310 0.7735 0.6456
NASEPF 0.8726 0.8078 0.7759 0.7430 0.7219 0.7032 0.6881 0.6797 0.6231

INLM 0.9182 0.8799 0.8609 0.8361 0.8252 0.8194 0.8162 0.8069 0.7411
DAMF 0.9874 0.9712 0.9553 0.9306 0.9061 0.8733 0.8347 0.7804 0.6917
FSAP 0.9846 0.9650 0.9422 0.9024 0.8498 0.7770 0.6730 0.5464 0.3925
OURS 0.9883 0.9749 0.9617 0.9410 0.9221 0.8966 0.8687 0.8300 0.7590

Street

MF 0.6735 0.6683 0.6592 0.6493 0.6303 0.5877 0.4315 0.1796 0.0327
ACWMF 0.9712 0.8991 0.7287 0.4786 0.2635 0.1204 0.0571 0.0266 0.0112

DBA 0.9818 0.9581 0.9284 0.8899 0.8429 0.7831 0.6988 0.5921 0.4433
NAFSM 0.9837 0.9645 0.9419 0.9160 0.8855 0.8504 0.8024 0.7379 0.5966
NASEPF 0.8713 0.8255 0.7931 0.7644 0.7375 0.7118 0.6820 0.6471 0.5626

INLM 0.9024 0.8651 0.8364 0.8066 0.7818 0.7625 0.7456 0.7291 0.6696
DAMF 0.9841 0.9649 0.9422 0.9164 0.8860 0.8511 0.8047 0.7456 0.6431
FSAP 0.9827 0.9628 0.9369 0.9014 0.8550 0.7940 0.7133 0.6174 0.4985
OURS 0.9858 0.9663 0.9435 0.9173 0.8888 0.8581 0.8190 0.7726 0.6944

Man-
made

MF 0.8845 0.8760 0.8615 0.8418 0.8189 0.7423 0.5703 0.3017 0.0752
ACWMF 0.9338 0.8529 0.7048 0.5012 0.3218 0.1728 0.0989 0.0532 0.0222

DBA 0.9948 0.9850 0.9726 0.9495 0.9181 0.8744 0.8017 0.7175 0.5581
NAFSM 0.9727 0.9625 0.9564 0.9483 0.9438 0.9306 0.9080 0.8721 0.7508
NASEPF 0.4527 0.3886 0.3575 0.3381 0.3294 0.3285 0.3386 0.3679 0.4477

INLM 0.5564 0.4712 0.4417 0.4281 0.4345 0.4599 0.5299 0.6327 0.7354
DAMF 0.9968 0.9913 0.9844 0.9723 0.9606 0.9435 0.9162 0.8847 0.8002
FSAP 0.9939 0.9851 0.9724 0.9471 0.9068 0.8615 0.7789 0.6558 0.4802
OURS 0.9982 0.9945 0.9892 0.9795 0.9682 0.9529 0.9298 0.9018 0.8285

6.4. Objective Quality Analysis

This section presents the visual results obtained by different methods. We evaluated
the performance of the proposed method and the methods under comparison via recon-
structed images and the corresponding error images, which showed that the error image
presented the difference between the original image and the reconstructed image. In the
error image, the white point was the error between the de-noised image and the original
image. The whiter point denotes the larger difference.

The subjective analysis of the proposed method against the existing methods with
different noise intensities were shown in Figures 7–10. In these figures, the proposed
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method was performed in different texture types of images under σ = 60%, 70%, 80%,
and 90%.
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and NAFSM, respectively. The subfigures in the third line from left to right are NASEPF, INLM,
DAMF, FSAP, and our proposed method, respectively.
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third lines are original image, MF, ACWMF, DBA, NAFSM, NASEPF, INLM, DAMF, FSAP, and our
proposed method. The second and fourth lines are noise image and corresponding error images.

To explore the visual quality of different methods, we showed the reconstructed
images with different noise densities. Figures 7 and 8 show the restoration results of
various methods for the test images, which were corrupted by salt and pepper noise with
60% and 70% noise density, respectively. The MF and ACWMF were also found to fail
in restoring the corrupted image. In the reconstructions obtained by DBA and NAFSM,
many artifacts exist, which make the contours of the estimated images indistinguishable.
The DBA, NAFSM, INLM, DAMF, and FSAP can restore the image with better quality.
However, the error noise still exists in the reconstructions. Therefore, the results indicated
that the proposed method can preserve details better than other methods.

Figures 9 and 10 show the restoration results of different methods for images that were
corrupted by heavy salt and pepper noise with 80% and 90% noise density, respectively. In
these figures, the first and third rows were the original images and reconstructed images,
respectively. The second and fourth rows were the noised image and corresponding error
images, respectively. The SM and DWM filters failed to restore images corrupted by the
heavy noise. The visual perception of the reconstructions obtained by MDWM filter was
bad because some obvious white and black pixels still exist in the restored images.

Figures 7–10 show that the proposed method achieved better visual quality. Our
proposed method can preserve texture regions or edge regions by adaptively calculating
the nonlocal region features and estimate the original pixel value. Thereby, the proposed
method reduces reconstruction error as far as possible. Moreover, in the existing methods,
undesirable artificial artifacts were inevitably produced in the reconstructed images. As
we expected, satisfactory visual effects obtained by our developed algorithm were more
natural and have fewer artifacts, especially in high noise intensities.

6.5. Effect of Searching Window

In this subsection, we will explore the denoising effect of the proposed method under
several searching windows with different size, including 7 × 7, 11 × 11, 15 × 15, and
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21 × 21. We take four images as test images, in which two 256 × 256 (i.e., Dog and Zebra
images) and two 512 × 512 images (i.e., boat and Man images), and nine noise levels from
σ = 10–90% are used to generate synthetic noising images. Table 9 presents the average
PSNR and SSIM values of the test images under the contribution of different searching
windows. In addition to these two quality metrics, another important aspect is the testing
speed. Figure 11 shows the average run times of the proposed method with different
searching windows for denoising images with 10 noise levels.

From Figure 11 and Table 9, we can see that the methods based on searching windows
with 7 × 7 and 11 × 11 have high speed. With the noise intensity increases, the speed
is lower. Compare with the methods based on searching windows with 7 × 7, 11 × 11,
15 × 15, respectively, the method based on 21 × 21 window does not achieve obvious
higher PSNR and SSIM values. Although more pixels contribute to the estimation, not all
pixels are beneficial to restore the corrupted pixels. Moreover, its speed is fairly slow due
to the use of more pixels than other windows. Take the 256 × 256 images for example,
the average running time, PSNR and SSIM values achieved corresponding to σ = 10%
and searching windows with 7 × 7, 11 × 11, 15 × 15, 21 × 21 respectively are shown in
the following: method based on 7 × 7 window (10 s, 30.26 db, 0.9681), method based on
11 × 11 window (26 s, 29.27 db, 0.9682), method based on 15 × 15 window (48 s, 30.17 db,
0.9686), method based on 21 × 12 window (92 s, 30.36 db, 0.9684). In the case of σ = 90%,
the average running time, PSNR and SSIM values achieved by different methods are shown
in the following: method based on 7 × 7 window (77 s, 18.64 db, 0.5687), method based
on 11 × 11 window (187 s, 18.68 db, 0.5557), method based on 15 × 15 window (346 s,
18.67 db, 0.5489), method based on 21 × 12 window (684 s, 18.66 db, 0.5440). Therefore, the
searching window with 11 × 11 gains the best performance among all the cases when all of
these factors are considered together.

Table 9. Comparison of average PSNR/SSIM values for the test images with four search window sizes (SWS) and nine
noise intensities.

Image Size SWS Standard σ = 10% σ = 20% σ = 30% σ = 40% σ = 50% σ = 60% σ = 70% σ = 80% σ = 90%

256× 256

7× 7 PSNR 30.26 27.25 26.86 25.62 24.22 23.10 21.97 20.53 18.64
SSIM 0.9681 0.9481 0.9250 0.8939 0.8567 0.8104 0.7539 0.6820 0.5687

11× 11 APSNR 29.27 26.90 26.54 25.42 24.19 22.97 21.87 20.45 18.68
SSIM 0.9682 0.9472 0.9227 0.8908 0.8510 0.8023 0.7439 0.6687 0.5557

15× 15 PSNR 30.17 28.27 26.57 25.5428 24.13 22.54 21.79 20.39 18.67
SSIM 0.9686 0.9484 0.9219 0.8892 0.8482 0.7976 0.7389 0.6625 0.5489

21× 21 PSNR 30.36 28.19 25.81 25.40 24.05 22.78 21.73 20.35 18.66
SSIM 0.9684 0.9479 0.9207 0.8870 0.8453 0.7945 0.7353 0.6591 0.544

512× 512

7× 7 PSNR 36.74 34.52 32.47 31.00 29.66 28.40 27.12 25.83 23.82
SSIM 0.9820 0.9667 0.9462 0.9220 0.8937 0.8608 0.8203 0.7698 0.6020

11× 11 PSNR 35.62 34.16 32.44 30.78 29.41 28.11 26.85 25.60 23.77
SSIM 0.9818 0.9656 0.9442 0.9178 0.8870 0.8510 0.8077 0.7547 0.6784

15× 15 PSNR 36.53 34.28 32.33 30.66 29.28 27.93 26.65 25.42 23.67
SSIM 0.9818 0.9654 0.9429 0.9154 0.8835 0.8459 0.8010 0.7472 0.6707

21× 21 PSNR 36.69 34.48 32.24 30.55 29.15 27.76 26.46 25.23 23.52
SSIM 0.9818 0.9653 0.9419 0.9134 0.8806 0.8416 0.7958 0.7413 0.6648
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7. Conclusions

This paper presented an adaptive nonlocal bilateral filter for salt and pepper noise
removal. First, the NAFSM filter was introduced to distinguish the noisy and noise-free
pixels and then conduct preliminary filtering on the noisy pixels. Second, an adaptive
norm with scale parameters calculated based on local feature was designed to measure
the intensity difference between image patches. Finally, the nonlocal thought, the bilateral
thought, and the adaptive norm were combined. Then an adaptive nonlocal bilateral filter
was designed to suppress the Gaussian–Laplacian mixture noise and further improve the
reconstruction quality.

In Section 6, we demonstrate the benefit of our proposed method on the salt and
pepper noise removal problem. We first conduct experiments to verify the effectiveness of
the adaptive norm adopted in the novel bilateral filter. We have observed that adaptive
norm gives comparable or better results compared to the L1 norm and L2 norm. Then, we
demonstrate that the proposed bilateral filter could effectively weaken the median-type
filter errors. Especially for the high noisy intensity (σ = 90%), the proposed bilateral filter
can obtain satisfactory results. We demonstrate the capability of our proposed method
with some state-of-art methods with different noise intensities from σ = 10% to σ = 90%.
Numerical results illustrated that the proposed method outperformed the state-of-art
methods with better visual quality and higher quality metric values. It indicates the
effectiveness of our method to use a two-step framework based on the novel-designed
adaptive nonlocal bilateral (ANB) filter. Finally, in order to explore the denoising effect of
the proposed method under different searching windows, we also compare the denoising
results with different window sizes, including 7 × 7, 11 × 11, 15 × 15, and 21 × 21.
Comprehensively considering the running time, PSNR and SSIM values, the searching
window with 11 × 11 is proven to be a better choice.
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