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Abstract: Point and interval estimations are taken into account for a progressive first-failure censored
left-truncated normal distribution in this paper. First, we derive the estimators for parameters on
account of the maximum likelihood principle. Subsequently, we construct the asymptotic confi-
dence intervals based on these estimates and the log-transformed estimates using the asymptotic
normality of maximum likelihood estimators. Meanwhile, bootstrap methods are also proposed
for the construction of confidence intervals. As for Bayesian estimation, we implement the Lindley
approximation method to determine the Bayesian estimates under not only symmetric loss function
but also asymmetric loss functions. The importance sampling procedure is applied at the same time,
and the highest posterior density (HPD) credible intervals are established in this procedure. The
efficiencies of classical statistical and Bayesian inference methods are evaluated through numerous
simulations. We conclude that the Bayes estimates given by Lindley approximation under Linex loss
function are highly recommended and HPD interval possesses the narrowest interval length among
the proposed intervals. Ultimately, we introduce an authentic dataset describing the tensile strength
of 50mm carbon fibers as an illustrative sample.

Keywords: truncated normal distribution; progressive first-failure censoring scheme; maximum
likelihood estimation; bootstrap method; Lindley approximation method; importance sampling
procedure

1. Introduction

Presently, due to increasingly fierce market competition, product reliability is generally
improved with the advance of production technology. It often takes quite a long period of
time to observe the failure time for all units in life-testing experiments, which results in a
significant increase in test time and cost. Therefore, it is natural that censoring appears in
reliability studies as a result of the limitation of duration and cost of the experiments. In the
literature, numerous authors have investigated the traditional type-I censoring under
which case the life-testing experiment terminates when the experimental time reaches
the preset time, as well as type-II censoring under which case the life-testing experiment
terminates when the number of the observed failure units reaches the preset target. Neither
of them allows the removal of the test unit during the experiment, which is one of their
drawbacks. Furthermore, the concept of progressive censoring is proposed as units may exit
the experiment before their failure. In some special situations, the loss of units is beyond
the control of the experimenters and may be caused by sudden damage to experimental
equipment. It could also be intentional to remove units from the experiment for the sake
of freeing up experimental facilities and materials for other experiments as well as saving
time and cost. One may refer to [1], which provides an elaborate discussion on progressive
censoring. Sometimes it still cannot meet the restriction of test time and cost. Thus, various
censoring patterns are proposed successively to improve efficiency.

When experimental materials are relatively cheap, we can use k× n units for experi-
ments instead of only n units and randomly divide them into n sets with k independent
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test units in each set. It is known as the first-failure censoring that only the first failure time
is recorded in every set during the experiment, the test will terminate until the first failure
occurs for all sets. Moreover, a novel censoring pattern, called the progressive first-failure
censoring scheme (PFFCS), was proposed by [2]. The maximum likelihood estimates
(MLEs), accurate intervals together with approximate intervals for Weibull parameters,
and the expected termination time were derived under PFFCS.

Recently, this new life-testing plan has aroused the interest of a great number of
researchers. The MLEs and interval estimation of the lifetime index CL for progressive
first-failure censored Weibull distribution, as well as a sensitivity analysis, were studied
by [3]. Based on the methods mentioned before, Refs. [4,5] further implemented Bayes
estimation methods to compute the parameters of Lindley and exponentiated exponential
distributions, respectively. Ref. [6] dedicated to discussing the Bayes inference in two
cases and two-sample prediction issues for a progressive first-failure censored Gompertz
distribution. Ref. [7] also mainly focused on Bayes methods for Chen distribution, whereas
they also introduced the least square estimator and illustrated its good performance against
MLEs. Furthermore, Ref. [8] introduced the competing risks model into the progressive
censoring scheme for the Gompertz distribution and [9] introduced the step-stress partially
accelerated life test and derived the MLEs for the acceleration factor in this life test for the
progressive first-failure censored Weibull distribution.

Now, we illustrate the progressive first-failure censoring as follows: Suppose that n
groups are being tested simultaneously in a life-testing experiment, every group has k test
units and they are totally independent of each other. During the experiment, in time of
the occurrence of the first failed component, the group it belongs to and any R1 groups in
the rest of n− 1 groups are promptly eliminated from the test. In the same way, in time of
the occurrence of the second failed component, the group it belongs to and any R2 groups
in the rest of n− 2− R1 groups are promptly eliminated from the test. This procedure
keeps going on until the mth failed component occurs and all the remaining Rm groups are
immediately eliminated from the test. Here m and R = (R1, R2, · · · , Rm) are set in advance
and ∑m

i=1 Ri + m = n. To further illustrate, Figure 1 shows the process of the generation of
progressive first-failure censored sample. In particular, pay attention that this censoring
scheme has several special cases, one may refer to [10]. All the conclusions mentioned
afterward are available to extend to those kinds of data, which is one of the advantages of
progressive first-failure censoring.

t
0 xR

(1:m:n:k) xR
(2:m:n:k) xR

(i:m:n:k) xR
(m:m:n:k)

R1 R2 Ri Rm

k× n units

Figure 1. The schematic plot of the progressive first-failure censored sample generation.

The truncated normal distribution is used in many fields, including education, in-
surance, engineering, biology and medicine, etc. When a threshold is set on a normally
distributed dataset, the remaining data naturally have a truncated normal distribution.
For instance, when all college admission candidates whose SAT scores are below the
screening value are eliminated, people may be interested in the scores of the remaining
candidates. However, if the original score population is normally distributed, the problem
they concern turns to investigate the truncated normal distribution. Generally speaking,
the truncated normal distribution consists of one-sided truncated and two-sided truncated
in terms of the number of truncated points. Simultaneously, with respect to the truncation
range, the one-sided truncated normal distribution can be subdivided into left-truncated
and right-truncated, and they are also known as lower-truncated and upper-truncated.

The truncated normal distribution has recently attracted a lot of research interest. The
existence of MLEs for the parameters was discussed in [11] when the two truncated points
were known, and the modified MLEs were further explored to improve the efficiency of the
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estimation. Ref. [12] developed a handy algorithm to compute the expectation and variance
of a truncated normally distributed variable and they compared its behavior under both full
and censored data. As for the left-truncated normal distribution, Ref. [13] employed three
available approaches to investigate the problem of sample size. In addition to the MLEs and
Bayes estimators, Ref. [14] also proposed midpoint approximation to derive the estimates
of parameters based on progressive type-I interval-censored sample, and meanwhile,
the optimal censoring plans were considered. For the purpose of advancing the research on
the standardized truncated normal distribution, Ref. [15] developed a standard truncated
normal distribution that wherever the truncated points are, it remains the mean value zero
and the variance one. Ref. [16] proposed a mixed truncated normal distribution to describe
the wind speed distribution and verified its validity.

When it comes to the properties of the truncated normal distribution, it is worth
noting that its shape and scale parameters are not equal to its expectation and variance but
correspond to the parameters of the parent normal distribution before truncation. After the
truncation range is determined, the value of the probability density function outside it
becomes zero, while the value within it is adjusted uniformly to make the total integral
one. Therefore, expectation and variance are adjusted for the truncation.

Assuming X is a truncated normally distributed random variable and its truncation
range is (a, b), the shape and scale parameters are µ and τ, then its expectation and variance
correspond to

E(X) = µ +
φ( a−µ√

τ
)− φ( b−µ√

τ
)

Φ( b−µ√
τ
)−Φ( a−µ√

τ
)

√
τ, (1)

and

Var(X) =

1 +
( a−µ√

τ
)φ( a−µ√

τ
)− ( b−µ√

τ
)φ( b−µ√

τ
)

Φ( b−µ√
τ
)−Φ( a−µ√

τ
)

−

 φ( a−µ√
τ
)− φ( b−µ√

τ
)

Φ( b−µ√
τ
)−Φ( a−µ√

τ
)

τ, (2)

here φ(·) and Φ(·) denote the probability density function (PDF) and cumulative distribu-
tion function (CDF) of the standard normal distribution.

Some mechanical and electrical products such as their material strength, wear life,
gear bending, and fatigue strength can be considered to have a truncated normal life
distribution. As a lifetime distribution, the domain of the random variable should be non-
negative and consequently, it is reasonable to assume that x > 0. Thus, we consider the left-
truncated normal distribution with the truncation range (0, ∞), denoted as TN(µ, τ), then
the corresponding PDF that is f (x) and CDF that is F(x) of the distribution TN(µ, τ) are

f (x; µ, τ) =
e−

1
2τ (x−µ)2

√
2πτΦ( µ√

τ
)

, x > 0, τ > 0, (3)

and

F(x; µ, τ) = 1−
1−Φ( x−µ√

τ
)

Φ( µ√
τ
)

, x > 0, τ > 0, (4)

here µ is the shape parameter and τ is the scale parameter. And the survival function is

S(x; µ, τ) =
1−Φ( x−µ√

τ
)

Φ( µ√
τ
)

, x > 0, τ > 0. (5)

For comparison, Figure 2 visually shows the distinction of PDFs between three groups
of parent normal distributions N(µ, τ) and the corresponding truncated normal distribution
TN(µ, τ). The parent normal distributions possess the same τ but different µ. Obviously,
the parent normal distribution whose shape parameter is closest to the truncated point
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changes drastically after truncation, while the one with the shape parameter farthest to the
truncated point barely changes and even retains the same pattern as normal. In particular, it
is worth mentioning that when the truncated point T∗ satisfies |T

∗−µ|√
τ
≥ 3.5, the truncation

basically loses its effect. In Figure 3, we can observe that the position where the peak of the
truncated normal distribution occurs is in accordance with the value of µ. As this value gets
closer to the truncated point, the peak value of PDF of the distribution TN(µ, τ) and the
same scale parameter will be larger as a result of the integral of one. However, under the
same shape parameters, the image of PDF becomes flat with the increase of scale parameter
and it is consistent with the property of normal distribution.
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Figure 2. PDFs of the truncated and untruncated normal distribution with the same parameters.
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Figure 3. PDFs of the distribution TN(µ, τ) with the same scale parameter τ = 1 or the same shape parameter µ = 1.5.

This article begins with the following sections. In the first place, the MLEs for two
unknown parameters of the distribution TN(µ, τ) are derived in Section 2 and we establish
the corresponding asymptotic confidence intervals (ACIs) associated with the approximate
asymptotic variance-covariance matrix. In Section 3, the bootstrap resampling method is
applied to develop both bootstrap-p and bootstrap-t intervals. In Section 4, we propose
the Bayes approaches to estimate two parameters under squared error, Linex, and general
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entropy loss functions using Lindley approximation. As this approximation method is
failed to provide us the credible intervals, the importance sampling procedure is employed
to gain both parameter estimates and the highest posterior density (HPD) credible intervals.
The behaviors of diverse estimators proposed in the above sections are evaluated and
compared by amounts of simulations in Section 5. In Section 6, an authentic dataset is
introduced and applied to clarify how to make statistical inferences using the methods
presented before and the effectiveness of these approaches. Finally, a summary of the
whole article is made in Section 7.

2. Maximum Likelihood Estimation

Suppose that a progressive first-failure type-II censored sample comes from a con-
tinuous population with PDF that is f (·) and CDF that is F(·). Let’s denote the ith ob-
servation as xR

(i:m:n:k), thus we have xR
(1:m:n:k) < xR

(2:m:n:k) < · · · < xR
(m:m:n:k), here R =

(R1, R2, · · · , Rm). For simplicity, let x = (x1, x2, · · · , xm) replace (xR
(1:m:n:k), xR

(2:m:n:k), · · · ,

xR
(m:m:n:k)). According to [1,2], the joint PDF is presented as

fXR
(1:m:n:k),··· ,X

R
(m:m:n:k)

(x1, x2, · · · xm) = C km
m

∏
i=1

f (xi)(1− F(xi))
k(Ri+1)−1, (6)

where C =
m
∏

k=1
(n− k + 1−

k−1
∑

l=0
Rl) is a normalizing constant, R0 = 0, and 0 < x1 < x2 <

· · · < xm < ∞.
For the case where the sample is from TN(µ, τ), after combining (3), (4) and (6),

the likelihood function turns to be

L(µ, τ|x) = C km
m

∏
i=1

e−
1
2 ζ2

i
√

2πτΦ(ζ)

(
1−Φ(ζi)

Φ(ζ)

)k(Ri+1)−1

, (7)

where ζ = µ√
τ

, ζi =
xi−µ√

τ
.

Hence, the log-likelihood function is

l(µ, τ|x) = ln C + m ln k−
m

∑
i=1

1
2

ζ2
i −

m
2

ln(2πτ)−m ln Φ(ζ)

+
m

∑
i=1

[k(Ri + 1)− 1][ln(1−Φ(ζi))− ln Φ(ζ)].
(8)

Take the partial derivatives of (8) concerning µ and τ respectively and set them equal
to zero, the corresponding equations are

∂l
∂µ

= − N√
τ

φ(ζ)

Φ(ζ)
+

1√
τ

m

∑
i=1

ζi +
1√
τ

m

∑
i=1

[k(Ri + 1)− 1]
φ(ζi)

1−Φ(ζi)
= 0, (9)

and

∂l
∂τ

= − m
2τ

+
Nζ

2τ

φ(ζ)

Φ(ζ)
+

1
2τ

m

∑
i=1

ζ2
i +

1
2τ

m

∑
i=1

[k(Ri + 1)− 1]
ζiφ(ζi)

1−Φ(ζi)
= 0, (10)

where N = k× n.
The roots of the non-linear Equations (9) and (10) correspond to the MLEs µ̂ and τ̂,

but the explicit expressions are obviously unobtainable, so some numerical techniques
such as Newton-Raphson method are employed to derive the MLEs.
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2.1. Asymptotic Confidence Intervals for MLEs

Given that MLEs possess the asymptotic normality, the ACIs of µ and τ can be estab-
lished by using Var(µ̂) and Var(τ̂). The asymptotic variances of MLEs can be obtained from
the inverse Fisher information matrix. Let θ = (θ1, θ2) = (µ, τ). The Fisher information
matrix (FIM) I(θ) can be written as

I(θ) = E


−∂2l(θ1, θ2)

∂θ2
1

−∂2l(θ1, θ2)

∂θ1∂θ2

−∂2l(θ1, θ2)

∂θ2∂θ1
−∂2l(θ1, θ2)

∂θ2
2

. (11)

Here

∂2l(θ1, θ2)

∂θ2
1

=− m
τ
− N

τ
(G′ − G2)− 1

τ

m

∑
i=1

[k(Ri + 1)− 1](G′i + G2
i ),

∂2l(θ1, θ2)

∂θ1∂θ2
=

∂2l(θ1, θ2)

∂θ2∂θ1

=− 1
τ3/2

m

∑
i=1

ζi +
N

2τ3/2 (G + ζG′ − ζG2)− 1
2τ3/2

m

∑
i=1

[k(Ri + 1)− 1](Gi + ζiG′i + ζiG2
i ),

∂2l(θ1, θ2)

∂θ2
2

=− 1
τ2

m

∑
i=1

ζ2
i +

m
2τ2 −

3Nζ

4τ2 G +
Nζ2

4τ2 (G2 − G′)− 3
4τ2

m

∑
i=1

[k(Ri + 1)− 1]ζiGi

− 1
4τ2

m

∑
i=1

[k(Ri + 1)− 1]ζ2
i (G

2
i + G′i),

where G =
φ(ζ)

Φ(ζ)
, G′ =

φ′(ζ)

Φ(ζ)
, Gi =

φ(ζi)

1−Φ(ζi)
, G′i =

φ′(ζi)

1−Φ(ζi)
.

The FIM I(θ) is in form of expectation and the acquirement of its exact value depends
on the distribution of the order statistics X(j). Ref. [1] provided the PDF of the order
statistics X(j) of the progressive type-II censored data in general,

fX(j)
(xj) = Di

j

∑
i=1

cij f (xj)[1− F(xj)]
di−1, (12)

where di = m− i + 1 +
m
∑

k=i
Rk, Di =

j
∏
i=1

di, c11 = 1, cij =
j

∏
k=1,k 6=i

1
dk − di

, 1 ≤ i ≤ j ≤ m.

Since progressive first-failure censoring can be regarded as an extention to the progres-
sive type-II censoring. We can derive the PDF of the order statistics X(j) of the truncated
normal distribution TN(µ, τ) under PFFCS after some transformations of (12), and it is
given as

fX(j)
(xj) = Di

j

∑
i=1

kcij
e−

1
2τ (x−µ)2

√
2πτ

[Φ(
µ√
τ
)]−(k+1)[1−Φ(

x− µ√
τ

)]kdi−1, (13)

Then, the FIM I(θ) can be calculated directly based on (13). In practice, the expectation
in (11) can be removed naturally and the observed FIM I(θ̂) is used to approximate the



Symmetry 2021, 13, 490 7 of 22

asymptotic variance-covariance matrix for the purpose of simplifying the complicated
calculation, see [2,17]. The observed FIM I(θ̂) corresponds to

I(θ̂) =


−∂2l(θ1, θ2)

∂θ2
1

−∂2l(θ1, θ2)

∂θ1∂θ2

−∂2l(θ1, θ2)

∂θ2∂θ1
−∂2l(θ1, θ2)

∂θ2
2


θ=θ̂

, (14)

here, θ̂ denotes the MLE of θ, namely θ̂ = (θ̂1, θ̂2) = (µ̂, τ̂).
Then the approximate asymptotic variance-covariance matrix is

I−1(θ̂) =

 ˆVar(µ̂) ˆCov(µ̂, τ̂)

ˆCov(τ̂, µ̂) ˆVar(τ̂)

. (15)

Therefore, the 100(1− ξ)% ACI for θj is given by(
θ̂j − zξ/2

√
I−1(θ̂)jj, θ̂j + zξ/2

√
I−1(θ̂)jj

)
, j = 1, 2, (16)

where zξ/2 is the ξ/2 upper quantile of the standard normal distribution.

2.2. Asymptotic Confidence Intervals for Log-Transformed MLEs

The method just proposed has an obvious defect that its lower bound of ACI is prone to
appear negative value when the truth value of the parameter is small. Since the parameter τ
discussed in this paper is strictly non-negative, the negative part of the confidence interval
is unreasonable at that time. To avoid this issue, we can use delta method and logarithmic
transformation proposed in [18]. Similarly, this method is available to µ when µ > 0. The
asymptotic distribution of ln θ̂j is

ln θ̂j − ln θj
D−→ N(0, var(ln θ̂j)), (17)

where D−→ denotes convergence in distribution and var(ln θ̂j) =
var(θ̂j)

θ̂j
2 ≈

ˆvar(θ̂j)

θ̂j
2 =

I−1(θ̂)jj

θ̂j
2 .

Therefore, the asymptotic confidence intervals based on log-transformed MLEs are[
θ̂j exp

(
−

zξ/2

θ̂j

√
ˆvar(θ̂j)

)
, θ̂j exp

(
zξ/2

θ̂j

√
ˆvar(θ̂j)

)]
, j = 1, 2. (18)

The proposal of these two ACIs is on the premise that MLEs are asymptotically
normally distributed. Hence, if the number of the sample is not large enough, the accuracy
of these two confidence intervals may be declined. In the next section, we provide a
resampling technique to solve the problem of building confidence intervals for parameters
under a small sample size.

3. Bootstrap Confidence Intervals

Bootstrap methods can make great sense in the case with little effective sample size m,
so here we propose two widely used bootstrap methods to establish the intervals, see [19].
One is the percentile bootstrap method, also regarded as bootstrap-p (boot-p). The other
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is known as the bootstrap-t (boot-t) method. The specific steps of the two methods are
as follows.

3.1. Percentile Bootstrap Confidence Intervals

Step 1 For a given PFF censored sample x from TN(µ, τ) with n, m, k and R =
(R1, R2, · · · , Rm), figure the MLEs of parameters µ and τ under the primitive sample
x, denoted as µ̂ and τ̂.

Step 2 In accordance with the identical censoring pattern (n, m, k, R) as x, generate
a PFF censored bootstrap sample x∗ from TN(µ̂, τ̂). Similarly to step 1, compute the
bootstrap MLEs µ̂∗ and τ̂∗ based on x∗.

Step 3 Do step 2 repeatedly for K times to collect a series of bootstrap MLEs µ̂∗j and τ̂∗j
(j = 1, 2, · · · , K).

Step 4 Arrange µ̂∗j and τ̂∗j in an ascending order respectively then obtain (µ̂∗(1), µ̂∗(2), · · · ,
µ̂∗(K)) and (τ̂∗(1), τ̂∗(2), · · · , τ̂∗(K)).

Step 5 The approximate 100(1− ξ)% boot-p CIs for µ and τ are presented by (µ̂∗(α1)
, µ̂∗(α2)

)

and (τ̂∗(α1)
, τ̂∗(α2)

), where α1 and α2 are respectively the integer parts of K × (ξ/2) and
K× (1− ξ/2).

3.2. Bootstrap-t Confidence Intervals

Step 1 For a given PFF censored sample x from TN(µ, τ) with n, m, k and R =
(R1, R2, · · · , Rm), figure the MLEs µ̂ and τ̂ and their variances ˆVar(µ̂) and ˆVar(τ̂) under
the primitive sample x.

Step 2 In accordance with the identical censoring pattern (n, m, k, R) as x, generate
a PFF censored bootstrap sample x∗ from TN(µ̂, τ̂). Similarly to step 1, compute the
bootstrap MLEs µ̂∗ and τ̂∗ based on x∗.

Step 3 Compute the variances of µ̂∗ and τ̂∗, say ˆVar(µ̂∗) and ˆVar(τ̂∗), then compute

the statistics U ∗ = µ̂∗ − µ̂√
ˆVar(µ̂∗)

for µ̂∗ and V∗ = τ̂∗ − τ̂√
ˆVar(τ̂∗)

for τ̂∗.

Step 4 Do steps 2-3 repeatedly for K times to collect a series of bootstrap statistics U ∗j
and V∗j (j = 1, 2, · · · , K).

Step 5 Arrange U ∗j and V∗j in an ascending order respectively then obtain (U ∗(1),U
∗
(2), · · · ,

U ∗(K)) and (V∗(1),V
∗
(2), · · · ,V∗(K)).

Step 6 The approximate 100(1− ξ)% boot-t CIs for µ and τ are presented by(
µ̂−U ∗[α2]

√
ˆVar(µ̂), µ̂−U ∗[α1]

√
ˆVar(µ̂)

)
,
(

τ̂ − V∗[α2]

√
ˆVar(τ̂), τ̂ − V∗[α1]

√
ˆVar(τ̂)

)
,

where α1 and α2 are respectively the integer parts of K× (ξ/2) and K× (1− ξ/2).

4. Bayesian Estimation

The selection of prior distribution is a primary problem of Bayesian estimation for the
fact that the prior distribution could have a significant impact on the posterior distribution
in small sample cases. So, a proper prior distribution is worth discussing at the beginning.

In general cases, the conjugate prior distribution is a preferred choice in Bayesian
estimation because of its algebraic convenience. However, such prior does not exist when
both parameters µ and τ are unknown. For the sake of simplicity, we need to find a
prior distribution with the same form as (7). Furthermore, according to the form of the
denominator part of the exponential term in the likelihood function (7), τ should appear as a
parameter of the prior distribution of µ. Therefore, assuming that they are not independent
is feasible and we can presume that τ follows an Inverse Gamma prior IG(α, β) and µ
follows a truncated normal prior associated with τ, namely µ ∼ TN(a, τ

b ) , where all
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hyper-parameters are bound to be positive. The PDFs of their prior distributions can be
written as

π1(τ) =
βα

Γ(α)
τ−α−1e−

β
τ , (19)

π2(µ|τ) =
e−

b
2τ (µ−a)2√

2πτ
b Φ( a

√
b√

τ
)

. (20)

The corresponding joint prior distribution is

π(µ, τ) = π1(τ)π2(µ|τ) ∝
1

Φ
(

a
√

b√
τ

)( 1
τ

)α+ 3
2
e−

1
2τ [b(µ−a)2+2β]. (21)

Given x, the joint posterior distribution π(µ, τ|x) can be obtained by

π(µ, τ|x) = L(x|µ, τ)π(µ, τ)∫ ∞
0

∫ ∞
0 L(x|µ, τ)π(µ, τ)dµdτ

. (22)

4.1. Symmetric and Asymmetric Loss Functions

The loss function is used to evaluate the degree to which the predicted value or the
estimated value of the parameter is different from the real value. In practice, the squared
error loss function has been used extensively in the literature and it is preferred in the
case where the loss caused by overestimation and underestimation is of equal importance.
But sometimes, it is not appropriate to use a symmetric loss function when an overestimate
plays a crucial role compared with an underestimate, or vice versa. Thus, in this subsection,
we discuss the Bayesian estimations theoretically under one symmetric loss function,
namely squared error loss function (SE), and two non-symmetric loss functions, namely
Linex loss function (LX) and general entropy loss function (GE).

4.1.1. Squared Error Loss Function

This loss function is defined as

LSE(ϑ, ϑ̂) = (ϑ̂− ϑ)2, (23)

here, ϑ̂ denotes any estimate of ϑ.
The Bayesian estimator of ϑ under SE is

ϑ̂SE = Eϑ(ϑ|x). (24)

Given a function g(µ, τ), the expression of its Bayesian posterior expectation is

E[g(µ, τ)|x] =
∫ ∞

0

∫ ∞
0 g(µ, τ)L(x|µ, τ)π(µ, τ)dµdτ∫ ∞
0

∫ ∞
0 L(x|µ, τ)π(µ, τ)dµdτ

. (25)

Thus, the Bayesian estimate ĝ(µ, τ) under SE can be given theoretically as

ĝ(µ, τ)SE =

∫ ∞
0

∫ ∞
0 g(µ, τ)L(x|µ, τ)π(µ, τ)dµdτ∫ ∞
0

∫ ∞
0 L(x|µ, τ)π(µ, τ)dµdτ

. (26)

4.1.2. Linex Loss Function

The Linex loss function is suggested in the case that underestimation is more costly
compared with overestimation, and this loss function is defined as

L(∆) = b[ea∆ − a∆− 1], a 6= 0, b > 0. (27)
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In fact, it is recognized as a family L(∆) where ∆ could be either the usual estimation
error ϑ̂− ϑ or a relative error (ϑ̂− ϑ)/ϑ, namely ϑ̂

ϑ − 1. In this paper, we take advantage
that ∆ = ϑ̂− ϑ and let b = 1, then LX becomes

LLX(ϑ, ϑ̂) = es(ϑ̂−ϑ) − s(ϑ̂− ϑ)− 1, s 6= 0. (28)

The sign of the s indicates the orientation of asymmetry, while its size represents the
degree of asymmetry. Under the same difference ϑ̂− ϑ, the larger the magnitude of s is,
the larger the cost is. Given small values of |s|, LX is almost symmetric and very close to
SE. One may refer to [20] for details.

The Bayesian estimator of ϑ under LX is

ϑ̂LX = −1
s

ln Eϑ(e−sϑ|x). (29)

Thus, the Bayesian estimate ĝ(µ, τ) under LX can be given theoretically as

ĝ(µ, τ)LX = −1
s

ln

[∫ ∞
0

∫ ∞
0 e−sg(µ,τ)L(x|µ, τ)π(µ, τ)dµdτ∫ ∞
0

∫ ∞
0 L(x|µ, τ)π(µ, τ)dµdτ

]
. (30)

4.1.3. General Entropy Loss Function

This loss function is defined as

LGE(ϑ, ϑ̂) =

(
ϑ̂

ϑ

)h

− h ln

(
ϑ̂

ϑ

)
− 1. (31)

The Bayesian estimator of ϑ under GE is

ϑ̂GE =
[

Eϑ(ϑ
−h|x)

]− 1
h . (32)

When h > 0, the positive error value ϑ̂− ϑ is more costly compared with the negative
error value, and vice versa. In particular, when h = −1, the Bayesian estimate under SE is
the same as that under GE.

The Bayesian estimate ĝ(µ, τ) under GE can be given theoretically as

ĝ(µ, τ)GE =

[∫ ∞
0

∫ ∞
0 g(µ, τ)−hL(x|µ, τ)π(µ, τ)dµdτ∫ ∞

0

∫ ∞
0 L(x|µ, τ)π(µ, τ)dµdτ

]− 1
h

. (33)

It is noticeable that the Bayesian estimates are expressed in terms of the ratio of two
integrals and the specific forms cannot be presented theoretically. So, we implement the
Lindley approximation method to determine such estimates.

4.2. Lindley Approximation Method

In this subsection, we take advantage of Lindley approximation to acquire the Bayesian
parameter estimates. Consider the posterior expectation of ϕ(µ, τ) expressed in terms of
the ratio of two integrals

E(ϕ(µ, τ)|x) =
∫ ∫

ϕ(µ, τ)el(µ,τ)+ρ(µ,τ)dµdτ∫ ∫
el(µ,τ)+ρ(µ,τ)dµdτ

, (34)

here, l denotes the log-likelihood function, ρ denotes the logarithmic form of the joint
prior distribution.
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According to [21], expression (34) can be approximated as

E(ϕ(µ, τ)|x) = ϕ(µ̂, τ̂) +
1
2
(A + l30B12 + l21C12 + l12C21 + l03B21) + ρ1 A12 + ρ2 A21, (35)

with

A =
2
∑

i=1

2
∑

j=1
ϕijσij, lij = ∂i+j l

∂θi
1∂θ

j
2

, i, j = 0, 1, 2, 3 and i + j = 3,

ρi =
∂ρ
∂θi

, ϕi =
∂ϕ
∂θi

, ϕij =
∂2 ϕ

∂θi∂θj
, σij = −[lij]−1, Aij = ϕiσii + ϕjσji,

Bij = (ϕiσii + ϕjσij)σii, Cij = 3ϕiσiiσij + ϕj(σiiσjj + 2σ2
ij).

Here θ = (θ1, θ2) = (µ, τ), σij denotes the (i, j)-th element of the inverse FIM. All
terms in (35) are computed at MLEs µ̂ and τ̂. Then the approximate solution expressions of
Bayesian parameter estimates under loss functions SE, LX, and GE are as follows.

4.2.1. Squared Error Loss Function

For parameter µ, we take ϕ(µ, τ) = µ, hence

ϕ(µ, τ) = µ, ϕ1 = 1, ϕ11 = ϕ12 = ϕ2 = ϕ21 = ϕ22 = 0. (36)

The Bayesian estimate of µ under SE is derived by combining (24), (35) and (36)

µ̂SE = µ̂ +
1
2

[
σ2

11l30 + 3σ11σ12l21 + σ11σ22l12 + 2σ2
21l12 + σ21σ22l03

]
+ ρ1σ11 + ρ2σ12. (37)

Similarly, for parameter τ, we take ϕ(µ, τ) = τ, hence

ϕ(µ, τ) = τ, ϕ2 = 1, ϕ21 = ϕ22 = ϕ1 = ϕ11 = ϕ12 = 0. (38)

The Bayesian estimate of µ under SE is derived by combining (24), (35) and (38)

τ̂SE = τ̂ +
1
2

[
σ11σ12l30 + σ11σ22l21 + 2σ2

12l12 + 3σ21σ22l12 + σ2
22l03

]
+ ρ1σ21 + ρ2σ22. (39)

4.2.2. Linex Loss Function

For parameter µ, it is clear that

ϕ(µ, τ) = e−sµ, ϕ1 = −se−sµ, ϕ11 = s2e−sµ, ϕ12 = ϕ2 = ϕ21 = ϕ22 = 0. (40)

The Bayesian estimate of µ under LX is derived by combining (29), (35) and (40)

µ̂LX =− 1
s

log{e−sµ̂ + 0.5ϕ11σ11 + 0.5ϕ1[σ
2
11l30 + 3σ11σ12l21 + σ11σ22l12

+ 2σ2
21l12 + σ21σ22l03] + ϕ1(ρ1σ11 + ρ2σ12)}.

(41)

For parameter τ, it is clear that

ϕ(µ, τ) = e−sτ , ϕ2 = −se−sτ , ϕ22 = s2e−sτ , ϕ1 = ϕ11 = ϕ12 = ϕ21 = 0. (42)

The Bayesian estimate of τ under LX is derived by combining (29), (35) and (42)

τ̂LX =− 1
s

log{e−sτ̂ + 0.5ϕ22σ22 + 0.5ϕ2[σ11σ12l30 + σ11σ22l21 + 2σ2
12l21

+ 3σ21σ22l12 + σ2
22l03] + ϕ2(ρ1σ21 + ρ2σ22)}.

(43)
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4.2.3. General Entropy Loss Function

For parameter µ, the corresponding items become

ϕ(µ, τ) = µ−h, ϕ1 = −hµ−h−1, ϕ11 = h(h + 1)µ−h−2, ϕ12 = ϕ2 = ϕ21 = ϕ22 = 0. (44)

The Bayesian estimate of µ under GE is derived by combining (32), (35) and (44)

µ̂GE ={µ̂−h + 0.5ϕ11σ11 + 0.5ϕ1[σ
2
11l30 + 3σ11σ12l21 + σ11σ22l12

+ 2σ2
21l12 + σ21σ22l03] + ϕ1(ρ1σ11 + ρ2σ12)}−

1
h .

(45)

For parameter τ, the corresponding items become

ϕ(µ, τ) = τ−h, ϕ2 = −hτ−h−1, ϕ22 = h(h + 1)τ−h−2, ϕ1 = ϕ11 = ϕ12 = ϕ21 = 0. (46)

The Bayesian estimate of τ under GE is derived by combining (32), (35), and (46)

τ̂GE ={τ̂−h + 0.5ϕ22σ22 + 0.5ϕ2[σ11σ12l30 + σ11σ22l21 + 2σ2
12l21

+ 3σ21σ22l12 + σ2
22l03] + ϕ2(ρ1σ21 + ρ2σ22)}−

1
h .

(47)

When it comes to estimating the ratio of two integrals in the form given in (34),
the Lindley approximation method is very effective. Nevertheless, one of its drawbacks is
that this method only provides point estimates but not the credible intervals. Therefore,
in the upcoming subsection, we propose the importance sampling procedure to gain both
estimations of points and intervals.

4.3. Importance Sampling Procedure

Here, we propose a useful approach called importance sampling procedure to ac-
quire the Bayesian parameter estimates. Meanwhile, the HPD credible intervals for both
parameters are constructed in this procedure.

From (22), the joint posterior distribution can be rewritten as

π(µ, τ|x) ∝

(
Φ( µ√

τ
)
)−N

Φ
(

a
√

b√
τ

) (
1
τ

)α+ m+3
2

e
− 1

2τ [b(µ−a)2+2β+
m
∑

i=1
(xi−µ)2]

×
m

∏
i=1

(
1−Φ

(
xi − µ√

τ

))k(Ri+1)−1

= IGτ

(
α +

m
2

,
1
2

(
− c2

b + m
+ a2b + 2β +

m

∑
i=1

x2
i

))
TNµ|τ

(
c

b + m
,

τ

b + m

)
ω(µ, τ)

= IGτ(α̃, β̃)TNµ|τ(ã,
τ

b̃
)ω(µ, τ),

(48)

where

c = ab +
m

∑
i=1

xi, ω(µ, τ) =

(
Φ( µ√

τ
)
)−N

Φ( a
√

b√
τ
)

Φ

(
ab + ∑m

i=1 xi√
τ(b + m)

)
m

∏
i=1

(
1−Φ(

xi − µ√
τ

)

)k(Ri+1)−1
.

According to the Lemma 1, the parameters of the inverse gamma distribution and the
truncated normal distribution in (48) are positive. Thus, it makes sense to sample τ from

IGτ(α̃, β̃) the and sample µ from TNµ|τ(ã,
τ

b̃
).

Lemma 1. If a, b, β > 0 and m ≥ 1, then − (ab + ∑m
i=1 xi)

2

b + m
+ a2b + 2β + ∑m

i=1 x2
i > 0 for all

x = {(x1, x2, · · · , xm) : xi ∈ R, for i = 1, 2, · · ·m}.

Proof. According to the sum of squares inequality, we can get (∑m
i=1 xi)

2 ≤ m ∑m
i=1 x2

i .
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− (ab + ∑m
i=1 xi)

2

b + m
+ a2b + 2β + ∑m

i=1 x2
i > 0 ⇐⇒ 2ab ∑m

i=1 xi + (∑m
i=1 xi)

2 ≤ 2bβ +

a2bm + 2βm + (m + b)∑m
i=1 x2

i .
Because

m + b
m

(
m

∑
i=1

xi)
2 < (m + b)

m

∑
i=1

x2
i ,

then we must prove the non-negativeness of the following quadratic function when we
regard ∑m

i=1 xi as the independent variable of it.

b
m
(

m

∑
i=1

xi)
2 − 2ab

m

∑
i=1

xi + 2bβ + a2bm + 2βm > 0.

Notably, the quadratic function above minimizes at (
m
∑

i=1
xi)

2 = am, and the correspond-

ing result is 2β(b + m), which is strictly non-negative. Thus, the lemma is proved.

Then, the following steps are used to derive the Bayesian estimate of any function
Ω(µ, τ) of the parameters µ and τ.

(1) Generate τ from IGτ

(
α +

m
2

,
1
2

(
− (ab + ∑m

i=1 xi)
2

b + m
+ a2b + 2β +

m
∑

i=1
x2

i

))
.

(2) Generate µ from TNµ|τ

(
ab + ∑m

i=1 xi

b + m
,

τ

b + m

)
with the τ generated in (1).

(3) Repeat (1) and (2) M times and get the sample (µ1, τ1), (µ2, τ2), · · · , (µM, τM).
(4) Then the Bayesian estimate of Ω(µ, τ) is computed by

Ω̂(µ, τ) =
∑M

i=1 Ω(µi, τi)ω(µi, τi)

∑M
i=1 ω(µi, τi)

. (49)

Considering the unknown parameters µ and τ, their Bayesian estimates could be
derived by

µ̂ =
∑M

i=1 µiω(µi, τi)

∑M
i=1 ω(µi, τi)

, τ̂ =
∑M

i=1 τiω(µi, τi)

∑M
i=1 ω(µi, τi)

.

Next the HPD credible interval for parameter µ is illustrated, while the corresponding
HPD credible interval for τ can be computed by the same method. Let

vi =
ω(µi, τi)

∑M
i=1 ω(µi, τi)

, i = 1, 2, · · · , M. (50)

Then we sort {(µ1, v1), (µ2, v2), · · · , (µM, vM)} by the first component µ in ascending
order and we can get {(µ(1), v(1)), (µ(2), v(2)), · · · , (µ(M), v(M))}. Here v(i) is associated
with µ(i), which means that v(i) is not ordered. The construction of HPD credible interval
is based on an estimate µ̂p and µ̂p = µ(Cp), where Cp is an integer that satisfies

Cp

∑
i=1

v(i) ≤ p ≤
Cp+1

∑
i=1

v(i). (51)

Now, a 100(1− ξ)% credible interval for the unknown parameter µ can be acquired

as (µ̂δ, µ̂δ+1−ξ), δ = v(1), v(1) + v(2), · · · , ∑
N1−ξ

i=1 v(i). Therefore, the corresponding HPD
credible interval for µ is given by

(µ̂δ∗ , µ̂δ∗+1−ξ), (52)

where µ̂δ∗+1−ξ − µ̂δ∗ ≤ µ̂δ+1−ξ − µ̂δ for all δ.
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5. Simulation Study

For evaluating the effectiveness of the proposed methods, plenty of simulations are
carried out in this part. The maximum likelihood and Bayes estimators proposed above are
assessed based on the mean absolute bias (MAB) and mean squared error (MSE), whereas
interval estimations are considered according to the mean length (ML) and coverage rate
(CR). Looking back to the progressive first-failure censoring presented in the first part,
it can be found that when an experimental group is regarded as one unit, the life of this
experimental unit turns into the life distribution of the minimum value of the group. In this
way, it is intelligible to generate PFF censored sample through a simple modification of
the algorithm introduced in [22] and Algorithm 1 given subsequently provides the specific
generation method.

Algorithm 1 Generating progressive first-failure censored sample from TN(µ, τ)

1. Set the initial values of both group size k and censoring scheme R = (R1, R2, · · · , Rm).

2. Generate independent random variables Z1, Z2, · · · , Zm that obey the uniform distribu-

tion U(0, 1).

3. Let Yi = Z
1

i+Rm+···+Rm−i+1
i for all i ∈ {1, 2, · · · , m}.

4. Let Ui = 1−YmYm−1 · · ·Ym−i+1 for all i ∈ {1, 2, · · · , m}.
5. For given µ and τ, let H(x) = 1− (1− F(x))k, here F(x) represents the CDF of TN(µ, τ).

6. Finally, we set Xi = H−1(Ui) for all i ∈ {1, 2, · · · , m}, here H−1(·) represents the inverse

function of H(·). Hence, X = (X1, X2, · · · , Xm) is the PFF censored sample from TN(µ, τ).

Here, we take the true values of parameters as µ = 3 and τ = 1. For comparison pur-
poses, we consider k = 1, 2, n = 30, 40 and m = 40%n, 70%n, 100%n. Meanwhile, different
censoring schemes (CS) designed for the later simulations are presented in Table 1. As a
matter of convenience, we abbreviate the censoring scheme to make it clear, for instance,
(0∗5) is the abbreviation of the censoring scheme (0, 0, 0, 0, 0). In each case, we repeat
the simulation at least 2000 times. Thus, the associated MABs and MSEs with the point
estimation and the associated MLs and CRs with the interval estimation can be obtained.

Table 1. Different censoring schemes with their symbols.

n m CS Symbol n m CS Symbol

12 (18, 0∗11) r1 16 (24, 0∗15) r6
(0∗4, 3, 6, 6, 3, 0∗4) r2 (0∗6, 4, 8, 8, 4, 0∗6) r7

30 21 (9, 0∗20) r3 40 28 (12, 0∗27) r8
(0∗9, 3, 3, 3, 0∗9) r4 (0∗12, 2, 4, 4, 2, 0∗12) r9

30 (0∗30) r5 40 (0∗40) r10
* For simplicity, we denote (0, 0, 0) as (0∗3).

First, it should be noted that all our simulations are performed in R software. For max-
imum likelihood estimation, we use optim command with method L-BFGS-B to derive
the MLEs of parameters, and then we tabulate the corresponding results in Table 2.
For Bayesian estimation, we naturally consider the true value as the mean of the prior
distribution. But such hyper-parameters are intractable because of the complexity of prior
distribution. Therefore, we use genetic algorithm and mcga package in R software to search
for the optimal hyper-parameters and the result turns out to be a = 4, b = 2, α = 5.5, β = 2.5.
Then two Bayes approaches with informative prior are implemented to derive the estimates
under loss functions SE, LX and GE. We set the parameter s of LX to 0.5 and 1, while the
parameter h of GE is −0.5 and 0.5. These simulation results are listed in Tables 3–6.

At the same time, the proposed intervals are established at 95% confidence/credible
level and Tables 7 and 8 summarize the results. Here, ACI denotes asymptotic confidence
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interval based on MLEs, Log-ACI denotes the asymptotic confidence interval based on
log-transformed MLEs. In the following simulations, the bootstrap confidence intervals
are obtained after K = 1000 resamples while HPD credible intervals are obtained after
M = 1000 samples.

Table 2. Performance of maximum likelihood estimates.

µ̂ τ̂
k n m CS

MAB MSE MAB MSE

12 r1 0.2322 0.0835 0.2909 0.1529
r2 0.2054 0.0650 0.2955 0.1511

1 30 21 r3 0.1740 0.0457 0.2353 0.0887
r4 0.1611 0.0408 0.2393 0.0954

30 r5 0.1520 0.0355 0.2165 0.0723

16 r6 0.1977 0.0598 0.2554 0.1086
r7 0.1745 0.0479 0.2731 0.1249

1 40 28 r8 0.1528 0.0359 0.2111 0.0708
r9 0.1436 0.0310 0.2089 0.0737

40 r10 0.1281 0.0251 0.1846 0.0535

12 r1 0.2154 0.0711 0.3115 0.1762
r2 0.2341 0.0873 0.3387 0.1982

2 30 21 r3 0.1550 0.0372 0.2519 0.1082
r4 0.1520 0.0355 0.2566 0.1050

30 r5 0.1340 0.0273 0.2245 0.0815

16 r6 0.1823 0.0514 0.2658 0.1220
r7 0.1874 0.0559 0.2902 0.1376

2 40 28 r8 0.1348 0.0286 0.2147 0.0782
r9 0.1326 0.0276 0.2351 0.0860

40 r10 0.1081 0.0182 0.1851 0.0534

From Table 2, we can observe some properties about maximum likelihood estimates:

(1) The maximum likelihood estimate of µ performs much better than that of the maxi-
mum likelihood estimate of τ with respect to MABs and MSEs.

(2) When the effective sample size m or the total number of groups n or the value of m/n
increases, MABs and MSEs decrease significantly for all estimators, which is exactly
as we expected. With the increasing group size k , MABs and MSEs generally decrease
for the shape parameter µ, while the corresponding indicators generally increase for
the scale parameter τ.

(3) Different censoring schemes show a certain pattern as for MABs and MSEs. For µ,
both are generally smaller under the middle censoring schemes, on the contrary, both
are generally smaller under the left censoring schemes for τ.

From Tables 3–6, we can observe that:

(1) Under three loss functions, the Bayesian estimates with proper prior are more accurate
than MLEs as for MABs and MSEs in all cases. Both Bayesian methods are better than
MLEs undoubtedly and it is clear that the Lindley approximation outperforms the
importance sampling.

(2) Few censoring schemes such as r2 and r7 do not compete well for the Bayesian
estimation of τ. The commonality of these two schemes is that they own the small
effective sample size m and both are middle censorings.

(3) The Bayesian estimates of τ under SE is superior compared with GE, while the
Bayesian estimates of µ under SE is similar to GE. For GE, choosing h = 0.5 is
better than h = −0.5. For LX, both s = 0.5 and s = 1 are satisfactory and they
compete quite well. Overall, the Bayes estimates under Linex loss function using
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Lindley approximation are highly recommended as it possesses the minimum of
MABs and MSEs.

Table 3. Performance of Bayesian estimates of µ using Lindley approximation.

µ̂LX µ̂GE
µ̂SE s = 0.5 s = 1 h = −0.5 h = 0.5k n m CS

MAB MSE MAB MSE MAB MSE MAB MSE MAB MSE

12 r1 0.2053 0.0675 0.1885 0.0568 0.1812 0.0533 0.2047 0.0643 0.1974 0.0604
r2 0.1550 0.0374 0.1548 0.0367 0.1475 0.0358 0.1484 0.0343 0.1463 0.0338

1 30 21 r3 0.1689 0.0455 0.1720 0.0454 0.1616 0.0412 0.1741 0.0468 0.1663 0.0428
r4 0.1480 0.0337 0.1493 0.0348 0.1398 0.0306 0.1503 0.0354 0.1438 0.0319

30 r5 0.1500 0.0354 0.1376 0.0300 0.1384 0.0303 0.1468 0.0337 0.1454 0.0330

16 r6 0.1876 0.0562 0.1809 0.0507 0.1764 0.0485 0.1825 0.0526 0.1768 0.0489
r7 0.1365 0.0293 0.1341 0.0281 0.1370 0.0289 0.1399 0.0298 0.1316 0.0264

1 40 28 r8 0.1501 0.0346 0.1404 0.0316 0.1458 0.0331 0.1412 0.0312 0.1454 0.0334
r9 0.1276 0.0264 0.1326 0.0274 0.1263 0.0245 0.1351 0.0276 0.1280 0.0255

40 r10 0.1290 0.0249 0.1206 0.0230 0.1296 0.0257 0.1308 0.0260 0.1215 0.0232

12 r1 0.1531 0.0365 0.1415 0.0322 0.1467 0.0334 0.1514 0.0359 0.1478 0.0352
r2 0.1302 0.0260 0.1422 0.0345 0.1501 0.0342 0.1314 0.0269 0.1431 0.0334

2 30 21 r3 0.1288 0.0262 0.1282 0.0258 0.1296 0.0271 0.1266 0.0258 0.1252 0.0250
r4 0.1163 0.0216 0.1117 0.0199 0.1109 0.0193 0.1208 0.0228 0.1181 0.0219

30 r5 0.1142 0.0207 0.1164 0.0218 0.1160 0.0211 0.1146 0.0207 0.1169 0.0208

16 r6 0.1510 0.0352 0.1312 0.0274 0.1265 0.0265 0.1388 0.0302 0.1359 0.0281
r7 0.1103 0.0191 0.1023 0.0177 0.1028 0.0172 0.1026 0.0170 0.1032 0.0179

2 40 28 r8 0.1161 0.0209 0.1214 0.0229 0.1153 0.0213 0.1159 0.0207 0.1214 0.0225
r9 0.1058 0.0182 0.1077 0.0181 0.1027 0.0171 0.1089 0.0185 0.1078 0.0186

40 r10 0.1042 0.0170 0.0977 0.0149 0.0996 0.0155 0.1009 0.0161 0.0987 0.0151

Table 4. Performance of Bayesian estimates of µ using Importance Sampling.

µ̂LX µ̂GE
µ̂SE s = 0.5 s = 1 h = −0.5 h = 0.5k n m CS

MAB MSE MAB MSE MAB MSE MAB MSE MAB MSE

12 r1 0.2091 0.0682 0.2028 0.0633 0.1997 0.0639 0.2002 0.0632 0.1967 0.0596
r2 0.1677 0.0438 0.1575 0.0394 0.1622 0.0414 0.1633 0.0413 0.1631 0.0422

1 30 21 r3 0.1721 0.0458 0.1744 0.0469 0.1644 0.0424 0.1616 0.0422 0.1568 0.0394
r4 0.1514 0.0360 0.1407 0.0321 0.1452 0.0339 0.1521 0.0364 0.1505 0.0351

30 r5 0.1470 0.0341 0.1458 0.0333 0.1451 0.0333 0.1432 0.0326 0.1462 0.0344

16 r6 0.1801 0.0514 0.1839 0.0524 0.1769 0.0492 0.1760 0.0499 0.1782 0.0495
r7 0.1541 0.0371 0.1415 0.0314 0.1494 0.0351 0.1474 0.0348 0.1507 0.0352

1 40 28 r8 0.1489 0.0343 0.1450 0.0331 0.1403 0.0306 0.1455 0.0330 0.1431 0.0324
r9 0.1370 0.0287 0.1337 0.0277 0.1258 0.0255 0.1360 0.0290 0.1297 0.0275

40 r10 0.1283 0.0264 0.1221 0.0237 0.1262 0.0251 0.1260 0.0248 0.1235 0.0237

12 r1 0.1660 0.0439 0.1692 0.0455 0.1677 0.0443 0.1757 0.0488 0.1647 0.0420
r2 0.1711 0.0466 0.1755 0.0476 0.1711 0.0456 0.1713 0.0462 0.1713 0.0437

2 30 21 r3 0.1431 0.0320 0.1417 0.0310 0.1506 0.0347 0.1465 0.0332 0.1407 0.0311
r4 0.1516 0.0361 0.1576 0.0381 0.1646 0.0410 0.1582 0.0382 0.1584 0.0395

30 r5 0.1316 0.0275 0.1324 0.0272 0.1261 0.0258 0.1341 0.0283 0.1335 0.0279

16 r6 0.1505 0.0365 0.1504 0.0365 0.1515 0.0364 0.1534 0.0374 0.1517 0.0370
r7 0.2081 0.0624 0.2004 0.0593 0.2131 0.0649 0.1966 0.0564 0.2126 0.0647

2 40 28 r8 0.1341 0.0279 0.1346 0.0279 0.1339 0.0273 0.1367 0.0291 0.1274 0.0257
r9 0.1939 0.0536 0.1954 0.0546 0.1958 0.0542 0.1925 0.0522 0.1963 0.0551

40 r10 0.1485 0.0321 0.1452 0.0315 0.1503 0.0328 0.1475 0.0330 0.1491 0.0330
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Table 5. Performance of Bayesian estimates of τ using Lindley approximation.

τ̂LX τ̂GE
τ̂SE s = 0.5 s = 1 h = −0.5 h = 0.5k n m CS

MAB MSE MAB MSE MAB MSE MAB MSE MAB MSE

12 r1 0.1401 0.0319 0.1425 0.0291 0.1625 0.0357 0.1531 0.0378 0.1617 0.0675
r2 0.1600 0.0367 0.1087 0.0174 0.1250 0.0257 0.1945 0.0632 0.2059 0.0696

1 30 21 r3 0.1554 0.0344 0.1629 0.0379 0.1647 0.0383 0.1616 0.0406 0.1687 0.0420
r4 0.1376 0.0269 0.1474 0.0309 0.1526 0.0326 0.1528 0.0391 0.1448 0.0323

30 r5 0.1516 0.0327 0.1553 0.0350 0.1630 0.0382 0.1640 0.0425 0.1637 0.0409

16 r6 0.1475 0.0311 0.1509 0.0320 0.1562 0.0341 0.1654 0.0455 0.1568 0.0390
r7 0.1302 0.0241 0.1138 0.0188 0.1171 0.0200 0.1779 0.0546 0.1432 0.0382

1 40 28 r8 0.1539 0.0350 0.1518 0.0347 0.1598 0.0374 0.1623 0.0422 0.1568 0.0382
r9 0.1554 0.0346 0.1451 0.0314 0.1555 0.0347 0.1554 0.0407 0.1508 0.0337

40 r10 0.1441 0.0314 0.1533 0.0347 0.1525 0.0336 0.1442 0.0333 0.1446 0.0327

12 r1 0.1547 0.0474 0.1106 0.0184 0.1203 0.0214 0.1681 0.0484 0.1641 0.0454
r2 0.3952 0.2274 0.0994 0.0189 0.1202 0.0351 0.3933 0.2133 0.3727 0.1936

2 30 21 r3 0.1428 0.0297 0.1349 0.0270 0.1436 0.0301 0.1698 0.0494 0.1437 0.0335
r4 0.1416 0.0281 0.1241 0.0228 0.1304 0.0247 0.1679 0.0505 0.1403 0.0382

30 r5 0.1438 0.0317 0.1451 0.0315 0.1423 0.0304 0.1495 0.0367 0.1533 0.0370

16 r6 0.1319 0.0250 0.1221 0.0217 0.1304 0.0252 0.1567 0.0438 0.1435 0.0345
r7 0.2938 0.0960 0.0901 0.0121 0.0841 0.0119 0.2475 0.1038 0.2678 0.1161

2 40 28 r8 0.1421 0.0303 0.1404 0.0296 0.1432 0.0307 0.1653 0.0450 0.1490 0.0360
r9 0.1440 0.0309 0.1379 0.0281 0.1316 0.0254 0.1561 0.0402 0.1470 0.0380

40 r10 0.1433 0.0307 0.1417 0.0297 0.1384 0.0285 0.1524 0.0376 0.1433 0.0320

Table 6. Performance of Bayesian estimates of τ using Importance Sampling.

τ̂LX τ̂GE
τ̂SE s = 0.5 s = 1 h = −0.5 h = 0.5k n m CS

MAB MSE MAB MSE MAB MSE MAB MSE MAB MSE

12 r1 0.1936 0.0552 0.2037 0.0578 0.2098 0.0635 0.2092 0.0631 0.2253 0.0690
r2 0.1987 0.0587 0.2035 0.0600 0.2009 0.0582 0.2012 0.0585 0.2141 0.0643

1 30 21 r3 0.1878 0.0526 0.1916 0.0540 0.1894 0.0517 0.1941 0.0555 0.2016 0.0575
r4 0.1926 0.0541 0.1877 0.0507 0.1873 0.0518 0.1897 0.0539 0.1973 0.0564

30 r5 0.1823 0.0495 0.1722 0.0445 0.1765 0.0455 0.1759 0.0473 0.1811 0.0491

16 r6 0.1872 0.0530 0.1856 0.0515 0.1994 0.0566 0.1968 0.0561 0.2017 0.0581
r7 0.1949 0.0604 0.1904 0.0549 0.1908 0.0526 0.1921 0.0543 0.2028 0.0598

1 40 28 r8 0.1782 0.0481 0.1704 0.0433 0.1766 0.0447 0.1767 0.0469 0.1738 0.0441
r9 0.1794 0.0497 0.1733 0.0447 0.1726 0.0440 0.1753 0.0465 0.1871 0.0508

40 r10 0.1609 0.0393 0.1547 0.0366 0.1546 0.0347 0.1624 0.0390 0.1632 0.0394

12 r1 0.1963 0.0579 0.1973 0.0568 0.1923 0.0531 0.1956 0.0578 0.1968 0.0553
r2 0.2187 0.0811 0.1996 0.0624 0.2023 0.0606 0.2084 0.0672 0.2117 0.0659

2 30 21 r3 0.1915 0.0567 0.1813 0.0505 0.1827 0.0486 0.1960 0.0619 0.2019 0.0620
r4 0.2046 0.0629 0.2001 0.0594 0.2122 0.0666 0.2037 0.0618 0.2148 0.0650

30 r5 0.1885 0.0559 0.1923 0.0534 0.1939 0.0546 0.1966 0.0582 0.2036 0.0616

16 r6 0.1871 0.0538 0.1860 0.0510 0.1922 0.0564 0.1828 0.0496 0.1938 0.0568
r7 0.2099 0.0708 0.2107 0.0699 0.2141 0.0722 0.2135 0.0718 0.2167 0.0711

2 40 28 r8 0.1926 0.0550 0.1874 0.0526 0.1886 0.0541 0.1851 0.0523 0.1983 0.0579
r9 0.2039 0.0639 0.2079 0.0651 0.2032 0.0600 0.2019 0.0622 0.2022 0.0608

40 r10 0.1876 0.0539 0.1810 0.0478 0.1848 0.0512 0.1915 0.0543 0.1927 0.0529

From Tables 7 and 8, we can conclude that:

(1) In general, the ML of HPD credible interval is the most satisfying compared with
the other intervals, while the boot-t confidence interval possesses the widest ML.
With the increase of m/n, the ML shows a tendency to narrow, and this pattern holds
for both parameters.

(2) Boot-p confidence interval is unstable as its CR decreases significantly when the group
size k increases, whereas boot-t interval is basically not affected by k and possesses
the robustness to some extent considering µ.
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(3) ACI competes well with Log-ACI for µ and they are similar in terms of ML and CR.
However, the CR of Log-ACI is much improved and more precise than ACI for τ.
Therefore, Log-ACI seems to be a better choice.

Table 7. Performance of five intervals for parameter µ at 95% confidence/credible level.

ACI Log-ACI Boot-p Boot-t HPD
k n m CS

ML CR ML CR ML CR ML CR ML CR

12 r1 1.1014 0.929 1.1004 0.956 1.1426 0.911 1.1540 0.928 0.8544 0.904
r2 0.9916 0.933 0.9972 0.938 0.9910 0.919 1.1470 0.953 0.7535 0.924

1 30 21 r3 0.8406 0.943 0.8353 0.947 0.8467 0.906 0.8798 0.934 0.6974 0.908
r4 0.7859 0.938 0.7798 0.944 0.7864 0.929 0.8263 0.931 0.6510 0.912

30 r5 0.7089 0.954 0.7137 0.932 0.7349 0.930 0.7412 0.936 0.6154 0.926

16 r6 0.9337 0.950 0.9538 0.940 0.9711 0.908 0.9708 0.927 0.7684 0.919
r7 0.8646 0.946 0.8630 0.949 0.8547 0.946 0.9261 0.934 0.6398 0.935

1 40 28 r8 0.7285 0.954 0.7263 0.925 0.7438 0.935 0.7545 0.925 0.6313 0.922
r9 0.6770 0.946 0.6754 0.944 0.6755 0.929 0.7049 0.933 0.5737 0.928

40 r10 0.6169 0.958 0.6206 0.949 0.6232 0.918 0.6389 0.945 0.5478 0.929

12 r1 0.9946 0.930 0.9796 0.932 1.0073 0.899 1.1657 0.948 0.7269 0.929
r2 1.0369 0.913 1.0425 0.910 1.0366 0.870 1.3596 0.926 0.5340 0.937

2 30 21 r3 0.7495 0.942 0.7478 0.934 0.7382 0.896 0.8317 0.928 0.4430 0.899
r4 0.7498 0.930 0.7546 0.936 0.7352 0.897 0.8400 0.943 0.3345 0.883

30 r5 0.6242 0.941 0.6235 0.944 0.6189 0.920 0.6646 0.940 0.2952 0.851

16 r6 0.8574 0.936 0.8561 0.929 0.8661 0.901 0.9752 0.949 0.5871 0.918
r7 0.9150 0.919 0.9059 0.918 0.9037 0.874 1.1058 0.929 0.3601 0.881

2 40 28 r8 0.6432 0.944 0.6502 0.926 0.6385 0.901 0.6848 0.928 0.4171 0.910
r9 0.6485 0.943 0.6467 0.947 0.6442 0.913 0.7025 0.954 0.3122 0.921

40 r10 0.5390 0.929 0.5425 0.930 0.5412 0.931 0.5671 0.927 0.2316 0.924

Table 8. Performance of five intervals for parameter τ at 95% confidence/credible level.

ACI Log-ACI Boot-p Boot-t HPD
k n m CS

ML CR ML CR ML CR ML CR ML CR

12 r1 1.6175 0.916 1.7554 0.967 1.5166 0.940 1.9297 0.917 0.8726 0.943
r2 1.7039 0.929 1.9149 0.969 1.6197 0.932 2.5585 0.926 0.8950 0.964

1 30 21 r3 1.2299 0.898 1.2785 0.971 1.1190 0.926 1.3953 0.869 0.7844 0.923
r4 1.2941 0.938 1.3479 0.984 1.1740 0.939 1.4073 0.899 0.8024 0.939

30 r5 1.0355 0.903 1.0928 0.969 0.9931 0.912 1.1519 0.855 0.7314 0.932

16 r6 1.3038 0.919 1.4666 0.967 1.2953 0.928 1.4851 0.872 0.8267 0.935
r7 1.4511 0.947 1.5596 0.965 1.3603 0.964 1.7695 0.937 0.8186 0.943

1 40 28 r8 1.0562 0.913 1.0927 0.957 0.9972 0.925 1.1433 0.842 0.7466 0.935
r9 1.0973 0.925 1.1390 0.978 0.9998 0.950 1.1409 0.853 0.7599 0.946

40 r10 0.8999 0.918 0.9425 0.931 0.8440 0.909 0.9755 0.856 0.6805 0.935

12 r1 1.6403 0.887 1.7112 0.940 1.6033 0.907 2.3597 0.908 0.9013 0.974
r2 1.6261 0.828 1.8354 0.921 1.6159 0.836 3.0288 0.901 0.8102 0.955

2 30 21 r3 1.2802 0.915 1.3498 0.962 1.1854 0.898 1.6744 0.928 0.7471 0.947
r4 1.3021 0.904 1.4087 0.956 1.2167 0.893 1.7890 0.921 0.6722 0.923

30 r5 1.0927 0.913 1.1353 0.959 1.0431 0.920 1.2923 0.935 0.6040 0.904

16 r6 1.3698 0.909 1.4672 0.959 1.3660 0.920 1.8837 0.904 0.8272 0.962
r7 1.4378 0.863 1.5051 0.928 1.3822 0.858 2.2717 0.927 0.6617 0.910

2 40 28 r8 1.0769 0.919 1.1608 0.948 1.0362 0.924 1.2871 0.929 0.6265 0.923
r9 1.1101 0.906 1.1600 0.947 1.0756 0.907 1.3696 0.929 0.5176 0.858

40 r10 0.9302 0.920 0.9736 0.962 0.9062 0.937 1.0655 0.916 0.4572 0.912

6. Authentic Data Analysis

Now, we introduce an authentic dataset and we analyze it by using the methods
developed above. This dataset was obtained from [23], which was analyzed in [5,24]
respectively. This dataset, presented in Table 9, describes the tensile strength of 100 tested
50mm carbon fibers and it is measured in giga-Pascals (GPa).
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Table 9. The tensile strength of 100 tested 50mm carbon fibers (units: GPa).

3.70 3.11 4.42 3.28 3.75 2.96 3.39 3.31 3.15 2.81 1.41 2.76 3.19 1.59 2.17
3.51 1.84 1.61 1.57 1.89 2.74 3.27 2.41 3.09 2.43 2.53 2.81 3.31 2.35 2.77
2.68 4.91 1.57 2.00 1.17 2.17 0.39 2.79 1.08 2.88 2.73 2.87 3.19 1.87 2.95
2.67 4.20 2.85 2.55 2.17 2.97 3.68 0.81 1.22 5.08 1.69 3.68 4.70 2.03 2.82
2.50 1.47 3.22 3.15 2.97 2.93 3.33 2.56 2.59 2.83 1.36 1.84 5.56 1.12 2.48
1.25 2.48 2.03 1.61 2.05 3.60 3.11 1.69 4.90 3.39 3.22 2.55 3.56 2.38 1.92
0.98 1.59 1.73 1.71 1.18 4.38 0.85 1.80 2.12 3.65

First, we test whether the distribution TN(µ, τ) fits this real dataset well. In particular,
Ref. [24] compared the fitting results with many famous reliability distributions, such
as Rayleigh distribution, and Log-Logistic distribution, etc. They concluded that Log-
Logistic distribution has the best fitting effect. Therefore, we compare the fitting effect of
truncated normal distribution and Log-Logistic distribution with the PDF that is g(x) =
β
α (

x
α )

β−1/(1 + ( x
α )

β)2, x > 0 .
Various criteria are applied for testing the goodness of fit of the model, such as the

negative log-likelihood function − ln L, Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), and Kolmogorov–Smirnov (K-S) statistics with its p-value.
The corresponding definitions of the above criteria are given as

AIC = 2× (d− ln Ld(x1, · · · , xn|θ)),
BIC = d× ln n− 2× ln Ld(x1, · · · , xn|θ),

here, θ is a parameter vector, d is the number of parameters in the fitted model, ln Ld is
evaluated at the MLEs, and n is the number of observed values.

Table 10 shows the MLEs of the parameters for each distribution, along with − ln L,
AIC, BIC, K-S, and p-value corresponding to two distributions. Conspicuously, since the
truncated normal distribution has the lower statistics and higher p-value, it does fit the
complete sample well. Now, we can use this dataset for analysis.

Table 10. The fitting results of the two distributions.

Distribution MLEs −ln L AIC BIC K-S p-Value

Log-logistic α̂ = 2.4900 β̂ = 4.1455 145.3980 294.7960 300.0064 0.086 0.4450
Truncated normal µ̂ = 2.5948 τ̂ = 1.0499 141.7026 287.4052 292.6156 0.061 0.8505

Therefore, we randomly divide the given data into 50 groups, and each group has two
independent units. Thus, the first-failure censored data are obtained, as shown in Table 11.
In order to gain the PFF censored samples, we set m = 25 and give three different kinds of
censoring schemes, namely c1 = (25, 0∗24), c2 = (1∗25), c3 = (0∗24, 25). Table 12 presents
the PFF censored samples under left censoring, middle censoring and right censoring.

Table 11. The first-failure censored sample when k = 2.

0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25 1.36 1.41 1.47 1.57 1.57
1.59 1.59 1.61 1.69 1.69 1.71 1.73 1.80 1.84 1.84 1.89 2.00 2.03 2.05 2.35
2.41 2.48 2.48 2.53 2.55 2.56 2.74 2.76 2.77 2.79 2.81 2.81 2.82 2.88 2.93
2.95 2.97 3.15 3.15 3.33
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Table 12. PFF censored samples under the given censoring schemes when k = 2, n = 50, m = 25.

CS Progressive First-Failure Censored Sample

(25, 0∗24) 0.39 0.81 1.18 1.22 1.36 1.41 1.57 1.57 1.59 1.69 1.71 1.89 2.00 2.48 2.55
2.74 2.76 2.77 2.79 2.81 2.88 2.93 2.95 3.15 3.15

(1∗25) 0.39 0.81 0.85 0.98 1.12 1.17 1.22 1.25 1.47 1.57 1.61 1.69 1.69 1.84 1.84
1.89 2.03 2.35 2.48 2.55 2.74 2.81 2.88 2.95 3.15

(0∗24, 25) 0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25 1.36 1.41 1.47 1.57 1.57
1.59 1.59 1.61 1.69 1.69 1.71 1.73 1.80 1.84 1.84

In Tables 13 and 14, the point estimates of parameters µ and τ are shown, respectively.
No informative prior is available for Bayesian estimation, so we apply non-informative
prior, and the four hyper-parameters are all around zero tightly and three loss functions
discussed before are taken into account. As for the two asymmetric loss functions, we
continue to use the parameters in the previous simulations, namely s = 0.5 and s = 1,
h = −0.5 and h = 0.5. It can be seen from the table that there are some differences between
the estimated values obtained by different censoring schemes and different methods.
The parameter estimates based on censoring scheme c1 are closest to the MLEs under the
full sample, while the estimates using the importance sampling are pervasively inclined
to be smaller compared with those gained by Lindley approximation. At the same time,
we construct 95% ACIs, Log-ACIs, bootstrap, and HPD intervals, while Tables 15 and 16
display the corresponding results.

Table 13. The MLEs and Bayes point estimates of µ under loss functions SE, LX, and GE using
Lindley method and importance sampling (IS).

CS µ̂ µ̂SE
µ̂LX µ̂GE

Method
s = 0.5 s = 1 h = −0.5 h = 0.5

(25, 0∗24) 2.6336 2.6505 2.6437 2.6369 2.6479 2.6427 Lindley
2.4832 2.5816 2.5045 2.6084 2.4944 IS

(1∗25) 2.9511 2.9955 2.9844 2.9730 2.9918 2.9842 Lindley
2.3946 2.2490 2.2544 2.3295 2.2474 IS

(0∗24, 25) 2.2223 2.2531 2.2486 2.2439 2.2511 2.2469 Lindley
1.6379 1.5650 1.6454 1.6620 1.6181 IS

Table 14. The MLEs and Bayes point estimates of τ under loss functions SE, LX, and GE using Lindley
method and importance sampling (IS).

CS τ̂ τ̂SE
τ̂LX τ̂GE

Method
s = 0.5 s = 1 h = −0.5 h = 0.5

(25, 0∗24) 0.8713 0.9339 0.9395 0.9237 1.0254 0.9942 Lindley
0.8181 0.7801 0.7658 0.9585 0.6788 IS

(1∗25) 1.3183 1.3131 1.4738 1.4225 1.7830 1.7573 Lindley
0.8457 0.7945 1.4754 0.6544 0.8758 IS

(0∗24, 25) 0.4833 0.3684 0.5404 0.5341 0.6642 0.6584 Lindley
0.3243 0.2499 0.1795 0.2615 0.1531 IS

Table 15. The five intervals at 95% confidence/credible level for µ.

CS ACI Log-ACI Boot-t Boot-p HPD

(25, 0∗24) (2.3104, 2.9569) (2.3294, 2.9776) (2.2921, 2.8931) (2.4000, 3.0126) (2.2930, 2.5557)
(1∗25) (2.5331, 3.3690) (2.5614, 3.4000) (2.4597, 3.3037) (2.6478, 3.6259) (2.2791, 2.3926)

(0∗24, 25) (1.9524, 2.4923) (1.9682, 2.5093) (1.9084, 2.4524) (2.0315, 2.6746) (1.5961, 1.6336)
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Table 16. The five intervals at 95% confidence/credible level for τ.

CS ACI Log-ACI Boot-t Boot-p HPD

(25, 0∗24) (0.3764, 1.3663) (0.4937, 1.5377) (0.4648, 1.4612) (0.5700, 1.6948) (0.4585, 1.1804)
(1∗25) (0.4364, 2.2001) (0.6753, 2.5735) (0.5733, 2.3430) (0.8539, 3.3265) (0.7697, 0.7727)

(0∗24, 25) (0.1603, 0.8063) (0.2477, 0.9430) (0.2002, 0.8341) (0.3080, 1.2224) (0.2393, 0.2415)

In Figure 4, we have drawn four different estimated distribution function images,
and their corresponding parameters are MLEs under complete samples and censored sam-
ples with schemes c1, c2 and c3. It is of considerable interest to see that the estimated curve
based on the censoring scheme c1 = (25, 0∗24) is the closest to the estimated curve based
on full data, which indicates that the left censored data is the superior one. In the middle
part of the graphics, we can tell that the value of the estimated curve is underestimated
based on the censoring scheme c2 = (1∗25), and on the contrary, the value based on the
censoring scheme c3 = (0∗24, 25) is overestimated.

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

Complete Sample

Scheme1

Scheme2

Scheme3

Figure 4. Four different estimated distribution functions based on MLEs.

7. Conclusions

Throughout the full article, we consider the classical and Bayesian inference for a
progressive first-failure censored left-truncated normal distribution. MLEs are derived
using an optimization technique and the Bayesian estimation is taken into account under
loss functions SE, LX, and GE. At the same time, confidence and credible intervals for
the parameters are constructed and compared with each other. In the simulation section,
MAB and MSE are taken into account for the point estimation while the ML and CR are
considered for the interval estimation.

When it comes to the point estimation, the performance of MLEs is satisfactory,
whereas the Bayesian estimation with proper informative prior is superior to MLEs in all
cases. According to the simulation study presented in this paper, the Bayesian estimates
with proper prior under loss function LX are the best among all estimates, and Lindley
approximation method is highly recommended. Moreover, in terms of interval estimation,
ACIs based on log-transformed MLEs have more accurate coverage rate than ACIs based
on MLEs. HPD credible intervals consistently have the shortest interval length compared
with other confidence intervals.

The truncated normal distribution is versatile as it possesses the flexibility of trunca-
tion and the superior properties of normal distribution. The research object in this article
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is a progressive first-failure censored left-truncated normal distribution with a known
truncated point. In some cases, we may be interested in the position of the truncated point
so it is inevitable to estimate the unknown truncated point. Furthermore, the research
field of this censoring plan adding with binomial removals and competing risks can be
explored. In brief, it is still of great potential to conduct further research of truncated
normal distribution.
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