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Abstract: For any graph G of order p, a bijection f : V(G)→ {1, 2, . . . , p} is called a numbering of G.
The strength str f (G) of a numbering f of G is defined by str f (G) = max{ f (u) + f (v) | uv ∈ E(G)},
and the strength str(G) of a graph G is str(G) = min{str f (G) | f is a numbering of G}. In this paper,
many open problems are solved, and the strengths of new families of graphs are determined.
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1. Introduction

We only consider simple and loopless graph G = (V, E) with order |V(G)| = p and
size |E(G)| = q. If uv ∈ E(G), we say that v is a neighbor of u. The degree of a vertex v in
a graph G is the number of neighbors of v in G, denoted as degG(v). The minimum degree
(and maximum degree) of G is the minimum (and maximum) degree among the vertices
of G, denoted as δ(G) (and ∆(G)). A vertex of degree 0 is called an isolated vertex and a
vertex of degree 1 is called a pendant vertex; its incident edge is called a pendant edge.
The set of all neighbors of u is denoted as NG(u). For S ⊂ V(G), let NG(S) be the set of all
neighbors of the vertices in S. We shall drop the subscript G if there is no ambiguity. For
a < b, the set of integers from a to b is denoted as [a, b]Z. For notations not defined in this
paper, we refer to [1].

The magic square [2] is one of the oldest problems on symmetry [3]. It was later
extended to the idea of magic graphs [4], super magic graphs [5], and super edge-magic
graphs [6]. The notion of the strength of a graph G was then introduced by Ichishima et
al. [7] as a generalization of super magic strength [8], which is effectively defined only for
super edge-magic graphs (also called strong vertex-graceful [9] and strongly indexable [10]),
to any nonempty graphs as follows.

A bijection f : V(G)→ [1, p]Z is called a numbering of the graph G of order p.

Definition 1. The strength str f (G) of a numbering f : V(G)→ [1, p]Z of G is defined by

str f (G) = max{ f (u) + f (v) | uv ∈ E(G)},

and the strength str(G) of a graph G itself is

str(G) = min{str f (G) | f is a numbering of G}.

A numbering f is called a strength labeling of G if str f (G) = str(G).

The super magic strength, sm(G), of a graph G is defined as the minimum of all magic
constants over all super edge-magic labelings of G. A necessary and sufficient condition
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for a graph to be super edge-magic [11] then gives rise to the concept of the consecutive
strength labeling of a graph, which is equivalent to super edge-magic labeling. In [7]
(Section 4), Ichishima et al. showed that a graph G of order p has sm(G) ≥ str(G) + p + 1.
Several new lower bounds of sm(G) in terms of other graph parameters were also obtained.
Moreover, all of the bounds are sharp. Thus, one may use the strength of graphs to establish
the super magic strength of the corresponding graphs.

Several lower and upper bounds for str(G) were obtained in [7]. The following two
are needed in what follows.

Lemma 1. If H is a subgraph of a graph G, then

str(H) ≤ str(G).

Lemma 2. For every graph G of order p with δ(G) ≥ 1,

str(G) ≥ p + δ(G).

Let G + H be the disjoint union of G and H with V(G + H) = V(G) ∪ V(H) and
E(G + H) = E(G) ∪ E(H). The disjoint union of m copies of G is denoted as mG. We first
extend Lemma 2 to graphs with isolated vertices.

Lemma 3. Let G be a graph with δ(G) ≥ 1. If m ≥ 1, then

str(G + mK1) = str(G).

Proof. Let f be a strength labeling of the graph G. We extend f to a numbering of G + mK1
by assigning all m isolated vertices by labels in [p + 1, p + m]Z. Clearly, str f (G + mK1) =
str f (G) = str(G). Hence str(G + mK1) ≤ str(G). Combining with Lemma 1, we have the
lemma.

Thus, from now on, we only consider graphs without isolated vertices. In [7,12], the
authors showed that str(G) = p + δ(G) if G is a path, cycle, complete graph, complete
bipartite graph, ladder graph, prism graph, Möbius ladder, book graph, or Km,n × K2,
each of which has order p. Moreover, if str(G) = p + δ(G) for a graph G of order p with
δ(G) ≥ 1, then str(G� nK1) = (n + 1)p + 1, where G� H is the corona product of G and
H. The following problems are posed.

Problem 1. Find sufficient conditions for a graph G of order p with δ(G) ≥ 1 to ensure str(G) =
p + δ(G).

Problem 2. Find good bounds for the strength of a graph.

Problem 3. For every lobster T, determine the exact value of str(T).

Problem 4. For every integer n ≥ 3, determine the strength of Qn, the n-dimensional hypercube.

In this paper, we obtained a sufficient condition for a graph to have str(G) = |V(G)|+
δ(G). Moreover, we showed that every graph G either has str(G) = |V(G)| + δ(G) or
is a proper subgraph of a graph H that has str(H) = |V(H)|+ δ(H) with δ(H) = δ(G).
Further, new good lower bounds of str(G) are obtained. Consequently, Problems 1 to 3 are
solved. Moreover, we completely determine the strength of 2-regular graphs and give a
partial solution to Problem 4.

2. Sufficient Condition

Let G1 = G1 = G be a graph of order p with p− 2 ≥ δ(G) = δ1 ≥ 1. Suppose that Gi,
i ≥ 1, is not miK1 for mi ≥ 1 nor miK1 + Kr with mi ≥ 0 for some r ≥ 2. We may denote
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Gi by miK1 + Gi, where mi ≥ 0 and δi = δ(Gi) ≥ 1. Let Gi+1 be a graph obtained from Gi
by deleting the mi ≥ 1 isolated vertices that exist in Gi, and a vertex of degree δi together
with all its neighbors in Gi. Continue the procedure until Gs is either msK1 with ms ≥ 1 or
msK1 + Kr with ms ≥ 0 for some r, s ≥ 2. This sequence {Gi}s

i=1 of subgraphs is called a
δ-sequence of G. When Gs = msK1, we let δs = 0 by convention. Let ỹj(G) = mj + 1− δj
for 1 ≤ j ≤ s.

Example 1. The following are two examples to illustrate the above construction. The black vertex
is the chosen vertex that will be deleted at each stage.

1.

→ → → →

G1 = G1 G2 = G2 G3 = G3 G4 = K1 + G4 G5 = K1
δ1 = 2 δ2 = 1, m2 = 0 δ3 = 2, m3 = 0 δ4 = 1, m4 = 1 δ5 = 0, m5 = 1

Now, (m2 + 1− δ2) + (m3 + 1− δ3) = (0) + (−1) = −1. So, this δ-sequence of the graph
G1 does not satisfy the condition of (1) mentioned below.

2.

→ → →

G1 = G1 G2 = K1 + G2 G3 = K1 + G3 G4 = K2
δ1 = 2 δ2 = 2, m2 = 1 δ3 = 1, m3 = 1 δ4 = 1, m4 = 0

This δ-sequence of the graph G1 satisfies the condition of (1).

Example 2. Consider the following graph G:

a

b

c

d

x

(1). Suppose that we choose a as the first vertex (similarly, we can choose b, c, or d). So, we have

→ →
choose any

degree 4 vertex
−−−−−−−−→ K1

G1 = G G2 = 3K1 + G2 G3 = G3 G4 = K1
δ1 = 2 δ2 = 2, m2 = 3 δ3 = 4, m3 = 0 δ4 = 0, m4 = 1

Now, (m2 + 1− δ2) + (m3 + 1− δ3) = (2) + (−3) = −1.

(2). Suppose that we choose x as the first vertex. So, we have
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→ →
choose any

degree 4 vertex
−−−−−−−−→ K1

G1 = G G2 = G2 G3 = 3K3 + G3 G4 = K1
δ1 = 2 δ2 = 2, m2 = 0 δ3 = 4, m3 = 3 δ4 = 0, m4 = 1

Now, (m2 + 1− δ2) = −1.
So, every δ-sequence of G does not satisfy condition (1).

The following theorem gives a sufficient condition for a graph to have minimal strength.

Theorem 1. For a graph G of order p with p − 2 ≥ δ(G) = δ1 ≥ 1, if there is a δ-sequence
{Gi}s

i=1 of G such that

z̃i(G) =
i

∑
j=2

ỹj(G) ≥ 0 for 2 ≤ i ≤ s, (1)

then str(G) = p + δ(G).

Note that a sum with an empty term is treated as zero, as usual. If there is no ambiguity,
we will write ỹj(G) as ỹj and z̃i(G) as z̃i.

Proof. Let {Gi}s
i=1 be a δ-sequence of G satisfying condition (1). Let ui be a vertex in Gi of

degree δi, which is deleted from Gi to obtain Gi+1, 1 ≤ i ≤ s− 1. Now, G1 = G1 = G. We
shall construct a numbering f of G such that str f (G) = p + δ1.

Label u1 by p and all its neighbors by 1 to δ1 in arbitrary order. This guarantees that
the largest induced edge label is p + δ1 at this stage.

Suppose that we have labeled vertices in V(G) \ V(Gi+1) by using the labels in

[1,
i

∑
j=1

δj] ∪ [p + 1−
i

∑
j=1

(mj + 1), p]Z, where 1 ≤ i ≤ s − 1. Moreover, the neighbors of

ui are labeled with labels in [1 +
i−1
∑

j=1
δj,

i
∑

j=1
δj]Z, and all induced edge labels are at most

p + δ1, up to now. Note that a sum with an empty term is treated as zero.
Now, we consider the graph Gi+1.

(a) Suppose that 2 ≤ i + 1 < s. We label the mi+1 isolated vertices of Gi+1 with labels in

[p + 2−
i+1
∑

j=1
(mj + 1), p−

i
∑

j=1
(mj + 1)]Z, respectively (if mi+1 = 0, then this process does not

exist), and ui+1 by p + 1−
i+1
∑

j=1
(mj + 1) and its neighbors with labels in [1 +

i
∑

j=1
δj,

i+1
∑

j=1
δj]Z,

respectively.

Now, the vertices of V(G) \V(Gi+2) are labeled by using the labels in [1,
i+1
∑

j=1
δj] ∪ [p +

1−
i+1
∑

j=1
(mj + 1), p]Z.

Since each isolated vertex of Gi+1 is only adjacent to some neighbors of ui, and ui+1
may be adjacent with some neighbors of ui, the largest new induced edge label related to
these vertices is

p + 1−
i+1

∑
j=1

(mj + 1) +
i

∑
j=1

δj = p + 1−
i

∑
j=2

(mj + 1− δj)− (mi+1 + 1)− (m1 + 1) + δ1

= p− zi −mi+1 − 1 + δ1 < p + δ1. (since m1 = 0)



Symmetry 2021, 13, 513 5 of 15

The largest new induced edge label related to ui+1 and its neighbors in Gi+1 is

p + 1−
i+1

∑
j=1

(mj + 1) +
i+1

∑
j=1

δj = p + 1−
i+1

∑
j=2

(mj + 1− δj)− (m1 + 1− δ1)

= p + 1− z̃i+1 − (m1 + 1− δ1) ≤ p + 1− (1− δ1) = p + δ1.

Repeat this process until i + 1 = s.

(b) Suppose that i + 1 = s. Now, Gs = msK1 with ms ≥ 1 or msK1 + Kr for some r ≥ 2

and ms ≥ 0. In this case, the set of unused labels is [1 +
s−1
∑

j=1
δj, p−

s−1
∑

j=1
(mj + 1)]Z. That is,

ms = p−
s−1
∑

j=1
(mj + 1 + δj) or ms + r = p−

s−1
∑

j=1
(mj + 1 + δj).

When Gs = msK1, the process is the same as in the above case. Hence, we have a
numbering for G with the strength p + δ1.

When Gs = msK1 + Kr, where δs + 1 = r = p − ms −
s−1
∑

j=1
(mj + 1 + δj), we label

the ms isolated vertices of Gs with labels in [p−ms + 1−
s−1
∑

j=1
(mj + 1), p−

s−1
∑

j=1
(mj + 1)]Z,

respectively (if ms = 0, then this process is not performed). Finally, label the vertices of

Kr with labels in [1 +
s−1
∑

j=1
δj, p− ms −

s−1
∑

j=1
(mj + 1)]Z, respectively. Then, the largest new

induced edge labels related to the neighbors of us−1 are

p−
s−1

∑
j=1

(mj + 1) +
s−1

∑
j=1

δj = p− (m1 + 1− δ1)− z̃s−1 ≤ p− 1 + δ1 < p + δ1.

The largest new induced edge labels in Kr are

[p−ms −
s−1

∑
j=1

(mj + 1)] + [p− 1−ms −
s−1

∑
j=1

(mj + 1)]

= [p−ms −
s−1

∑
j=1

(mj + 1)] + [
s

∑
j=1

δj] = p + 1−
s

∑
j=1

(mj + 1− δj)

≤ p + 1−m1 − 1 + δ1 = p + δ1.

Hence, we have a numbering f such that str f (G) = p + δ1. Therefore, str(G) ≤ p + δ1.
By Lemma 2, str(G) = p + δ1.

Example 3. Consider the graph G1 described in Example 1. Using the second δ-sequence of G1
and following the construction in the proof of Theorem 1, we have the following strength labeling f
of G1 such that str f (G1) = 14.

1

7

6

584

10

3

92

1112
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From Example 2, G does not satisfy the hypothesis of Theorem 1, but there is a strength
labeling f for it with str f (G) = p + δ(G) = 17 as follows.

101

6 9

873

4

5

12

13

14

15

11

2

So, the converse of Theorem 1 is not true.
Thus, Theorem 1 provides a solution to Problem 1. Note that every tree T has the

property that δi = 1 and mi ≥ 0 for each i ≥ 2. We immediately have str(T) = |V(T)|+ 1
and the following corollary that answers more than what Problem 3 asks.

Corollary 2. If G is a forest without an isolated vertex, then str(G) = |V(G)|+ 1.

Corollary 3. The one-point union of cycles G of order p has str(G) = p + 2.

Proof. Remove a degree 2 vertex that is adjacent to the maximum degree vertex of G and
its neighbors to obtain a subgraph G2, which is a disjoint union of path(s). So, G admits a
δ-sequence that satisfies (1).

Corollary 4. If G is a wheel or fan graph of order p, then str(G) = p + δ(G).

In constructing a δ-sequence of G, if we change the choice of choosing a vertex of
degree δi to a vertex of degree di, then we get another sequence of subgraphs of G. This

sequence is called a d-sequence of G. Let yj(G) = mj + 1− dj, zi(G) =
i

∑
j=2

yj(G) and denote

d1 as dG. By the same argument as that when proving Theorem 1, we have:

Theorem 5. For a graph G of order p with p− 2 ≥ δ(G) ≥ 1, if there is a d-sequence {Gi}s
i=1 of

G such that
zi(G) ≥ 0 for 2 ≤ i ≤ s, (2)

then str(G) ≤ p + dG. The equality holds if dG = δ(G).

Example 4. Consider the graph G in Example 2. The following is a d-sequence of G.

→ → →

G1 = G G2 = 3K1 + G2 G3 = G3 G4 = K2
dG = d1 = δ(G) = 2 d2 = 3, m2 = 3 d3 = 2, m3 = 0 d4 = 1, m4 = 0

Now, z2 = 1, z3 = 0, and z4 = 0. By Theorem 5, str(G) = 17, as shown in Example 3.

Lemma 4. Let T be a forest without an isolated vertex of an order at of least 3, and let PT be the set
of pendant vertices that are adjacent to a vertex of a degree of at least 2. There is a δ-sequence of T
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of length s such that z̃s(T) ≥ |PT | − |NT(PT)|, where z̃i(T) is defined in (1). Moreover, all z̃i(T)
satisfy (1).

Proof. Obviously, the lemma holds when T is of order 3. Suppose that the lemma holds
when the order of T is k or less, where k ≥ 3.

Now, consider a forest T of order k + 1. Choose a vertex u ∈ PT . Let v be the vertex
adjacent to u with degree d. We shall consider the forest T − u− v.

Suppose that T = K1,k, which is a star; then, T− u− v = (k− 1)K1 and {T, (k− 1)K1}
is a δ-sequence of T. Note that |PT | = k and |NT(PT)| = 1. Clearly, z̃2(T) = (k− 1) + 1−
0 = k > |PT | − |NT(PT)|.

Now, we assume that T is not a star. Let T − u− v = mK1 + T′, where m ≥ 0 and T′

is a forest without an isolated vertex.
Suppose that the order of T′ is 2; then, T′ = K2 and {T, mK1 + K2} is a δ-sequence

of T, where m = k− 3. Now, z̃2(T) = m = k− 3. If T = K1,k−2 + K2, then |PT | = k− 2
and |NT(PT)| = 1. We get z̃2(T) = |PT | − |NT(PT)|. If T is a tree, then |PT | = k− 1 and
|NT(PT)| = 2. So, we still get z̃2(T) = |PT | − |NT(PT)|.

Suppose that the order of T′ is greater than 2. By the induction assumption, there is a
δ-sequence of T′, say {T′ = T1, T2, . . . , Ts}, such that z̃s(T′) ≥ |PT′ | − |NT′(PT′)| for some
s ≥ 2.

Now, consider {T, T1, . . . , Ts} of T. Note that z̃2(T) = m + 1− δ(T′) = m. Let a be the
number of vertices of degree 2 in T, but degree 1 in T′; then, |PT′ | = |PT | − (m + 1) + a,
where a ≥ 0. Let b = |NT′(PT′) \ NT(PT)|. Therefore, |NT′(PT′)| ≤ |NT(PT)| − 1 + b (some
vertices in NT(PT) may not be in NT′(PT′)).

If a vertex w in T of degree 2 becomes of degree 1 in T′, then w may be in PT′ and may
have at most one neighbor in NT′(PT′) that is not in NT(PT). So, a ≥ b.

Now, we have

z̃s+1(T) = z̃2(T) + z̃s(T′) = m + z̃s(T′) ≥ m + |PT′ | − |NT′(PT′)|
≥ m + [|PT | − (m + 1) + a]− [|NT(PT)| − 1 + b]

= |PT | − |NT(PT)|+ a− b ≥ |PT | − |NT(PT)|.

By induction, the lemma holds for any forest T of an order greater than 2.

Remark 1. In the proof of Lemma 4, we can see that z̃2(T) = |PT | − |NT(PT)|+ 1 if T is a star.

Theorem 6. Keep all notations defined in Theorem 1 and Lemma 4. Let H be a graph with
δ(H) ≥ 1. Suppose that {H = H1, . . . ,Hs} is a d-sequence of H. Suppose that

Z = min{zi(H) | 2 ≤ i ≤ s} (3)

is not positive. Suppose that T is a graph with a d-sequence {T = T1, . . . , Tt} satisfying (2). Let
G = H + T. If zt(T) ≥ dH − Z; then, |V(G)|+ δ(G) ≤ str(G) ≤ |V(G)|+ dT .

Proof. Since Tt is either mK1 for some m ≥ 1 or mK1 + Kr for some m ≥ 0, we have the
following two cases.

For the first case, yt(T) = m + 1 and {T1, . . . , Tt−1, mK1 + H,H2, . . . ,Hs} is a d-
sequence of G. Then,
zj(G) = zj(T) ≥ 0, 2 ≤ j ≤ t− 1;
zt(G) = zt−1(T) + yt(H + T) = zt−1(T) + [m+ 1− dH ] = zt(T)− dH ≥ zt(T)− dH + Z ≥
0;
zt+1(G) = zt−1(T) + (m + 1− dH) + z2(H) = zt(T)− dH + y2(H) = zt(T)− dH + z2(H).
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In general,

zt+j(G) = zt−1(T) + (m + 1− dH) + zj+1(H) = zt(T)− dH + zj+1(H)

≥ zt(T)− dH + Z ≥ 0, 1 ≤ j ≤ s− 1.

For the last case, {T1, . . . , Tt,H1,H2, . . . ,Hs} is a d-sequence of G. We will get that
zj(G) = zj(T) ≥ 0, 2 ≤ j ≤ t;
zt+1(G) = zt(G) + [1− dH ] = zt(T) + 1− dH > 0;
zt+j(G) = zt(T) + 1− dH + zj(H) > 0, 2 ≤ j ≤ s.

By Theorem 5, str(G) ≤ |V(G)|+ dT . The lower bound follows from Lemma 2.

Remark 2. In Theorem 6, suppose that H and T are connected. Let x ∈ V(Tt−1) be chosen to
construct Tt, let v ∈ V(Tt−1) be a neighbor of x, and let u ∈ V(H), which is not chosen to
constructH2. We add an edge vu to the graph H + T. All of the yj values of this connected graph
are the same as those of H + T.

Theorem 7. Keep all notations defined in Theorem 1 and Lemma 4. Let H be a graph with
δ(H) ≥ 1. Suppose that {H = H1, . . . ,Hs} is a d-sequence of H. Suppose

Z = min{zi(H) | 2 ≤ i ≤ s} ≤ 0.

Let G = H + T, where T is a forest without an isolated vertex of an order of at least 3. If
|PT | − |NT(PT)| ≥ dH − Z; then, str(G) = |V(G)|+ 1.

Proof. By Lemma 4, there is a δ-sequence {T1, . . . , Tt} of T such that z̃t(T) ≥ |PT | −
|NT(PT)| and all z̃i(T) satisfy (1). Since this δ-sequence is a particular d-sequence of
T, it satisfies the condition of Theorem 6. Since dT = 1 now, by Theorem 6, we have
str(G) ≤ |V(G)|+ 1. Hence, we have the theorem, since δ(G) = 1.

Corollary 8. Let H be a graph with δ(H) ≥ 1. Suppose that {H = H1, . . . ,Hs} is a d-sequence
of H.

Suppose
Z = min{zi(H) | 2 ≤ i ≤ s} ≤ 0.

Let G = H + K1,k. If k ≥ dH − Z, then str(G) = |V(G)|+ 1.

Let G = Km,n for n ≥ m ≥ 1. It is proven in [7] (Theorem 3.5) that str(G) = |V(G)|+m.
So, we have the following.

Corollary 9. There exists a graph G with str(G) = |V(G)|+ δ(G) for each δ(G) ≥ 1.

Suppose that H is a graph with str(H) > |V(H)|+ δ(H). So, there is a d-sequence
of H with dH = δ(H) such that Z is non-positive, where Z is defined in (3). Let T = Km,n.
Since {T, (n − 1)K1} is a d-sequence of T, z2(T) = n. Suppose that n ≥ dH − Z and
m = δ(H). Since n ≥ dH − Z ≥ δ(H), δ(H + T) = δ(H). By Theorem 6, we have
str(H + T) = |V(H + T)| + δ(H). So, together with Remark 2, we have the following
theorem.

Theorem 10. For every graph H, either str(H) = |V(H)|+ δ(H) or H is a proper subgraph of a
graph G such that str(G) = |V(G)|+ δ(G) with δ(G) = δ(H).
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Example 5. It is easy to obtain a δ-sequence of Q4 with

δ1 = 4;

δ2 = 2, m2 = 0, so z̃2 = −1;

δ3 = 1, m3 = 0, so z̃3 = −1;

δ4 = 1, m4 = 1, so z̃4 = 0;

δ5 = 0, m5 = 3, so z̃5 = 4.

Thus, Z = −1. Let n = 4 + 1 = 5. By the construction before Theorem 10, we have
str(Q4 + K4,5) = 25 + 4 = 29. A required labeling can be obtained by similarly following the
proof of Theorem 1. Moreover, adding an edge joining a vertex of degree 5 of K4,5 and a vertex of Q4
gives a connected graph G that contains Q4 as a proper subgraph with str(G) = str(Q4 + K4,5),
as required.

Example 6. For 2-regular graphs Ck with exactly k ≥ 1 odd cycles, we have Z = −k + 1. Let n =
k + 1. By the construction before Theorem 10, we have str(Ck + K2,k+1) = |V(Ck)|+ (k + 3) + 2.

3. New Lower Bounds

Theorem 11. Suppose that G is a graph of order p with an independent number α; then, str(G) ≥
2p− 2α + 1.

Proof. For any numbering of G, by the pigeonhole principle, at least two integers in
[p − α, p]Z are assigned to two adjacent vertices. So, the induced edge label is at least
2p− 2α + 1. This completes the proof.

Corollary 12. Suppose that G is a graph of order p with minimum degree δ. Suppose that
str(G) = p + δ; then, α ≥

⌈
p−δ+1

2

⌉
, where α is the independence number of G.

Proof. From Theorem 11, we have α ≥ p−δ+1
2 .

Let G be a graph of order p. Let

xi = min{|NG(S) \ S| : |S| = i};
ξ = ξ(G) = max{xi − i + 1 | 1 ≤ i ≤ p− 1}.

Theorem 13. Let G be a graph of order p; then, str(G) ≥ p + ξ.

Proof. Let ξ = xi − i + 1 for some i. Let f be a strength labeling of G. Consider the
labels in [p− i + 1, p]Z. Let T = f−1([p− i + 1, p]); then, |T| = i. Now, | f (NG(T) \ T)| =
|NG(T) \ T| ≥ xi. Let a be the largest label in f (NG(T) \ T). There is a vertex u ∈ NG(T) \ T
such that f (u) = a. Moreover, u is adjacent to v ∈ T. Thus,

str f (G) ≥ f (v) + f (u) ≥ p− i + 1 + a ≥ p− i + 1 + xi = p + ξ.

Thus, we provided two good bounds for the strength of a graph, as raised in Problem 2.
Note that Lemma 2 is a corollary of Theorem 13 when ξ = δ = x1 ≥ xi − i + 1 for i ≥ 2.

Theorem 14. If G = ∑h
i=1 C2mi + ∑k

j=1 C2nj+1, where mi ≥ 2, nj ≥ 1, and h + k ≥ 1, then
str(G) = max{p + 2, p + 1 + k}.

Proof. Note that if h = 0, then the first summand does not appear, similarly for the second
summand. Now, α(G) = ∑h

i=1 mi + ∑k
j=1 nj. By Theorem 11, we have str(G) ≥ p + 1 + k.
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Let H = ∑h
i=1 C2mi and K = ∑k

j=1 C2nj+1. Let M = ∑h
i=1 mi such that M = 0 when

h = 0.
We shall construct a numbering f on G. If h ≥ 1, we first label H with integers in

[1, M]Z ∪ [p−M + 1, p]Z as follows.
Label C2m1 with 1, p, 2, . . . , m1, p−m1 + 1 in the natural order. In general, for i ≥ 2,

we label the vertices of even cycle C2mi with 1 + ∑i−1
l=1 ml , p − ∑

j−1
l=1 ml , 2 + ∑

j−1
l=1 ml , . . . ,

∑i
l=1 ml , p−∑

j
l=1 ml + 1 in the natural order. Continue this process until i = h. Hence, the

maximum induced edge label is p + 2.
If k ≥ 1, then we label the vertices of odd cycle C2n1+1 by M+ 1, p−M, M+ 2, . . . , p−

M− n1 + 1, M + n1 + 1 in the natural order. Up to now, the maximum induced edge label
is still p + 2.

Now, we label the vertices of odd cycle C2n2+1 with M + n1 + 2, p−M− n1, M + n1 +
3, . . . , p−M− n1 − n2 + 1, M + n1 + n2 + 2 in the natural order. Note that (M + n1 + 2) +
(M + n1 + n2 + 2) = 2M + (2n1 + 1) + n2 + 2 ≤ p. So, the current maximum induced
edge label is p + 3.

In general, for j ≥ 2, we label the vertices of odd cycle C2nj+1 with M + 1 + ∑
j−1
l=1(nl +

1), p − M − ∑
j−1
l=1 nl , M + 2 + ∑

j−1
l=1(nl + 1), . . . , p − M − ∑

j
l=1 nl + 1, M + ∑

j
l=1(nl + 1)

in the natural order. Note that (M + 1 + ∑
j−1
l=1(nl + 1)) + (M + ∑

j
l=1(nl + 1)) = 2M +

∑
j−1
l=1(2nl + 1) + nj + j ≤ p − 2 + j. So, the current maximum induced edge label is

p + j + 1.
Continue this process until j = k. Hence, we have str f (G) = p + k + 1.

Example 7. Consider G = C4 + C6 + C5 + C5 + C7. Now, p = 27 and k = 3.
We label the vertices of

C4 with integers in [1, 27, 2, 26] (max. induced edge label is 29);
C6 with integers in [3, 25, 4, 24, 5, 23] (max. induced edge label is 29);
C5 with integers in [6, 22, 7, 21, 8]; (max. induced edge label is 29);
C5 with integers in [9, 20, 10, 19, 11] (max. induced edge label is 30);
C7 with integers in [12, 18, 13, 17, 14, 16, 15] (max. induced edge label is 31).

So, str(G) = 31.

Let G× H be the Cartesian product of graphs G and H.

Lemma 5. Let G be a bipartite graph with bipartition (X, Y) such that |X| = |Y| = m. Suppose
that there is a numbering f of G such that f (X) = [1, m]Z; then, there is a numbering F of G× K2
such that F([1, 2m])Z = X̃, where (X̃, Ỹ) is a bipartition of G× K2. Moreover, strF(G× K2) =
5m + 1.

Note that the following proof is modified from the proof of Theorem 3.10 in [7].

Proof. Note that, from the hypotheses, f (Y) = [m + 1, 2m]Z. Let u and v be vertices
of K2. Then,
X̃ = {(x, u) | x ∈ X} ∪ {(y, v) | y ∈ Y} and Ỹ = {(y, u) | y ∈ Y} ∪ {(x, v) | x ∈ X}.

Define F : V(G× K2)→ [1, 4m]Z by

F(x, u) = f (x) ∈ [1, m]Z

F(y, v) = (3m + 1)− f (y) ∈ [m + 1, 2m]Z

F(x, v) = (3m + 1)− f (x) ∈ [2m + 1, 3m]Z

F(y, u) = 2m + f (y) ∈ [3m + 1, 4m]Z.

Clearly, F(X̃) = [1, 2m]Z.
Now, F(x, u) + F(x, v) = f (x) + (3m + 1)− f (x) = 3m + 1 and F(y, u) + F(y, v) =

2m + f (y) + (3m + 1)− f (y) = 5m + 1. Suppose that (x1, u) and (x2, u) are adjacent in
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G× K2. By definition, F(x1, u) + F(x2, u) ≤ 2m. Similarly, if (y1, v) and (y2, v) are adjacent
in G× K2, then F(y1, v) + F(y2, v) ≤ 4m. Thus, strF(G× K2) = 5m + 1.

Let Qn be a hypercube of dimension n, n ≥ 2. Since there is a strength numbering f of
Q2 satisfying the hypotheses of Lemma 5, by applying this lemma repeatedly, we get the
following.

Theorem 15. For n ≥ 2, str(Qn) ≤ 2n + 2n−2 + 1.

This is a known result in [7] (Theorem 3.10).
We shall improve the lower bound of the strength of Qn. The vertices of Qn often used

the elements of the vector space Zn
2 over Z2. Two vertices u and v are adjacent if and only

if u + v = ei, where ei is the standard basis of Zn
2 . Note that v = −v for any vector v ∈ Zn

2 .
In the proofs of the following lemmas, all algebra involving vectors is over Z2.

For any vertex v, we let NG[v] = NG(v) ∪ {v}, the closed neighborhood of v. Hence,

for any subset of vertices S, NG(S) \ S =

( ⋃
v∈S

NG[v]
)
\ S. We shall omit the subscript G

when there is no ambiguity.

Lemma 6. If u and v are two distinct vertices of Qn, n ≥ 3, then |N[u] ∩ N[v]| is either 0 or 2.

Proof. Suppose that u and v are adjacent. Clearly, |N[u] ∩ N[v]| = 2. Suppose that u and
v are not adjacent. If z ∈ N[u] ∩ N[v], then the distance between u and v is two. Hence,
u /∈ N(v), v /∈ N(u) and u + v = ei + ej (equivalently, u + ei = v + ej), where i 6= j. Since
z ∈ N(u)∩N(v), z = u+ ek = v+ el for some k, l. So, u+ ek + v+ el = 0 or u+ v = ek + el .
Thus, {i, j} = {k, l}. Hence, |N[u] ∩ N[v]| = |{u + ei, u + ej}| = 2.

Lemma 7. For any three distinct vertices u, v, and w of Qn, n ≥ 3,

|N[u]∩N[v]∩N[w]| =
{

0 if at least one of |N[u] ∩ N[v]|, |N[u] ∩ N[w]| and |N[v] ∩ N[w]| is 0;
1 if all of |N[u] ∩ N[v]|, |N[u] ∩ N[w]| and |N[v] ∩ N[w]| are 2.

Proof. If one of |N[u] ∩ N[v]|, |N[u] ∩ N[w]| and |N[v] ∩ N[w]| is 0, then |N[u] ∩ N[v] ∩
N[w]| = 0. Otherwise, Lemma 6 implies that |N[u] ∩ N[v]| = |N[u] ∩ N[w]| = |N[v] ∩
N[w]| = 2.

(1). Suppose that only one pair of u, v, and w are adjacent—say, uv is an edge—then, the
distances from w to u and to v are 2. This creates a five-cycle, which is impossible.

(2). Suppose that two pairs of u, v, and w are adjacent—say, uv and uw are edges. Note that
v and w cannot be adjacent. Then, N[u] ∩ N[v] = {u, v} and N[u] ∩ N[w] = {u, w}.
Hence, u ∈ N[v] ∩ N[w]. This implies that N[u] ∩ N[v] ∩ N[w] = {u}.

(3). Suppose that none of u, v, and w are adjacent. By the proof of Lemma 6, we have
u + v = ei1 + ej1 and v + w = ei2 + ej2 for some i1, i2, j1, j2, i1 6= j1, and i2 6= j2.
This implies that u + w = ei1 + ej1 + ei2 + ej2 . Since the distance of u and w is 2,
|{i1, j1} ∩ {i2, j2}| = 1. Without loss of generality, we may assume that i1 = i2. Now,
N[u] ∩ N[v] = {u + ei1 , u + ej1}, N[u] ∩ N[w] = {u + ej1 , u + ej2}, and N[v] ∩ N[w] =
{v+ ei2 , v+ ej2}. Here, v+ ei2 = v+ ei1 = u+ ej1 . Hence, u+ ej1 ∈ N[u]∩N[v]∩N[w].
Since u + ej2 /∈ N[u] ∩ N[v], N[u] ∩ N[v] ∩ N[w] = {u + ej1}.
This completes the proof.

Theorem 16. For the hypercube Qn, n ≥ 2, we have str(Q2) ≥ 6; str(Q3) ≥ 11; str(Q4) ≥ 21;
and str(Qn) ≥ 2n + 4n− 12 for n ≥ 5.

Proof. Keeping the notations defined in Theorem 13, we want to compute xi and ξ. Clearly,
x1 = δ = n.
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Suppose that S = {u, v} with u 6= v.

|N[u] ∪ N[v]| = |N[u]|+ |N[v]| − |N[u] ∩ N[v]| ≥ 2(n + 1)− 2 = 2n.

So, |N(S) \ S| = |N[u] ∪ N[v]| − |S| ≥ 2n − 2. Actually, when S = {0, e1 + e2},
|N(S) \ S| = 2n− 2. Thus, x2 = 2n− 2.

Suppose that S = {u, v, w}, where u, v, w are distinct.

(1). If all |N[u] ∩ N[v]|, |N[u] ∩ N[w]| and |N[v] ∩ N[w]| are not zero, then by Lemma 7,
|N[u] ∩ N[v] ∩ N[w]| = 1. Thus,

|N[u] ∪ N[v] ∪ N[w]| = |N[u]|+ |N[v]|+ |N[w]|
− |N[u] ∩ N[v]| − |N[u] ∩ N[w]| − |N[v] ∩ N[w]|+ |N[u] ∩ N[v] ∩ N[w]|

= 3(n + 1)− 3× 2 + 1 = 3n− 2.

Actually, S = {0, e1 + e2, e1 + e3}.
(2). If all |N[u] ∩ N[v]|, |N[u] ∩ N[w]| and |N[v] ∩ N[w]| are zero, then |N[u] ∪ N[v] ∪

N[w]| = 3(n + 1).

(3). If at least one of |N[u] ∩ N[v]|, |N[u] ∩ N[w]|, and |N[v] ∩ N[w]| is not zero and at least
one of them is zero, then

|N[u] ∪ N[v] ∪ N[w]| = |N[u]|+ |N[v]|+ |N[w]|
− |N[u] ∩ N[v]| − |N[u] ∩ N[w]| − |N[v] ∩ N[w]|+ |N[u] ∩ N[v] ∩ N[w]|
≥ 3(n + 1)− 2× 2 = 3n− 1.

Thus, x3 = 3n− 5.
Let us consider S = {u1, u2, u3, u4}, where u1, u2, u3, u4 are distinct. Then,∣∣∣∣∣ 4⋃

l=1

N[ul ]

∣∣∣∣∣ = 4

∑
l=1
|N[ul ])| − ∑

1≤j<l≤4
|N[uj] ∩ N[ul ]|+ ∑

1≤h<j<l≤4
|N[uh] ∩ N[uj] ∩ N[ul ]|

− |N[u1] ∩ N[u2] ∩ N[u3] ∩ N[u4]|.

(1). If only one of N[uj] ∩ N[ul ] = ∅, then by Lemma 7, the third summand is 1 and the

fourth summand is 0. Then,
∣∣∣⋃4

l=1 N[ul ]
∣∣∣ ≥ 4n + 4− 5× 2 + 1 = 4n− 5.

Actually, S = {0, e1 + e2, e1 + e3, e1 + e2 + e3 + e4}.
(2). If more than one of N[uj]∩ N[ul ] = ∅, then the third and fourth summands are 0. Thus,∣∣∣⋃4

l=1 N[ul ]
∣∣∣ ≥ 4n + 4− 4× 2 = 4n− 4.

(3). If all of N[uj] ∩ N[ul ] 6= ∅, then∣∣∣∣∣ 4⋃
l=1

N[ul ]

∣∣∣∣∣ = 4n + 4− 6× 2 + 4− |N[u1] ∩ N[u2] ∩ N[u3] ∩ N[u4]|

≥ 4n− 4− 1 = 4n− 5.

Therefore, x4 = 4n− 9.
Hence, by Theorem 13, we have ξ ≥ 2 when n = 2; ξ ≥ 3 when n = 3; ξ ≥ 5

when n = 4; and ξ ≥ 4n− 12 when n ≥ 5. Thus, we have str(Q2) ≥ 6; str(Q3) ≥ 11;
str(Q4) ≥ 21; and str(Qn) ≥ 2n + 4n− 12 when n ≥ 5.

From the proof of Theorem 16, we have x1 = n, x2 = 2n − 2, x3 = 3n − 5, and
x4 = 4n− 9 for Qn.

Suppose that xi+1 = |N(S) \ S| for some subset of vertices S with |S| = i + 1. Let
S = {u1, . . . , ui+1} with |S| = i + 1.
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xi+1 + (i + 1) =

∣∣∣∣∣i+1⋃
l=1

N[ul ]

∣∣∣∣∣ = |N[u1]|+
∣∣∣∣∣i+1⋃
l=2

N[ul ]

∣∣∣∣∣−
∣∣∣∣∣N[u1] ∩

(
i+1⋃
l=2

N[ul ]

)∣∣∣∣∣
= |N[u1]|+

∣∣∣∣∣i+1⋃
l=2

N[ul ]

∣∣∣∣∣−
∣∣∣∣∣i+1⋃
l=2

(N[u1] ∩ N[ul ])

∣∣∣∣∣
≥ (n + 1) + (xi + i)− 2i (since |N[u1] ∩ N[ul ]| ≤ 2)

So, xi+1 ≥ n + xi − 2i. Since x4 = 4n− 9, by induction, we will get xi ≥ in + 3− (i−
1)i, where i ≥ 4.

Let ηi = xi− i+ 1; then, ηi+1 ≥ ηi + n− 2i− 1. So, ηi is increasing when i ≤ (n− 1)/2.
Suppose that n = 2m, m ≥ 2; then, ηm ≥ ηm−1 + 2m− 2(m− 1)− 1 = ηm−1 + 1. So,

ξ ≥ ηm = xm −m + 1 ≥ m(2m) + 3− (m− 1)m−m + 1 = m2 + 4. We have str(Q2m) ≥
22m + m2 + 4.

Suppose that n = 2m− 1, m ≥ 2; then, ηm ≥ ηm−1 + (2m− 1)− 2(m− 1)− 1 = ηm−1.
So, ξ ≥ ηm = xm −m + 1 ≥ m2 −m− 4. We have str(Q2m−1) ≥ 22m−1 + m2 −m + 4.

Combining with Theorem 16, we have the following.

Theorem 17. For n ≥ 2,

1. str(Q2) ≥ 6; str(Q3) ≥ 11; str(Q4) ≥ 21;

2. str(Qn) ≥ 2n + 4n− 12 for 5 ≤ n ≤ 9;

3. str(Q2m) ≥ 22m + m2 + 4 for m ≥ 5.

4. str(Q2m−1) ≥ 22m−1 + m2 −m + 4 for m ≥ 6.

Corollary 18. str(Q2) = 6, str(Q3) = 11, str(Q4) = 21, and str(Q5) = 40.

Proof. Combining with Theorems 15 and 16, we have str(Q2) = 6, str(Q3) = 11, and
str(Q4) = 21. By considering the following labeling of Q5, we have str(Q5) = 40.

Q
Q

Q
QQ

Q2

Q3
000 100 110 010 001 101 111 011

00 00000 10000 11000 01000 00100 10100 11100 01100
1 32 3 31 26 2 30 6 37

10 00010 10010 11010 01010 00110 10110 11110 01110
21 4 29 7 12 27 9 24 39

11 00011 10011 11011 01011 00111 10111 11111 01111
16 19 11 20 17 13 18 15 36

01 00001 10001 11001 01001 00101 10101 11101 01101
22 5 28 8 14 25 10 23 39

38 37 40 39 40 40 40 39 max. induced edge label

Note that Q5 ∼= Q3 ×Q2. The first row and the first column are vertices of Q3 and Q2,
respectively. The following is the corresponding figure.
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The following is a numbering for Q6 ∼= Q3 ×Q3.

Q3 000 100 110 010 001 101 111 011

000 000000 100000 110000 010000 001000 101000 111000 011000
1 64 3 63 62 2 52 7 70

100 000100 100100 110100 010100 001100 101100 111100 011100
61 4 45 8 11 57 17 58 75

110 000110 100110 110110 010110 001110 101110 111110 011110
15 49 28 38 56 21 33 19 75

010 000010 100010 110010 010010 001010 101010 111010 011010
60 6 50 10 13 54 25 46 79

001 000001 100001 110001 010001 001001 101001 111001 011001
59 5 37 9 12 53 23 48 76

101 000101 100101 110101 010101 001101 101101 111101 011101
14 44 30 43 55 20 42 18 75

111 000111 100111 110111 010111 001111 101111 111111 011111
39 26 35 31 22 40 32 34 75

011 000011 100011 110011 010011 001011 101011 111011 011011
16 51 27 41 47 24 36 29 78

76 77 78 73 78 78 77 77 max. induced edge label

Thus, 76 ≤ str(Q6) ≤ 79.

4. Conclusions and Open Problems

We obtained a sufficient condition for str(G) = |V(G)|+ δ(G). Many open problems
were solved and new results were obtained immediately. A new lower bound of str(G) in
terms of α(G) was obtained. Consequently, the strengths of all 2-regular graphs were deter-
mined. An approach for obtaining the lower bound of str(G) in terms of the neighborhood
size of all possible subsets of V(G) was also obtained. This gave us a sharp lower bound of
str(Qn) and partially answered Problem 4. The following problems naturally arise.

Problem 5. Find sufficient and/or necessary conditions such that str(G) = 2p− 2α(G) + 1 or
str(G) = p + ξ(G).

Problem 6. Determine the exact strength of all r-regular graphs for r ≥ 3.

Note that for G = C2n+1, n ≥ 1, str(G) = 2n + 3 = |V(G)| + δ(G) = 2|V(G)| −
2α(G) + 1.
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Problem 7. Characterize all graphs G of order p with (i) str(G) = p + δ(G) = 2p− 2α(G) + 1,
(ii) str(G) = p + ξ(G) = 2p− 2α(G) + 1, or (iii) str(G) = p + δ(G) = p + ξ(G).

Note that every 2-regular graph Ck that has k ≥ 2 odd cycles has str(Ck) = 2|V(Ck)| −
2α(Ck) + 1 > |V(Ck)|+ δ(Ck). Observe that if Ck contains an even cycle C, then it contains
a component C with str(C) = |V(C)|+ δ(C).

Problem 8. Prove that if str(G) = 2|V(G)| − 2α(G) + 1 > |V(G)|+ δ(G), then G contains a
proper subgraph H with str(H) = |V(H)|+ δ(H).

Problem 9. Prove that for each graph G, if str(G) > |V(G)|+ δ(G), then str(G) = 2|V(G)| −
2α(G) + 1. Otherwise, either G is a proper subgraph of a graph H with str(H) = 2|V(H)| −
2α(H) + 1 with α(H) ≥ α(G), or else G contains a proper subgraph H with str(H) = |V(H)|+
δ(H).
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