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Abstract: Point and interval estimations are taken into account for a progressive first-failure censored
left-truncated normal distribution in this paper. First, we derive the estimators for parameters on
account of the maximum likelihood principle. Subsequently, we construct the asymptotic confi-
dence intervals based on these estimates and the log-transformed estimates using the asymptotic
normality of maximum likelihood estimators. Meanwhile, bootstrap methods are also proposed
for the construction of confidence intervals. As for Bayesian estimation, we implement the Lindley
approximation method to determine the Bayesian estimates under not only symmetric loss function
but also asymmetric loss functions. The importance sampling procedure is applied at the same time,
and the highest posterior density (HPD) credible intervals are established in this procedure. The
efficiencies of classical statistical and Bayesian inference methods are evaluated through numerous
simulations. We conclude that the Bayes estimates given by Lindley approximation under Linex loss
function are highly recommended and HPD interval possesses the narrowest interval length among
the proposed intervals. Ultimately, we introduce an authentic dataset describing the tensile strength

of 50mm carbon fibers as an illustrative sample.
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test units in each set. It is known as the first-failure censoring that only the first failure time
is recorded in every set during the experiment, the test will terminate until the first failure
occurs for all sets. Moreover, a novel censoring pattern, called the progressive first-failure
censoring scheme (PFFCS), was proposed by [2]. The maximum likelihood estimates
(MLESs), accurate intervals together with approximate intervals for Weibull parameters,
and the expected termination time were derived under PFFCS.

Recently, this new life-testing plan has aroused the interest of a great number of
researchers. The MLEs and interval estimation of the lifetime index Cr, for progressive
first-failure censored Weibull distribution, as well as a sensitivity analysis, were studied
by [3]. Based on the methods mentioned before, Refs. [4,5] further implemented Bayes
estimation methods to compute the parameters of Lindley and exponentiated exponential
distributions, respectively. Ref. [6] dedicated to discussing the Bayes inference in two
cases and two-sample prediction issues for a progressive first-failure censored Gompertz
distribution. Ref. [7] also mainly focused on Bayes methods for Chen distribution, whereas
they also introduced the least square estimator and illustrated its good performance against
MLEs. Furthermore, Ref. [8] introduced the competing risks model into the progressive
censoring scheme for the Gompertz distribution and [9] introduced the step-stress partially
accelerated life test and derived the MLEs for the acceleration factor in this life test for the
progressive first-failure censored Weibull distribution.

Now, we illustrate the progressive first-failure censoring as follows: Suppose that n
groups are being tested simultaneously in a life-testing experiment, every group has k test
units and they are totally independent of each other. During the experiment, in time of
the occurrence of the first failed component, the group it belongs to and any R; groups in
the rest of n — 1 groups are promptly eliminated from the test. In the same way, in time of
the occurrence of the second failed component, the group it belongs to and any R, groups
in the rest of n — 2 — Rq groups are promptly eliminated from the test. This procedure
keeps going on until the mth failed component occurs and all the remaining R, groups are
immediately eliminated from the test. Here m and R = (R, Ry, - - - , R;) are set in advance
and Y_/" | R; + m = n. To further illustrate, Figure 1 shows the process of the generation of
progressive first-failure censored sample. In particular, pay attention that this censoring
scheme has several special cases, one may refer to [10]. All the conclusions mentioned
afterward are available to extend to those kinds of data, which is one of the advantages of
progressive first-failure censoring.
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Figure 1. The schematic plot of the progressive first-failure censored sample generation.

The truncated normal distribution is used in many fields, including education, in-
surance, engineering, biology and medicine, etc. When a threshold is set on a normally
distributed dataset, the remaining data naturally have a truncated normal distribution.
For instance, when all college admission candidates whose SAT scores are below the
screening value are eliminated, people may be interested in the scores of the remaining
candidates. However, if the original score population is normally distributed, the problem
they concern turns to investigate the truncated normal distribution. Generally speaking,
the truncated normal distribution consists of one-sided truncated and two-sided truncated
in terms of the number of truncated points. Simultaneously, with respect to the truncation
range, the one-sided truncated normal distribution can be subdivided into left-truncated
and right-truncated, and they are also known as lower-truncated and upper-truncated.

The truncated normal distribution has recently attracted a lot of research interest. The
existence of MLEs for the parameters was discussed in [11] when the two truncated points
were known, and the modified MLEs were further explored to improve the efficiency of the
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estimation. Ref. [12] developed a handy algorithm to compute the expectation and variance
of a truncated normally distributed variable and they compared its behavior under both full
and censored data. As for the left-truncated normal distribution, Ref. [13] employed three
available approaches to investigate the problem of sample size. In addition to the MLEs and
Bayes estimators, Ref. [14] also proposed midpoint approximation to derive the estimates
of parameters based on progressive type-I interval-censored sample, and meanwhile,
the optimal censoring plans were considered. For the purpose of advancing the research on
the standardized truncated normal distribution, Ref. [15] developed a standard truncated
normal distribution that wherever the truncated points are, it remains the mean value zero
and the variance one. Ref. [16] proposed a mixed truncated normal distribution to describe
the wind speed distribution and verified its validity.

When it comes to the properties of the truncated normal distribution, it is worth
noting that its shape and scale parameters are not equal to its expectation and variance but
correspond to the parameters of the parent normal distribution before truncation. After the
truncation range is determined, the value of the probability density function outside it
becomes zero, while the value within it is adjusted uniformly to make the total integral
one. Therefore, expectation and variance are adjusted for the truncation.

Assuming X is a truncated normally distributed random variable and its truncation
range is (a,b), the shape and scale parameters are y and 7, then its expectation and variance
correspond to

VT, )

and

a—p a—py _ b—p b—p a—py L b—p
Var(X) = 1+(ﬁ)¢(ﬁ) <ﬁ)¢(ﬁ) (P(ﬁ) ‘P(\ﬁ)

T

here ¢(-) and ®(-) denote the probability density function (PDF) and cumulative distribu-
tion function (CDF) of the standard normal distribution.

Some mechanical and electrical products such as their material strength, wear life,
gear bending, and fatigue strength can be considered to have a truncated normal life
distribution. As a lifetime distribution, the domain of the random variable should be non-
negative and consequently, it is reasonable to assume that x > 0. Thus, we consider the left-
truncated normal distribution with the truncation range (0, o), denoted as TN(y, 7), then
the corresponding PDF that is f(x) and CDF that is F(x) of the distribution TN(y, T) are

Flomn) = s e 0 ®
GtT)=—F——, X>0,17>0,
\/27‘(1'(1)(\%)
and -
1-d(—)
Flx;p,t)=1- y‘ﬁ , x>0,T>0, (4)
(1)
here y is the shape parameter and 7 is the scale parameter. And the survival function is
1— ()
S(x;u,1) = Hﬁ , x>0,7>0. (5)
o( L)

For comparison, Figure 2 visually shows the distinction of PDFs between three groups
of parent normal distributions N (y, T) and the corresponding truncated normal distribution
TN(u, 7). The parent normal distributions possess the same 7 but different . Obviously,
the parent normal distribution whose shape parameter is closest to the truncated point
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changes drastically after truncation, while the one with the shape parameter farthest to the
truncated point barely changes and even retains the same pattern as normal. In particular, it
is worth mentioning that when the truncated point T* satisfies L\/—%ﬂ > 3.5, the truncation
basically loses its effect. In Figure 3, we can observe that the position where the peak of the
truncated normal distribution occurs is in accordance with the value of u. As this value gets
closer to the truncated point, the peak value of PDF of the distribution TN (y, 7) and the
same scale parameter will be larger as a result of the integral of one. However, under the
same shape parameters, the image of PDF becomes flat with the increase of scale parameter

and it is consistent with the property of normal distribution.
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Figure 2. PDFs of the truncated and untruncated normal distribution with the same parameters.
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Figure 3. PDFs of the distribution TN(y, T) with the same scale parameter T = 1 or the same shape parameter 1 = 1.5.

This article begins with the following sections. In the first place, the MLEs for two
unknown parameters of the distribution TN (y, T) are derived in Section 2 and we establish
the corresponding asymptotic confidence intervals (ACls) associated with the approximate
asymptotic variance-covariance matrix. In Section 3, the bootstrap resampling method is
applied to develop both bootstrap-p and bootstrap-t intervals. In Section 4, we propose
the Bayes approaches to estimate two parameters under squared error, Linex, and general
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entropy loss functions using Lindley approximation. As this approximation method is
failed to provide us the credible intervals, the importance sampling procedure is employed
to gain both parameter estimates and the highest posterior density (HPD) credible intervals.
The behaviors of diverse estimators proposed in the above sections are evaluated and
compared by amounts of simulations in Section 5. In Section 6, an authentic dataset is
introduced and applied to clarify how to make statistical inferences using the methods
presented before and the effectiveness of these approaches. Finally, a summary of the
whole article is made in Section 7.

2. Maximum Likelihood Estimation

Suppose that a progressive first-failure type-II censored sample comes from a con-
tinuous population with PDF that is f(-) and CDF that is F(-). Let’s denote the ith ob-

servation as xﬁ:m:n:k), thus we have xﬁ:m:n:k) < xé:m:n:k) < e < x( here R =

(R1,Ry,- -+, Ry,). For simplicity, let x = (x1,x2,- -+, x;) replace (xﬁ:m:n:k), Fz:m:n:k)" Ty

m:m:n:k)’

). According to [1,2], the joint PDF is presented as

R
x(m:m:n:k)

fxr .. XR (x1,%2,- -+ x %kaf x;)(1—F(x;)) k(Ri+1)-1 6)

(Tmenzk)” 7% (memenck)

where ¢ = H (mn—k+1- Z R;) is a normalizing constant, Ry = 0, and 0 < x7 < xp <
k=1 1=0
L < Xy < 00

For the case where the sample is from TN(y, T), after combining (3), (4) and (6),
the likelihood function turns to be

o) k(Ri+1)—
Ll =] 22 <§>< <I><§>Q> ’ 7

where { = %,Q = xﬁ”
Hence, the log-likelihood function is

_ “1, m
I(u, t|x) —ln%—l—mlnk—i;ﬁgi - Eln(27rr) —mIn®(])

®)
+

1

) [K(R; +1) — 1J[in(1 - B(Z3)) — In & ()]
=1

Take the partial derivatives of (8) concerning u and 7 respectively and set them equal
to zero, the corresponding equations are

ol Nq;(g) 1 1 & (i)

3= vre R R R e = O
and

ol m  NZ¢() z 1 & ' B ngp(gz) _

5= et T T ar L g LK)~ —0 o)

where N = k x n.

The roots of the non-linear Equations (9) and (10) correspond to the MLEs /i and 1,
but the explicit expressions are obviously unobtainable, so some numerical techniques
such as Newton-Raphson method are employed to derive the MLEs.
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2.1. Asymptotic Confidence Intervals for MLEs

Given that MLEs possess the asymptotic normality, the ACIs of # and T can be estab-
lished by using Var(j1) and Var(1). The asymptotic variances of MLEs can be obtained from
the inverse Fisher information matrix. Let 6 = (61,6,) = (u, 7). The Fisher information
matrix (FIM) I(6) can be written as

_PU(61,6,)  %U(By,6,)

2
10) = E 962 96,00, a
CR(01,0:)  %(61,0)
96,00, 262

Here

821(91,92) _ ﬂ . N

2 T T

9%1(61,6,)  9%1(6y,62)
00,00, 00,06,

[k(R; +1) = 1](G} + G}),

Al
M-

(6'—G?) -
1

1 Z N 1
= an Lot 5an(G 100 06 — oam LR +1) ~11(Gi+ 4iGi +8iGP),
1= 1=
9%1(61,6,) 1 ¢, , m 3N{ N2 o 3 ¢
TR Y P -G+ 2 (GP -G - = R; +1) — 1];G;
86% T2 l; gl + 2T2 4.[.2 G + 4T2 (G G ) 4T2 l:Zl[k( 1 + ) ]CZGZ
1 & 2 2 /
a2 [k(R; +1) = 1]¢7 (GF + G;),
i=1

© o VO o #@) o )

where G = 2124, G =

(0)’ (0)’

C1-9(g) T 1-2(g)

The FIM I(0) is in form of expectation and the acquirement of its exact value depends
on the distribution of the order statistics X(j). Ref. [1] provided the PDF of the order
statistics X ;) of the progressive type-II censored data in general,

]
fx(xj) = Di ;Cijf(xj)[l — Fx))% 7, (12)
i=
r14 Y ! i o
whered; =m—i+1+ L Ry, D;j=1ld;, cn=1 cj= TI J1<i<j<
k=i i=1 k=1k#i dk — di

m.

Since progressive first-failure censoring can be regarded as an extention to the progres-
sive type-II censoring. We can derive the PDF of the order statistics X ;) of the truncated
normal distribution TN (y, T) under PFFCS after some transformations of (12), and it is
given as

J e 2 (1)’ . Y
fiy () = D L key— e 2L @(ZZ0

Then, the FIM I(6) can be calculated directly based on (13). In practice, the expectation
in (11) can be removed naturally and the observed FIM I(f) is used to approximate the
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asymptotic variance-covariance matrix for the purpose of simplifying the complicated
calculation, see [2,17]. The observed FIM I (é) corresponds to

CRU01,0)  (61,0)

N 2
1(6) = 002 06106, , 14)
C9%U(61,00)  9*(61,6,)
060,06, 063 i

here, § denotes the MLE of 6, namely 8 = (8;,6,) = (f1,%).
Then the approximate asymptotic variance-covariance matrix is

—r :[ Vir(d) cOfmf)]‘ -
Cov(t,fi)  Var(t)

Therefore, the 100(1 — &)% ACI for 6, is given by

<6A]'—Zg/2\/11(@)]']‘,6/\'4‘25/2\/11(é)jj), j:1,2, (16)

where z¢ 5 is the {/2 upper quantile of the standard normal distribution.

2.2. Asymptotic Confidence Intervals for Log-Transformed MLEs

The method just proposed has an obvious defect that its lower bound of ACl is prone to
appear negative value when the truth value of the parameter is small. Since the parameter T
discussed in this paper is strictly non-negative, the negative part of the confidence interval
is unreasonable at that time. To avoid this issue, we can use delta method and logarithmic
transformation proposed in [18]. Similarly, this method is available to # when y > 0. The
asymptotic distribution of In 6}- is

In éj —Ino, 2, N(0, var(lnéj)), (17)
D e . A var(é]) var(é])
where — denotes convergence in distribution and var(Int;) = ——— ~ —5— =
s i i
I (0)ji
~2
b

Therefore, the asymptotic confidence intervals based on log-transformed MLEs are

léj exp (—Zgz 1/2}211’(6})),9} exp (ZLV;A/IZ var( Aﬂ)], =12 (18)
] ]

The proposal of these two ACIs is on the premise that MLEs are asymptotically
normally distributed. Hence, if the number of the sample is not large enough, the accuracy
of these two confidence intervals may be declined. In the next section, we provide a
resampling technique to solve the problem of building confidence intervals for parameters
under a small sample size.

3. Bootstrap Confidence Intervals

Bootstrap methods can make great sense in the case with little effective sample size m,
so here we propose two widely used bootstrap methods to establish the intervals, see [19].
One is the percentile bootstrap method, also regarded as bootstrap-p (boot-p). The other



Symmetry 2021, 13, 490 8 of 23

is known as the bootstrap-t (boot-t) method. The specific steps of the two methods are
as follows.

3.1. Percentile Bootstrap Confidence Intervals

Step 1 For a given PFF censored sample x from TN(p,T) with n,m,k and R =
(R1,Ry,- -+ ,Ry,), figure the MLEs of parameters y and T under the primitive sample
x, denoted as fi and .

Step 2 In accordance with the identical censoring pattern (n,m,k, R) as x, generate
a PFF censored bootstrap sample x* from TN(ji,t). Similarly to step 1, compute the
bootstrap MLEs fi* and t* based on x*.

Step 3 Do step 2 repeatedly for K times to collect a series of bootstrap MLEs ﬁ]* and f/*
(j=12---,K).

Step 4 Arrange ﬁ]* and f]* in an ascending order respectively then obtain ( ﬁ?l)’ ﬁz‘z), e,
Rig) and (80, Ty, == Tig)-

Step 5 The approximate 100(1 — &) % boot-p Cls for  and 7 are presented by ( Mayy ﬁz‘az))
)), where w7 and a; are respectively the integer parts of K x (¢/2) and

and (f(’xl ) f(az

Kx (1—¢/2).

3.2. Bootstrap-t Confidence Intervals

Step 1 For a given PFF censored sample x from TN(p,T) with n,m,k and R =
(Ry, Ry, -+, Ryy), figure the MLEs /1 and t and their variances Var(j1) and Var(%) under
the primitive sample x.

Step 2 In accordance with the identical censoring pattern (1, m,k, R) as x, generate
a PFF censored bootstrap sample x* from TN(ji,t). Similarly to step 1, compute the
bootstrap MLEs fi* and t* based on x*.

Step 3 Compute the variances of fi* and t*, say Var(fi*) and Var(t*), then compute

PR N

the statistics UU* = R for i* and V* = ———" for #*,
\/ Var(ji*) ' \/ Var(£*)
Step 4 Do steps 2-3 repeatedly for K times to collect a series of bootstrap statistics U ]-*
and V]-* (j=12--,K).
Step 5 Arrange U j* and Vj* in an ascending order respectively then obtain ({/, (*1), u (*2), s,
) and (V{l),Vé),- X ,V(*K)).
Step 6 The approximate 100(1 — ¢)% boot-t CIs for u and T are presented by

(ﬁ — U\ Var(p), i — U, Vhr(ﬁ)) , (% — ViV Var(2), 2 = Vi /szr(f)),

where a1 and «; are respectively the integer parts of K x (¢/2) and K x (1 —¢/2).

Uik

4. Bayesian Estimation

The selection of prior distribution is a primary problem of Bayesian estimation for the
fact that the prior distribution could have a significant impact on the posterior distribution
in small sample cases. So, a proper prior distribution is worth discussing at the beginning.

In general cases, the conjugate prior distribution is a preferred choice in Bayesian
estimation because of its algebraic convenience. However, such prior does not exist when
both parameters u and 7 are unknown. For the sake of simplicity, we need to find a
prior distribution with the same form as (7). Furthermore, according to the form of the
denominator part of the exponential term in the likelihood function (7), T should appear as a
parameter of the prior distribution of . Therefore, assuming that they are not independent
is feasible and we can presume that T follows an Inverse Gamma prior IG(«, ) and u
follows a truncated normal prior associated with 7, namely u ~ TN(a, §) , where all
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hyper-parameters are bound to be positive. The PDFs of their prior distributions can be
written as

_ :th —a—1 —g
7-[] (T) — 1_,(“) T e 7 (19)
e_%(y_a)z
T (uT) = —=—r (20)
/Zﬂcp(u)
b VT
The corresponding joint prior distribution is
1 1\"“"2 2
) = RO (3) ¢ . @
VT
Given y, the joint posterior distribution 7(, T|x) can be obtained by
(x“’l/ )7_[( /T) (22)

) = Io Jo Lxlp, ©)e(p, T)dpdt

4.1. Symmetric and Asymmetric Loss Functions

The loss function is used to evaluate the degree to which the predicted value or the
estimated value of the parameter is different from the real value. In practice, the squared
error loss function has been used extensively in the literature and it is preferred in the
case where the loss caused by overestimation and underestimation is of equal importance.
But sometimes, it is not appropriate to use a symmetric loss function when an overestimate
plays a crucial role compared with an underestimate, or vice versa. Thus, in this subsection,
we discuss the Bayesian estimations theoretically under one symmetric loss function,
namely squared error loss function (SE), and two non-symmetric loss functions, namely
Linex loss function (LX) and general entropy loss function (GE).

4.1.1. Squared Error Loss Function

This loss function is defined as
Lse(9,8) = (8 - 9)%, (23)

here, 8 denotes any estimate of ¢.
The Bayesian estimator of ¢ under SE is

l§SE = Eﬂ(lﬂl) (24)
Given a function g(y, T), the expression of its Bayesian posterior expectation is

fo fo u,T |,”/ T)7T ( )dﬂdT'

Elg(p, 0)lx] = (25)
Jo fo x|}4, 7t(u, T)dpdt
Thus, the Bayesian estimate ¢(, T) under SE can be given theoretically as
5 # O L(x|p, T) (s, T)dpdt
S(1,T)sp = fo fo X||, T)TT (U M ' (26)
o fo x|y, 7t(u, T)dpdt

4.1.2. Linex Loss Function

The Linex loss function is suggested in the case that underestimation is more costly
compared with overestimation, and this loss function is defined as

L(A) = be™ —aA—1], a#0,b>0. 27)
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In fact, it is recognized as a family L(A) where A could be either the usual estimation

error ¢ — 8 or a relative error (& — 9) /9, namely % — 1. In this paper, we take advantage
that A = 8 — 9 and let b = 1, then LX becomes

Lix(8,8) =@ _s@—09)—1, s#£0. (28)

The sign of the s indicates the orientation of asymmetry, while its size represents the
degree of asymmetry. Under the same difference & — 8, the larger the magnitude of s is,
the larger the cost is. Given small values of |s|, LX is almost symmetric and very close to
SE. One may refer to [20] for details.

The Bayesian estimator of ¢ under LX is

bux = — InEg(e™*"|x). (29)

Thus, the Bayesian estimate ¢(u, 7) under LX can be given theoretically as

[fo Jo e SO (x|u, T)m (H/T)dﬂdrl
Jo Jo  L(xlp, T)7t(u, T)dpdt '

§(wT)x = (30)

4.1.3. General Entropy Loss Function
This loss function is defined as

A\ N ~
Lce(8,8) = (Z) —hln(i) -1 (31)

The Bayesian estimator of ¢ under GE is

1

h

dcr = [Eo(67"x)] (32)
When 1 > 0, the positive error value & — ¢ is more costly compared with the negative
error value, and vice versa. In particular, when h = —1, the Bayesian estimate under SE is
the same as that under GE.
The Bayesian estimate §(j, T) under GE can be given theoretically as

I g, T) T L, T) 7 (1, T)dﬂd’f] o 33

Jo fo xI% 7(, T)dpdt

It is noticeable that the Bayesian estimates are expressed in terms of the ratio of two
integrals and the specific forms cannot be presented theoretically. So, we implement the
Lindley approximation method to determine such estimates.

g, T)ce = [

4.2. Lindley Approximation Method

In this subsection, we take advantage of Lindley approximation to acquire the Bayesian
parameter estimates. Consider the posterior expectation of ¢(u, T) expressed in terms of
the ratio of two integrals

ffq, 1,T)e 1(n,7)+o (1, T)dydr
ffel wT)+o(H, T)dyd’f

E(p(p,T)|x) = , (34)

here, I denotes the log-likelihood function, p denotes the logarithmic form of the joint
prior distribution.
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According to [21], expression (34) can be approximated as

A 1
E(p(p, T)|x) = (1, ) + E(A +130B12 + 11Ci2 + 112Co1 + 03Byt ) + p1A12 + p2A21, (35)

with
A=Yy li=29" " ii-01,23and i+j=3
a Eljg Vi gy TS AR PRI=S
_ 9 _ 99 _ P9 _ 1 _
Pi= a6 =36 Pi= aosr i = =517 Ay = gigi + @joji,

Bij = (picii + 9j03j)0ii,  Cij = 39:03i03 + 9;(0107j; + 207).

Here 6 = (61,62) = (y, T), 0;j denotes the (i, j)-th element of the inverse FIM. All
terms in (35) are computed at MLEs /i and %. Then the approximate solution expressions of
Bayesian parameter estimates under loss functions SE, LX, and GE are as follows.

4.2.1. Squared Error Loss Function

For parameter y, we take ¢(u, T) = u, hence

o, 7) =1, p1=1, P11 = P12 = P2 = @21 = ¢ = 0. (36)

The Bayesian estimate of i under SE is derived by combining (24), (35) and (36)

R 1
fise =i+ 5 {0121130 + 3011012101 + 011020112 + 205 112 + 021022103} + 01011 + p2012. (37)

Similarly, for parameter 7, we take ¢(j, T) = T, hence

o) =1, P2 =1, P21 = @2 = ¢1 = @11 = @12 =0. (38)

The Bayesian estimate of i under SE is derived by combining (24), (35) and (38)
. .1
Tse=1+7 [011012130 + 01102101 + 205112 + 302102112 + 0222103} + 01021 + p2022.  (39)

4.2.2. Linex Loss Function

For parameter y, it is clear that

e(uT) =", @r=—se ¥, @1 =5%"" @n=9r=¢n=¢n=0. (40)

The Bayesian estimate of y under LX is derived by combining (29), (35) and (40)

N 1 —sh
Arx =— 5 log{e™" +0.5¢11011 + 0.5¢1 [0’121130 + 3011012121 + 011022112 (41)

+ 209112 + 02102l08] + 91 (01011 + 02012) }-
For parameter 7, it is clear that

ST —sT 2 ,—sT

o(u,T)=e°", 2= —se°T, @n=s5¢"", Q=@ =¢n=¢n=0. (42)

The Bayesian estimate of T under LX is derived by combining (29), (35) and (42)

. 1 st
Tix = — 5 log{e St 4 0.5¢202 + 0.5¢2 [0’110’12130 4+ 01109211 + 20’122121 (43)

+ 302102112 + 0%l03] + @2(01021 + p202) }-
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4.2.3. General Entropy Loss Function

For parameter y, the corresponding items become

o) =p" gr=—hp"Y eu=h(h+Du ", g =2 =en = gn=0. (44)
The Bayesian estimate of i under GE is derived by combining (32), (35) and (44)

fice ={" + 05911011 + 0.5¢1 (0% 130 + 3011012121 + 011020012

(45)
_1
+2031 112 + 091 0ml03] + @1(01011 + p2012)} .
For parameter 7, the corresponding items become
o) =7", gp=—ht", e =hh+1)T"?, g1 =gu =91 =9¢n=0 (46)

The Bayesian estimate of T under GE is derived by combining (32), (35), and (46)

£ ={t7" + 0502002 + 0592011012130 + 011020l01 + 2075151 @)
1
+ 302102112 + 03l03] + 2(p1021 + p2022) }

When it comes to estimating the ratio of two integrals in the form given in (34),
the Lindley approximation method is very effective. Nevertheless, one of its drawbacks is
that this method only provides point estimates but not the credible intervals. Therefore,
in the upcoming subsection, we propose the importance sampling procedure to gain both
estimations of points and intervals.

4.3. Importance Sampling Procedure

Here, we propose a useful approach called importance sampling procedure to ac-
quire the Bayesian parameter estimates. Meanwhile, the HPD credible intervals for both
parameters are constructed in this procedure.

From (22), the joint posterior distribution can be rewritten as

_N
(L) at?B_1g ’ l _ k(Ri+1)—1
n(y,r|x)o<<ﬁ)(1> 3 . 2 [b(p— a)+/3+21x ><H<1— < y))

@(M) T JT
T
m 1 2 2o, c T (48)
_IGT<a+2’2(_b+ b““gxf))mmf(m'm)“’(”)
o T
= 16 (& BITN,j< (2, Deo( ),
where

c—ab+2x T) = ( (\LF)
i=1 ! = (%

@\_/

ab_i_z;ﬂzlxi m B Xi—u k(R;+1)-1
) q>< T(b+m)>g<1 ® VT )> '

According to the Lemma 1, the parameters of the inverse gamma distribution and the
truncated normal distribution in (48) are positive. Thus, it makes sense to sample T from

1G+(&, B) the and sample u from TN, (@, %)

b4 Y x)2
Lemma 1. Ifa,b,f > 0and m > 1, then —%

X = {(x1,x2,. .. ,xm) X c R, fOTi = 1/2,m}

+a%b+ 2B+ X", x? > 0 for all

Proof. According to the sum of squares inequality, we can get (Y1 x;)?> < m Y™, x?
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ab+ Y x;)?
_%”2“2“311 >0 = 20T, xi+ (I )% < 2bB+
a2bm + 2Bm + (m + b) " x2.
Because . .
m—+b
— — () < (m+b)} x,
i=1 i=1

then we must prove the non-negativeness of the following quadratic function when we
regard ) /" ; x; as the independent variable of it.

m
x;)? —2ab } " x; 4+ 2bB + a’bm + 2pm > 0.
1 i=1

(

NgE

b
m f
i

m
Notably, the quadratic function above minimizes at (Y x;)> = am, and the corre-
i=1

1=
sponding result is 28(b + m), which is strictly non-negative. Thus, the lemma is proved.
O

Then, the following steps are used to derive the Bayesian estimate of any function
Q(u, T) of the parameters y and 7.

m )2 m

(1) Generate T from IG< (zx + %, % ( - % +a%b + 2B + igl xf)) .
ab+ Yt x0T

b+m “b+m

(3) Repeat (1) and (2) M times and get the sample (u1, 1), (42, ), -+, (UM, T™)-

(4) Then the Bayesian estimate of Q(y, T) is computed by

(2) Generate u from TNMT( ) with the T generated in (1).

o Zf\il Q(.ui/ Ti)w(]’li/ Ti)

Oy, 1) = : (49)
Yt w(pi, 1)
Considering the unknown parameters y and 7, their Bayesian estimates could be
derived by
- Yy i (i, T0) i (i, T)
Lt @(pi, ) Yt @(pi, )

Next the HPD credible interval for parameter y is illustrated, while the corresponding
HPD credible interval for T can be computed by the same method. Let

vi:M' i=12--. M. (50)
iy w (i, 1)

Then we sort {(u1,v1), (#2,v2), -+, (MM, vm) } by the first component u in ascending
order and we can get { (4 (1),9(1)), (H(2),92)), - -+, (H(m), O(m)) }- Here v,y is associated
with ji(;), which means that v ;) is not ordered. The construction of HPD credible interval
is based on an estimate fi, and fi, = p(c,), where Cp is an integer that satisfies

G, Cpt1
Yom <p< ) v (51)
i=1 i=1

Now, a 100(1 — &)% credible interval for the unknown parameter y can be acquired

as (fls, flsr1-¢), 0 = vy, 01y +02), ,Zfilf v(j)- Therefore, the corresponding HPD
credible interval for y is given by

(fise o +1-¢), (52)

where flg« ¢ — flg < flsp1—¢ — fis forallé.
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5. Simulation Study

For evaluating the effectiveness of the proposed methods, plenty of simulations are
carried out in this part. The maximum likelihood and Bayes estimators proposed above are
assessed based on the mean absolute bias (MAB) and mean squared error (MSE), whereas
interval estimations are considered according to the mean length (ML) and coverage rate
(CR). Looking back to the progressive first-failure censoring presented in the first part,
it can be found that when an experimental group is regarded as one unit, the life of this
experimental unit turns into the life distribution of the minimum value of the group. In this
way, it is intelligible to generate PFF censored sample through a simple modification of
the algorithm introduced in [22] and Algorithm 1 given subsequently provides the specific
generation method.

Algorithm 1 Generating progressive first-failure censored sample from TN (y, 7).

1. Set the initial values of both group size k and censoring scheme R = (R1,Rp, -+ ,Rp).
2. Generate independent random variables Z1, Zy, - - - , Z, that obey the uniform distribu-
tion U(0,1). 1

3.LetY; = Z;MW'”M"""H foralli € {1,2,---,m}.

4. LetU; =1— YY1 Yy_jo1forallie {1,2,---,m}.

5. For given pand 7, let H(x) = 1 — (1 — F(x))¥, here F(x) represents the CDF of TN (i, T).
6. Finally, we set X; = H~!(U;) foralli € {1,2,--- ,m}, here H~1(-) represents the inverse
function of H(-). Hence, X = (X1, Xy, - - - , Xin) is the PFF censored sample from TN (y, 7).

Here, we take the true values of parameters as y = 3 and T = 1. For comparison pur-
poses, we consider k = 1,2, n = 30,40 and m = 40%n, 70%n, 100%n. Meanwhile, different
censoring schemes (CS) designed for the later simulations are presented in Table 1. As a
matter of convenience, we abbreviate the censoring scheme to make it clear, for instance,
(0*5) is the abbreviation of the censoring scheme (0,0,0,0,0). In each case, we repeat
the simulation at least 2000 times. Thus, the associated MABs and MSEs with the point
estimation and the associated MLs and CRs with the interval estimation can be obtained.

Table 1. Different censoring schemes with their symbols.

n m CS Symbol n m CS Symbol
12 (18,0%11) 1] 16 (24,0*15) 76
(0*4,3,6,6,3,074) 3 (0"6,4,8,8,4,076) ry
30 21 (9,0%20) 13 40 28 (12,0%27) r8
(0%9,3,3,3,0%9) T4 (0712,2,4,4,2,0°12) 19
30 (0*30) 15 40 (0*40) 710

* For simplicity, we denote (0,0,0) as (0*3).

First, it should be noted that all our simulations are performed in R software. For max-
imum likelihood estimation, we use optim command with method L-BFGS-B to derive
the MLEs of parameters, and then we tabulate the corresponding results in Table 2.
For Bayesian estimation, we naturally consider the true value as the mean of the prior
distribution. But such hyper-parameters are intractable because of the complexity of prior
distribution. Therefore, we use genetic algorithm and mcga package in R software to search
for the optimal hyper-parameters and the result turns outtobea = 4,b =2,& = 5.5, = 2.5.
Then two Bayes approaches with informative prior are implemented to derive the estimates
under loss functions SE, LX and GE. We set the parameter s of LX to 0.5 and 1, while the
parameter h of GE is —0.5 and 0.5. These simulation results are listed in Tables 3—6.

At the same time, the proposed intervals are established at 95% confidence/credible
level and Tables 7 and 8 summarize the results. Here, ACI denotes asymptotic confidence
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interval based on MLEs, Log-ACI denotes the asymptotic confidence interval based on
log-transformed MLEs. In the following simulations, the bootstrap confidence intervals
are obtained after K = 1000 resamples while HPD credible intervals are obtained after
M = 1000 samples.

Table 2. Performance of maximum likelihood estimates.

]l T

k " m cs MAB MSE MAB MSE
12 . 0.2322 0.0835 0.2909 0.1529

- 0.2054 0.0650 0.2955 0.1511

1 30 21 3 0.1740 0.0457 0.2353 0.0887
ra 0.1611 0.0408 0.2393 0.0954

30 rs 0.1520 0.0355 0.2165 0.0723

16 re 0.1977 0.0598 0.2554 0.1086

ry 0.1745 0.0479 0.2731 0.1249

1 40 28 s 0.1528 0.0359 02111 0.0708
Yo 0.1436 0.0310 0.2089 0.0737

40 10 0.1281 0.0251 0.1846 0.0535

12 " 0.2154 0.0711 0.3115 0.1762

ry 0.2341 0.0873 0.3387 0.1982

2 30 21 3 0.1550 0.0372 0.2519 0.1082
4 0.1520 0.0355 0.2566 0.1050

30 rs 0.1340 0.0273 0.2245 0.0815

16 76 0.1823 0.0514 0.2658 0.1220

ry 0.1874 0.0559 0.2902 0.1376

2 40 28 s 0.1348 0.0286 0.2147 0.0782
9 0.1326 0.0276 0.2351 0.0860

40 10 0.1081 0.0182 0.1851 0.0534

@
)

®)

@

@)

®)

From Table 2, we can observe some properties about maximum likelihood estimates:

The maximum likelihood estimate of y performs much better than that of the maxi-
mum likelihood estimate of T with respect to MABs and MSEs.

When the effective sample size m or the total number of groups n or the value of m/n
increases, MABs and MSEs decrease significantly for all estimators, which is exactly
as we expected. With the increasing group size k , MABs and MSEs generally decrease
for the shape parameter y, while the corresponding indicators generally increase for
the scale parameter 7.

Different censoring schemes show a certain pattern as for MABs and MSEs. For y,
both are generally smaller under the middle censoring schemes, on the contrary, both
are generally smaller under the left censoring schemes for 7.

From Tables 3-6, we can observe that:

Under three loss functions, the Bayesian estimates with proper prior are more accurate
than MLEs as for MABs and MSEs in all cases. Both Bayesian methods are better than
MLEs undoubtedly and it is clear that the Lindley approximation outperforms the
importance sampling.

Few censoring schemes such as r; and 7 do not compete well for the Bayesian
estimation of T. The commonality of these two schemes is that they own the small
effective sample size m and both are middle censorings.

The Bayesian estimates of T under SE is superior compared with GE, while the
Bayesian estimates of y under SE is similar to GE. For GE, choosing h = 0.5 is
better than i = —0.5. For LX, both s = 0.5 and s = 1 are satisfactory and they
compete quite well. Overall, the Bayes estimates under Linex loss function using
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@

)]

®)

Lindley approximation are highly recommended as it possesses the minimum of
MABs and MSEs.

From Tables 7 and 8, we can conclude that:

In general, the ML of HPD credible interval is the most satisfying compared with
the other intervals, while the boot-t confidence interval possesses the widest ML.
With the increase of m/n, the ML shows a tendency to narrow, and this pattern holds
for both parameters.

Boot-p confidence interval is unstable as its CR decreases significantly when the group
size k increases, whereas boot-t interval is basically not affected by k and possesses
the robustness to some extent considering .

ACI competes well with Log-ACI for  and they are similar in terms of ML and CR.
However, the CR of Log-AClI is much improved and more precise than ACI for 7.
Therefore, Log-ACI seems to be a better choice.

Table 3. Performance of Bayesian estimates of y using Lindley approximation.

Hix HGE
HsE s =05 s=1 h=—05 h=05
MAB MSE MAB MSE MAB MSE MAB MSE MAB MSE

12 1 0.2053 0.0675 0.1885 0.0568 0.1812 0.0533 0.2047 0.0643 0.1974 0.0604

&) 0.1550 0.0374 0.1548 0.0367 0.1475 0.0358 0.1484 0.0343 0.1463 0.0338

30 21 3 0.1689 0.0455 0.1720 0.0454 0.1616 0.0412 0.1741 0.0468 0.1663 0.0428
T4 0.1480 0.0337 0.1493 0.0348 0.1398 0.0306 0.1503 0.0354 0.1438 0.0319

30 5 0.1500 0.0354 0.1376 0.0300 0.1384 0.0303 0.1468 0.0337 0.1454 0.0330

16 6 0.1876 0.0562 0.1809 0.0507 0.1764 0.0485 0.1825 0.0526 0.1768 0.0489

r7 0.1365 0.0293 0.1341 0.0281 0.1370 0.0289 0.1399 0.0298 0.1316 0.0264

40 28 g 0.1501 0.0346 0.1404 0.0316 0.1458 0.0331 0.1412 0.0312 0.1454 0.0334
r9 0.1276  0.0264 0.1326 0.0274 0.1263 0.0245 0.1351 0.0276 0.1280 0.0255

40 r;p 01290 0.0249 0.1206 0.0230 0.1296 0.0257 0.1308 0.0260 0.1215 0.0232

12 1 0.1531 0.0365 0.1415 0.0322 0.1467 0.0334 0.1514 0.0359 0.1478 0.0352

&) 0.1302 0.0260 0.1422 0.0345 0.1501 0.0342 0.1314 0.0269 0.1431 0.0334

30 21 3 0.1288 0.0262 0.1282 0.0258 0.1296 0.0271 0.1266 0.0258 0.1252  0.0250
T4 0.1163 0.0216 0.1117 0.0199 0.1109 0.0193 0.1208 0.0228 0.1181 0.0219

30 5 0.1142 0.0207 0.1164 0.0218 0.1160 0.0211 0.1146 0.0207 0.1169 0.0208

16 6 0.1510 0.0352 0.1312 0.0274 0.1265 0.0265 0.1388 0.0302 0.1359 0.0281

r7 0.1103 0.0191 0.1023 0.0177 0.1028 0.0172 0.1026 0.0170 0.1032 0.0179

40 28 g 0.1161 0.0209 0.1214 0.0229 0.1153 0.0213 0.1159 0.0207 0.1214 0.0225
79 0.1058 0.0182 0.1077 0.0181 0.1027 0.0171 0.1089 0.0185 0.1078 0.0186

40 rip 0.1042 0.0170 0.0977 0.0149 0.0996 0.0155 0.1009 0.0161 0.0987 0.0151
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Table 4. Performance of Bayesian estimates of y using Importance Sampling.

ALx HGE
AsE _ _ —_ _ _

k n m cs s=20.5 s=1 h=—-05 h=05
MAB MSE MAB MSE MAB MSE MAB MSE MAB MSE
12 1 0.2091 0.0682 0.2028 0.0633 0.1997 0.0639 0.2002 0.0632 0.1967 0.0596
7 0.1677 0.0438 0.1575 0.0394 0.1622 0.0414 0.1633 0.0413 0.1631 0.0422
1 30 21 3 0.1721 0.0458 0.1744 0.0469 0.1644 0.0424 0.1616 0.0422 0.1568 0.0394
74 0.1514 0.0360 0.1407 0.0321 0.1452 0.0339 0.1521 0.0364 0.1505 0.0351
30 5 0.1470 0.0341 0.1458 0.0333 0.1451 0.0333 0.1432 0.0326 0.1462 0.0344
16 T 0.1801 0.0514 0.1839 0.0524 0.1769 0.0492 0.1760 0.0499 0.1782 0.0495
17 0.1541 0.0371 0.1415 0.0314 0.1494 0.0351 0.1474 0.0348 0.1507 0.0352
1 40 28 g 0.1489 0.0343 0.1450 0.0331 0.1403 0.0306 0.1455 0.0330 0.1431 0.0324
79 0.1370 0.0287 0.1337 0.0277 0.1258 0.0255 0.1360 0.0290 0.1297 0.0275
40 710 0.1283 0.0264 0.1221 0.0237 0.1262 0.0251 0.1260 0.0248 0.1235 0.0237
12 r1 0.1660 0.0439 0.1692 0.0455 0.1677 0.0443 0.1757 0.0488 0.1647 0.0420
7 0.1711 0.0466 0.1755 0.0476 0.1711 0.0456 0.1713 0.0462 0.1713 0.0437
2 30 21 r3 0.1431 0.0320 0.1417 0.0310 0.1506 0.0347 0.1465 0.0332 0.1407 0.0311
74 0.1516 0.0361 0.1576 0.0381 0.1646 0.0410 0.1582 0.0382 0.1584 0.0395
30 5 0.1316  0.0275 0.1324 0.0272 0.1261 0.0258 0.1341 0.0283 0.1335 0.0279
16 Te 0.1505 0.0365 0.1504 0.0365 0.1515 0.0364 0.1534 0.0374 0.1517 0.0370
17 0.2081 0.0624 0.2004 0.0593 0.2131 0.0649 0.1966 0.0564 0.2126 0.0647
2 40 28 8 0.1341 0.0279 0.1346 0.0279 0.1339 0.0273 0.1367 0.0291 0.1274 0.0257
79 0.1939 0.0536 0.1954 0.0546 0.1958 0.0542 0.1925 0.0522 0.1963 0.0551
40 710 0.1485 0.0321 0.1452 0.0315 0.1503 0.0328 0.1475 0.0330 0.1491 0.0330

Table 5. Performance of Bayesian estimates of T using Lindley approximation.
Trx TGE
TsE — — — —

k n m cs s=20.5 s=1 h=—-05 h=05
MAB MSE MAB MSE MAB MSE MAB MSE MAB MSE
12 r1 0.1401 0.0319 0.1425 0.0291 0.1625 0.0357 0.1531 0.0378 0.1617 0.0675
7 0.1600 0.0367 0.1087 0.0174 0.1250 0.0257 0.1945 0.0632 0.2059 0.0696
1 30 21 3 0.1554 0.0344 0.1629 0.0379 0.1647 0.0383 0.1616 0.0406 0.1687 0.0420
74 0.1376  0.0269 0.1474 0.0309 0.1526 0.0326 0.1528 0.0391 0.1448 0.0323
30 5 0.1516  0.0327 0.1553 0.0350 0.1630 0.0382 0.1640 0.0425 0.1637 0.0409
16 76 0.1475 0.0311 0.1509 0.0320 0.1562 0.0341 0.1654 0.0455 0.1568 0.0390
1y 0.1302 0.0241 0.1138 0.0188 0.1171 0.0200 0.1779 0.0546 0.1432 0.0382
1 40 28 g 0.1539 0.0350 0.1518 0.0347 0.1598 0.0374 0.1623 0.0422 0.1568 0.0382
9 0.1554 0.0346 0.1451 0.0314 0.1555 0.0347 0.1554 0.0407 0.1508 0.0337
40 710 0.1441 0.0314 0.1533 0.0347 0.1525 0.0336 0.1442 0.0333 0.1446 0.0327
12 r1 0.1547 0.0474 0.1106 0.0184 0.1203 0.0214 0.1681 0.0484 0.1641 0.0454
7 0.3952 0.2274 0.0994 0.0189 0.1202 0.0351 0.3933 0.2133 0.3727 0.1936
2 30 21 3 0.1428 0.0297 0.1349 0.0270 0.1436 0.0301 0.1698 0.0494 0.1437 0.0335
74 0.1416  0.0281 0.1241 0.0228 0.1304 0.0247 0.1679 0.0505 0.1403 0.0382
30 5 0.1438 0.0317 0.1451 0.0315 0.1423 0.0304 0.1495 0.0367 0.1533 0.0370
16 76 0.1319 0.0250 0.1221 0.0217 0.1304 0.0252 0.1567 0.0438 0.1435 0.0345
r7 0.2938 0.0960 0.0901 0.0121 0.0841 0.0119 0.2475 0.1038 0.2678 0.1161
2 40 28 g 0.1421 0.0303 0.1404 0.0296 0.1432 0.0307 0.1653 0.0450 0.1490 0.0360
79 0.1440 0.0309 0.1379 0.0281 0.1316 0.0254 0.1561 0.0402 0.1470 0.0380
40 710 0.1433 0.0307 0.1417 0.0297 0.1384 0.0285 0.1524 0.0376 0.1433 0.0320




Symmetry 2021, 13, 490

18 of 23

Table 6. Performance of Bayesian estimates of T using Importance Sampling.

Trx tGE

K n om CS SE s =05 s=1 h=—05 h=05
MAB MSE MAB MSE MAB MSE MAB MSE MAB MSE
12 1, 01936 00552 02037 00578 02098 00635 02092 00631 02253 0.0690
1 01987 00587 02035 0.0600 02009 00582 02012 0.0585 02141 0.0643
1 30 21 r; 01878 00526 01916 00540 0.1894 00517 0.1941 00555 02016 0.0575
ry 01926 00541 0.1877 0.0507 0.1873 0.0518 0.1897 0.0539 0.1973 0.0564
30 15 01823 0.0495 01722 0.0445 01765 0.0455 0.1759 0.0473 0.1811 0.0491
16 re 01872 00530 01856 00515 01994 00566 0.1968 00561 02017 0.0581
r o 01949 00604 01904 00549 0.1908 0.0526 0.1921 0.0543 02028 0.0598
1 40 28 rg 01782 00481 01704 00433 01766 00447 01767 00469 0.1738 0.0441
ro 01794 00497 0.1733 0.0447 0.1726 0.0440 0.1753 0.0465 0.1871 0.0508
40 rg 01609 00393 01547 0.0366 0.1546 0.0347 0.1624 0.0390 0.1632 0.0394
12 1, 0193 00579 01973 00568 01923 00531 01956 00578 0.1968 0.0553
1 02187 00811 01996 0.0624 02023 0.0606 02084 0.0672 02117 0.0659
2 30 21 r; 01915 00567 01813 00505 0.1827 0.0486 01960 0.0619 02019 0.0620
ry 02046 00629 02001 00594 02122 00666 02037 0.0618 02148 0.0650
30 15 01885 00559 0.1923 0.0534 0.1939 0.0546 0.1966 0.0582 0.2036 0.0616
16 re 01871 00538 01860 00510 01922 00564 01828 0.0496 0.1938 0.0568
r 02099 00708 02107 00699 02141 00722 02135 00718 02167 0.0711
2 40 28 rg 01926 0.0550 01874 00526 0.1886 0.0541 0.1851 0.0523 0.1983 0.0579
re 02039 00639 02079 00651 02032 0.0600 02019 0.0622 02022 0.0608
40 g 01876 00539 0.1810 0.0478 0.1848 0.0512 0.1915 0.0543 0.1927 0.0529

Table 7. Performance of five intervals for parameter u at 95% confidence/credible level.

ACI Log-ACI boot-p boot-t HPD
k n m CS
ML CR ML CR ML CR ML CR ML CR
12 r 11014 0929 11004 0956 1.1426 0911 1.1540 0.928 0.8544 0.904
rp 09916 0933 09972 0938 09910 0919 1.1470 0.953 0.7535 0.924
1 30 21 r3 08406 0943 0.8353 0.947 0.8467 0.906 0.8798 0.934 0.6974 0.908
ry 07859 0938 07798 0944 0.7864 0.929 0.8263 0.931 0.6510 0.912
30 r5 07089 0954 07137 0932 07349 0930 0.7412 0936 0.6154 0.926
16 re 09337 0950 09538 0.940 09711 0908 0.9708 0.927 0.7684 0.919
r; 08646 0946 0.8630 0.949 0.8547 0946 09261 0.934 0.6398 0.935
1 40 28 rg 07285 0954 07263 0.925 0.7438 0.935 0.7545 0.925 0.6313 0.922
r9 06770 0946 0.6754 0944 0.6755 0.929 0.7049 0.933 05737 0.928
40 rp 06169 0958 0.6206 0949 0.6232 0.918 0.6389 0945 0.5478 0.929
12 r; 09946 0930 09796 0.932 1.0073 0.899 1.1657 0.948 0.7269 0.929
r, 10369 0913 1.0425 0910 1.0366 0.870 1.3596 0.926  0.5340 0.937
2 30 21 r3 07495 0942 07478 0934 07382 0.896 0.8317 0.928 0.4430 0.899
ry 07498 0930 07546 0936 0.7352 0.897 0.8400 0.943 03345 0.883
30 r5 0.6242 0941 06235 0944 0.618 0920 0.6646 0940 0.2952 0.851
16 rs 08574 0936 0.8561 0.929 0.8661 0901 09752 0949 05871 0.918
r; 09150 0919 09059 0918 09037 0874 1.1058 0.929 0.3601 0.881
2 40 28 rg 06432 0944 0.6502 0.926 0.6385 0901 0.6848 0.928 04171 0.910
rg  0.6485 0943 0.6467 0947 0.6442 0913 07025 0954 03122 0.921
40 rp 05390 0929 05425 0930 05412 0931 05671 0.927 02316 0.924
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Table 8. Performance of five intervals for parameter T at 95% confidence/credible level.

ACI Log-ACI boot-p boot-t HPD
ML CR ML CR ML CR ML CR ML CR

12 1 1.6175 0916 1.7554 0967 15166 0940 19297 0917 0.8726 0.943

7 1.7039 0929 19149 0969 1.6197 0932 25585 0.926 0.8950 0.964

1 30 21 3 12299 0.898 12785 0971 11190 0926 1.3953 0.869 0.7844 0.923
T4 1.2941 0938 13479 0984 11740 0.939 14073 0.899 0.8024 0.939

30 15 1.0355 0903 1.0928 0969 09931 0912 1.1519 0855 0.7314 0.932

16 6 1.3038 0919 14666 0967 12953 0928 14851 0.872 0.8267 0.935

7 14511 0947 15596 0965 13603 0964 17695 0937 0.8186 0.943

1 40 28 8 1.0562 0913 1.0927 0957 09972 0925 1.1433 0.842 0.7466 0.935
9 1.0973 0925 1.1390 0.978 0.9998 0950 1.1409 0.853 0.7599 0.946

40 r;p 08999 0918 09425 0931 0.8440 0.909 09755 0.856  0.6805 0.935

12 181 1.6403 0.887 17112 0940 1.6033 0907 23597 0908 0.9013 0.974

&) 1.6261 0.828 1.8354 0921 1.6159 0.836 3.0288 0.901 0.8102 0.955

2 30 21 73 12802 0915 1.3498 0962 1.1854 0.898 1.6744 0928 0.7471 0.947
T4 1.3021 0904 14087 0956 12167 0.893 1.7890 0921 0.6722 0.923

30 15 1.0927 0913 11353 0959 1.0431 0920 12923 0935 0.6040 0.904

16 6 1.3698 0909 14672 0959 13660 0.920 1.8837 0.904 0.8272 0.962

7 14378 0.863 1.5051 0.928 1.3822 0.858 22717 0.927 0.6617 0.910

2 40 28 g 1.0769 0919 11608 0948 1.0362 0924 12871 0929 0.6265 0.923
79 1.1101 0906 1.1600 0.947 1.0756 0.907 13696 0.929 0.5176 0.858

40 rip 09302 0920 09736 0962 09062 0.937 1.0655 0916 0.4572 0.912

k n m CS

6. Authentic Data Analysis

Now, we introduce an authentic dataset and we analyze it by using the methods
developed above. This dataset was obtained from [23], which was analyzed in [5,24]
respectively. This dataset, presented in Table 9, describes the tensile strength of 100 tested
50mm carbon fibers and it is measured in giga-Pascals (GPa).

e 9. The tensile strength of 100 tested 50mm carbon fibers (units: GPa).

3.70
3.51
2.68
2.67
2.50
1.25
0.98

3.11
1.84
491
4.20
1.47
248
1.59

442
1.61
1.57
2.85
3.22
2.03
1.73

3.28
1.57
2.00
2.55
3.15
1.61
1.71

375 29 339 331 315 281 141 276 319 159 217
1.89 274 327 241 309 243 253 281 331 235 277
117 217 039 279 108 288 273 287 319 187 295
217 297 3.68 081 122 508 169 368 470 203 282
297 293 333 256 259 283 136 184 556 112 248
205 360 311 1.69 490 339 322 255 35 238 192
118 438 085 180 212  3.65

First, we test whether the distribution TN (y, 7) fits this real dataset well. In particular,
Ref. [24] compared the fitting results with many famous reliability distributions, such
as Rayleigh distribution, and Log-Logistic distribution, etc. They concluded that Log-
Logistic distribution has the best fitting effect. Therefore, we compare the fitting effect of
truncated normal distribution and Log-Logistic distribution with the PDF that is g(x) =
BHF1/(1+ (2)F)2x > 0.

Various criteria are applied for testing the goodness of fit of the model, such as the
negative log-likelihood function —In L, Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), and Kolmogorov-Smirnov (K-S) statistics with its p-value.
The corresponding definitions of the above criteria are given as

AIC=2x(d—1InLy(xq,- -+ ,x4]0)),
BIC=dxInn—2x1InLy(xy,---,x4|0),

here, 0 is a parameter vector, d is the number of parameters in the fitted model, In L; is
evaluated at the MLEs, and 7 is the number of observed values.
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Table 10 shows the MLEs of the parameters for each distribution, along with —InL,

AIC, BIC, K-S, and p-value corresponding to two distributions. Conspicuously, since the

truncated normal distribution has the lower statistics and higher p-value, it does fit the
complete sample well. Now, we can use this dataset for analysis.

Table 10. The fitting results of the two distributions.

Distribution MLEs —InL AIC BIC K-S p-Value

Log-logistic & =2.4900 f=4.1455 145.3980 294.7960 300.0064 0.086 0.4450
Truncated normal i =2.5948 1 =1.0499 141.7026 287.4052 292.6156 0.061 0.8505

Therefore, we randomly divide the given data into 50 groups, and each group has two
independent units. Thus, the first-failure censored data are obtained, as shown in Table 11.
In order to gain the PFF censored samples, we set m = 25 and give three different kinds of
censoring schemes, namely ¢; = (25,0*24),c; = (1*25), c3 = (0%24,25). Table 12 presents
the PFF censored samples under left censoring, middle censoring and right censoring.

Table 11. The first-failure censored sample when k = 2.

0.39
1.59
241
2.95

0.81
1.59
248
297

0.85
1.61
2.48
3.15

0.98
1.69
2.53
3.15

1.08 112 117 118 122 125 136 141 147 157 157
169 171 173 180 184 184 189 200 203 205 235
255 256 274 276 277 279 281 281 282 288 293
3.33

Table 12. PFF censored samples under the given censoring schemes when k = 2,n = 50, m = 25.

CS Progressive First-Failure Censored Sample

(25,0*24) 0.39 0.81 1.18 1.22 1.36 1.41 1.57 1.57 1.59 1.69 1.71 1.89 2.00 2.48 2.55
274 276 2.77 2.79 2.81 2.88 2.93 2.95 3.15 3.15

(1*25)  0.39 0.81 0.85 0.98 1.12 1.17 1.22 1.25 1.47 1.57 1.61 1.69 1.69 1.84 1.84
1.89 2.03 2.35 2.48 2.55 2.74 2.81 2.88 2.95 3.15

(0*24,25) 0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25 1.36 1.41 147 1.57 1.57
1.59 1.59 1.61 1.69 1.69 1.71 1.73 1.80 1.84 1.84

In Tables 13 and 14, the point estimates of parameters y and T are shown, respectively.
No informative prior is available for Bayesian estimation, so we apply non-informative
prior, and the four hyper-parameters are all around zero tightly and three loss functions
discussed before are taken into account. As for the two asymmetric loss functions, we
continue to use the parameters in the previous simulations, namely s = 0.5 and s = 1,
h = —0.5and h = 0.5. It can be seen from the table that there are some differences between
the estimated values obtained by different censoring schemes and different methods.
The parameter estimates based on censoring scheme c; are closest to the MLEs under the
full sample, while the estimates using the importance sampling are pervasively inclined
to be smaller compared with those gained by Lindley approximation. At the same time,
we construct 95% ACls, Log-AClIs, bootstrap, and HPD intervals, while Tables 15 and 16
display the corresponding results.
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Table 13. The MLEs and Bayes point estimates of y under loss functions SE, LX, and GE using
Lindley method and importance sampling (IS).

frx AGE

5 # PSE 05 s=1 h=—05 h—o5 ethed

(25,0°24)  2.6336  2.6505 26437 26369 26479 26427 Lindley
24832 25816 25045 26084  2.4944 IS

(1*25) 29511 29955 29844 29730 29918 29842  Lindley
23946 22490 22544 23295 202474 1S

(0'24,25) 22223 22531 22486 22439 22511 22469  Lindley
16379 15650 16454 16620  1.6181 1S

Table 14. The MLEs and Bayes point estimates of T under loss functions SE, LX, and GE using Lindley
method and importance sampling (IS).

TLx TGE
CS T TSE Method
s =0.5 s=1 h=—05 h=05

(25, 0*24) 0.8713  0.9339 0.9395 0.9237 1.0254 0.9942 Lindley
0.8181 0.7801 0.7658 0.9585 0.6788 IS

(1*25) 1.3183 1.3131 1.4738 1.4225 1.7830 1.7573 Lindley
0.8457 0.7945 1.4754 0.6544 0.8758 IS

(0*24, 25) 0.4833 0.3684 0.5404 0.5341 0.6642 0.6584 Lindley
0.3243 0.2499 0.1795 0.2615 0.1531 IS

Table 15. The five intervals at 95% confidence/credible level for p.

CSs ACI Log-ACI boot-t boot-p HPD

(25,0724) (2.3104, 2.9569) (2.3294, 2.9776) (2.2921,2.8931) (2.4000, 3.0126) (2.2930, 2.5557)
(1*25)  (2.5331,3.3690) (2.5614, 3.4000) (2.4597,3.3037) (2.6478, 3.6259) (2.2791, 2.3926)
(0%24,25) (1.9524, 2.4923) (1.9682,2.5093) (1.9084,2.4524) (2.0315,2.6746) (1.5961, 1.6336)

Table 16. The five intervals at 95% confidence/credible level for 7.

CS ACI Log-ACI boot-t boot-p HPD

(25,0°24) (0.3764, 1.3663) (0.4937, 1.5377) (0.4648, 1.4612) (0.5700, 1.6948) (0.4585, 1.1804)
(1*25)  (0.4364, 2.2001) (0.6753,2.5735) (0.5733,2.3430) (0.8539, 3.3265) (0.7697, 0.7727)
(0*24,25) (0.1603, 0.8063) (0.2477,0.9430) (0.2002, 0.8341) (0.3080, 1.2224) (0.2393, 0.2415)

In Figure 4, we have drawn four different estimated distribution function images,
and their corresponding parameters are MLEs under complete samples and censored sam-
ples with schemes c1, ¢ and c3. It is of considerable interest to see that the estimated curve
based on the censoring scheme c; = (25,0%24) is the closest to the estimated curve based
on full data, which indicates that the left censored data is the superior one. In the middle
part of the graphics, we can tell that the value of the estimated curve is underestimated
based on the censoring scheme ¢, = (1*25), and on the contrary, the value based on the
censoring scheme c3 = (0*24, 25) is overestimated.
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Figure 4. Four different estimated distribution functions based on MLEs.

7. Conclusions

Throughout the full article, we consider the classical and Bayesian inference for a
progressive first-failure censored left-truncated normal distribution. MLEs are derived
using an optimization technique and the Bayesian estimation is taken into account under
loss functions SE, LX, and GE. At the same time, confidence and credible intervals for
the parameters are constructed and compared with each other. In the simulation section,
MAB and MSE are taken into account for the point estimation while the ML and CR are
considered for the interval estimation.

When it comes to the point estimation, the performance of MLEs is satisfactory,
whereas the Bayesian estimation with proper informative prior is superior to MLEs in all
cases. According to the simulation study presented in this paper, the Bayesian estimates
with proper prior under loss function LX are the best among all estimates, and Lindley
approximation method is highly recommended. Moreover, in terms of interval estimation,
AClIs based on log-transformed MLEs have more accurate coverage rate than ACIs based
on MLEs. HPD credible intervals consistently have the shortest interval length compared
with other confidence intervals.

The truncated normal distribution is versatile as it possesses the flexibility of trunca-
tion and the superior properties of normal distribution. The research object in this article
is a progressive first-failure censored left-truncated normal distribution with a known
truncated point. In some cases, we may be interested in the position of the truncated point
so it is inevitable to estimate the unknown truncated point. Furthermore, the research
field of this censoring plan adding with binomial removals and competing risks can be
explored. In brief, it is still of great potential to conduct further research of truncated
normal distribution.
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