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Abstract: In this paper, we study possible mathematical connections of the Clifford algebra with
the su(N)-Lie algebra, or in more physical terms the links between space-time symmetry (Lorentz
invariance) and internal SU(N) gauge-symmetry for a massive spin one-half fermion described by
the Dirac equation. The related matrix algebra is worked out in particular for the SU(2) symmetry
and outlined as well for the color gauge group SU(3). Possible perspectives of this approach to
unification of symmetries are briefly discussed. The calculations make extensive use of tensor
multiplication of the matrices involved, whereby our focus is on revisiting the Coleman–Mandula
theorem. This permits us to construct unified symmetries between Lorentz invariance and gauge
symmetry in a direct product sense.

Keywords: extended Dirac equation; isospin; Clifford algebra; SU(N) symmetry

1. Introduction

Modern non-abelian gauge field theory started with the seminal paper by Yang and
Mills [1] in 1954, when they studied the conservation of isotopic spin and the associated
SU(2) gauge invariance. This subject was investigated in connection with the idea to
assemble the proton and neutron in a doublet to describe the nuclear force. Their emphasis
was on the gauge field equations, which resembled those of the electromagnetic field yet
revealed new non-linear couplings due to the algebraic properties of the symmetry group
involved. Quantum Yang–Mills theory has developed ever since into a cornerstone of the
modern Standard Model (SM) of elementary particle physics [2–4].

Here, we will start from scratch concerning the fermion sector of the SM and determine
various links of the general SU(N) symmetry with the properties of the fermion Clifford
algebra, as it is induced by the Lorentz transformation in Minkowski space-time. An explicit
example is then given in a subsequent section illustrating the mathematical approach by
which the symmetry group SU(2) can be incorporated in the standard Dirac equation in
the Weyl basis. They key point is that, instead of rotating the multiplet of Dirac spinors
under SU(N), one can equally well tensor-multiply the gamma matrices from the right
side by the related unit matrix 1N to accommodate the associated N-fold multiplet, thus
expanding the Dirac spinor to a 4N-component spinor. Thus, the essential question is then:
Is there a unitary transformation connecting these two versions of the Dirac equation?
The answer is yes, which is the main accomplishment of this paper, and the procedure
for how to obtain the required transformation will be described in detail. This approach
can easily be extended to products of symmetry groups for which an example is also
presented in the last section, and also permits us to construct unified symmetries between
Lorentz invariance and gauge symmetry in a direct product sense in compliance with the
Coleman–Mandula theorem [5].

Symmetry 2021, 13, 475. https://doi.org/10.3390/sym13030475 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2807-1268
https://orcid.org/0000-0002-5332-8881
https://doi.org/10.3390/sym13030475
https://doi.org/10.3390/sym13030475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13030475
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13030475?type=check_update&version=2


Symmetry 2021, 13, 475 2 of 9

2. The Standard Dirac Equation in the Weyl Basis

It is well known that the Lie algebra for the Lorentz group [2–4,6–9] can be decomposed
into two commuting sub-algebras, such that so(3, 1) = su(2)⊕ su(2). Their elements define
the generators of the SU(2)⊕ SU(2) representation of the LG. These algebraic relations are
constitutive for any other representation of the LG. The fundamental representation of the
SU(2) group in terms of the Pauli [10] matrix vector plays a key role in the representation
of the Lorentz group. These matrices read as follows

σ =

((
0 1
1 0

)
,
(

0 −i
i 0

)
,
(

1 0
0 −1

))
. (1)

In this section, we will closely follow the reasoning and nomenclature of the previous
work by Marsch and Narita [11–14]. The Pauli matrices obey σxσyσz = i12 and mutually
anticommute with each other. In addition, σ2

j = 12 for j = 1, 2, 3. Using the algebra of these
matrices, we can write the Dirac gamma matrices in the Weyl basis as follows

γµ = (γ0, γ) = (σx ⊗ 12, iσy ⊗ σ), (2)

where the symbol ⊗ stands for the tensor product of the involved matrices. The properties
of the above Pauli matrices guarantee the validity of the Clifford algebra

γµγν + γνγµ = 2gµν14, (3)

which ensures Lorentz invariance. Conventionally, the physical spin-doublet degree of
freedom is described by the three-vector of the sigma matrices on the right, whereas the
particle-antiparticle degree of freedom is taken care of by the Pauli matrices on the left side
of the above tensor product. For completeness we quote finally the Dirac equation

γµi∂µψ = mψ, (4)

acting on the four-component Dirac spinor ψ for a spin-one-half fermion of mass m. We
use units in which the speed of light c = 1, and the Planck constant is unity as well, which
are convenient in quantum field theory to ease the notation. Here, as usually, ∂µ = (∂t, ∂x)
is the covariant derivative in the Minkowski space-time of special relativity. How can any
other internal additional degrees of freedom be considered adequately, for example the
N degrees of freedom as described by the general SU(N) symmetry group? This issue is
dealt with in the next section.

3. Connecting SU(N) Symmetry with the Dirac Equation

According to modern Yangs–Mills theory [1,4] for a multiplet of N fermions, these
particles are assumed to transform under the SU(N) symmetry group as a complex N-
vector Ψ with N Dirac spinors as entries. Each generator Ga of the group is associated with
a bosonic vector field Aa

µ(x), with x = xµ = (t, x), and these fields enter the Dirac equation
as a connection in the covariant derivative in the form

Dµ = ∂µ − i g Aa
µ(x)Ga, (5)

whereby g is the single coupling constant, and the superscript a runs over the integers
numbering the generators of the group. As usual convention, a is to be summed over
when appearing twice. For given N there are N2 − 1 generators of a particular SU(N) Lie
group, so that a runs from 1 to N2 − 1. Any general group element can then be written
as exponential

E(x) = exp (iθa(x) Ga), (6)
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where θa(x) are parameter functions of x in the case of local SU(N) symmetry, or constants
in the case of global symmetry. The complex N-vector reads

Ψ† = (ψ†
1 , ψ†

2 , ....., ψ†
N), (7)

and the related gamma matrix is to be defined as

Γµ = 1N ⊗ γµ, (8)

so that the standard Dirac gamma matrices are acting on each component of the spinor
multiplet, and therefore we have Γµi∂µΨ = mΨ. Each fermion in the multiplet is assumed
here to have the same mass m, which may of course also be set to zero, which is normally
done in the Standard Model (SM). The coupling of the fermions to the gauge fields is given
by the conventional Dirac equation involving the covariant derivate (5) as follows

ΓµiDµΨ = mΨ. (9)

Our key goal in this paper was to find a way to transform (9) into another new form
in which the gamma matrices can be written

Γ̃µ = γµ ⊗ 1N, (10)

and then the Dirac equation attains the formally similar appearance as above

Γ̃µiDµΨ̃ = mΨ̃. (11)

Yet, the physical interpretation is different, because Ψ is an N-vector with standard
Dirac spinors as elements, whereas Ψ̃ is a single Dirac spinor, yet each of its four compo-
nents is an N-vector (of complex-numbers) reflecting the degrees of freedom associated
with the dimension N of the SU(N) symmetry group. The key question is then: Is there a
unitary transformation connecting these two versions of the Dirac equation? Before we
discuss this in more detail, we consider the simplest example of a non-abelian symmetry.

4. The SU(2) Symmetry as Explicit Example

Therefore, let us consider, due to its transparency, the SU(2) symmetry explicitly.
Then, according to (8), we can write the Dirac gammas in extended form in terms of 8× 8
matrices as follows

Γµ =




0 12 0 0
12 0 0 0
0 0 0 12
0 0 12 0

,


0 σ 0 0
−σ 0 0 0

0 0 0 σ
0 0 −σ 0


, (12)

By means of the unitary transformation V (involving U that exchanges the inner
columns and rows) given by the 8× 8 matrix

V = U ⊗ 12 =


12 0 0 0
0 0 12 0
0 12 0 0
0 0 0 12

, (13)

and which the U obeys V† = V−1 = V, we can cast the gamma matrices in a form similar
to that we introduced already in (2). One obtains

Γ̂µ = (σx ⊗ 12 ⊗ 12, iσy ⊗ 12 ⊗ σ). (14)
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Here, Γ̂
µ
= VΓµV, and thus Ψ̂ = VΨ. Apparently, the two SU(2) degrees of freedom

appear now at a different location of the tensor products involved as compared with (12).
However, the Equation (14) does not quite yet have the desired form as suggested in (10).
To obtain it, we need to further unitarily transform Γ̂

µ by help of W = 12 ⊗ U (with
W−1 = W† = W). Then, we finally obtain

Γ̃µ = WΓ̂
µW = (σx ⊗ 12 ⊗ 12, iσy ⊗ σ ⊗ 12) = γµ ⊗ 12. (15)

The spin operator of the Dirac equation based on these gamma matrices is now given
by S = 1

212⊗σ⊗ 12, and there is a related isospin I = 1
214⊗σ, which obviously commutes

with the spin S and the gamma matrices as defined in (15) above and directly corresponds
to the generators of SU(2). This result reproduces some of the derivations made by Marsch
and Narita [14], who started from the extended Dirac equation established by them on the
basis of the four-vector representation of the Lorentz group, but it goes somewhat further.

The general group element of SU(2) can, by help of the isospin after (6), thus be
written as the exponential

E(x) = exp (iλ(x) · I), (16)

which is nothing but the general phase permitted under the SU(2) symmetry for the bi-
spinor Ψ̃. The angular parameter theta is now a three-vector. Written out explicitly, the
spin operator reads

S = 1
2




0 12 0 0
12 0 0 0
0 0 0 12
0 0 12 0

,


0 −i12 0 0

i12 0 0 0
0 0 0 −i12
0 0 i12 0

,


12 0 0 0
0 −12 0 0
0 0 12 0
0 0 0 −12


. (17)

For comparison with the isospin I, we can write the gamma matrices in the for-
mat reading

Γ̃µ = (Γ̃0, Γ̃) =

((
0 14
14 0

)
,
(

0 σ ⊗ 12
−σ ⊗ 12 0

))
. (18)

When multiplying the respective matrices mutually which each other, it becomes
obvious that the commutator holds:

[
I, Γ̃µ

]
= 0. Therefore, the isospin commutes with the

Dirac kinetic operator Γ̃µi∂µ, and for constant three-vector θ the group element E as given
in (16) commutes with it as well.

5. The Extended Dirac Equation Involving SU(N)

The example given in the previous section illustrates the mathematical approach by
which the symmetry group SU(2) can be formally incorporated in the standard Dirac
equation. Yet, instead of rotating the doublet of Dirac spinors under SU(2), we can also
tensor-multiply the gamma matrices from the right side to include the doublet. Conse-
quently, in the general case of SU(N) we can, instead of using the common procedure
described by (8), also expand the Pauli matrices by tensor multiplication of (1) with 1N
from the right, thus obtaining their trivially generalized form

σ̃N =

((
0 1N
1N 0

)
,
(

0 −i1N
i1N 0

)
,
(

1N 0
0 −1N

))
= σ ⊗ 1N. (19)

As a result, the Pauli spinor now is φ†
N = (φ†

1(N), φ†
2(N)), whereby its two compo-

nents become complex vectors transforming under SU(N), i.e., φ†(N) = (c1, c2, ...., cN).
Moreover, we get the same number of degrees of freedom as before, but formally the ones
associated with SU(N) are subsumed in the components of the spin vector σ̃N. Therefore,
the extended Dirac matrices now read

Γ̃µ = γµ ⊗ 1N = (σx ⊗ 12 ⊗ 1N, iσy ⊗ σ ⊗ 1N) = (σx ⊗ 12N, iσy ⊗ σ̃N). (20)
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The corresponding Clifford algebra takes the form

Γ̃µΓ̃ν + Γ̃νΓ̃µ = 2gµν14N, (21)

and the spin (rotation) and rapidity (boost) operators attain the shape

SN =
1
2
(12 ⊗ σN), RN =

i
2
(−σz ⊗ σN). (22)

They obey the standard Lorentz algebra, yielding SN × SN = iSN, RN × RN =
−iSN; RN × SN = SN × RN = iRN. Considering any SU(N) generator Ga being an
N × N matrix, we can define the related symmetry operator as a tensor-product matrix

Sa = 14 ⊗ Ga, (23)

which by definition commutes with all the relevant operators of the Dirac equation as given
in the Equations (20) and (22). Thus, we have the important relations[

Sa, Γ̃µ
]
= 0,

[
Sa, Γ̃5

]
= 0, [Sa, S] = [Sa, R] = 0. (24)

They express the key requirement imposed on any quantum field theory by the famous
Coleman–Mandula theorem [5], stating that “space-time and internal symmetries cannot
be combined in any but a trivial way”, which is to say for our case that they must be
connected as a direct product by simple tensor multiplication. Then, the general permitted
phase P̃ of the spinor Ψ̃ solving the expanded Dirac equation can be written as

P̃(x) = exp (iθa(x) Sa), (25)

where the phase angle N-vector theta has N components which may depend on the space-
time variable x for local SU(N) symmetry, or be constant for global symmetry. As before,
the index a runs from 1 to N. In analogy to (6), P̃(x) is just the representation of any
element of the SU(N) Lie group. The generators Sa form a Lie algebra defined through the
commutation relations [

Sa, Sb
]
= i f abcSc, (26)

with the known structure constants of the algebra [1,4], which are not affected by the trivial
extension Formula (23). For N = 2, we just retain the angular momentum algebra of
the isospin I = 1

214 ⊗ σ. The unitary transformation (13) given above was essential for
obtaining the results of this section dealing with SU(2) symmetry. We cannot explicity give
the general transformation for SU(N), but for N = 3 related with the color symmetry of
Quantum Chromodynamics (QCD) we also found the relevant unitary matrix.

6. The Unitary Transformation for SU(3) Symmetry

The symmetry group SU(3) plays a key role in the strong interactions of the SM [2–4].
Therefore, we discuss in this section the matrix that provides the required transformation
from (8) to (10) for the Gamma matrices. Corresponding to (19), we first define the spin
matrix vector

σN = 1N ⊗ σ. (27)

Now we are dealing with the special case σ3 = 13 ⊗ σ and σ̃3 = σ ⊗ 13. The sought
for unitary transformation matrix X (with X−1 = X†) is given by the 6× 6-matrix that
delivers the connection

Xσ3xX† = σ̃3x. (28)
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After some tedious trials, we find that it has to be

X =



0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0

, X−1 = X† =



0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

. (29)

Thus, we obtain the relations Xσ3xX† = σ̃3x, Xσ3yX† = −σ̃3y and finally Xσ3zX† =
−σ̃3z. This yields as it should σ3xσ3yσ3z = i16. Note that the sign in front of the y-component
and z-component of sigma is just a phase factor being without importance for the algebra
of the sigmas.

Let us, as a brief interlude, discuss another example for the extended Pauli matrix
vector for the group SU(3). Other than the definition of σ3 above, we may consider the, at
a first sight apparently less trivial, version

σ̂3 =

 σx 0 0
0 σy 0
0 0 σz

,

 σy 0 0
0 σz 0
0 0 σx

,

 σz 0 0
0 σx 0
0 0 σy

. (30)

It has the same algebraic properties as the Pauli matrices (1), but manifestly reflects
the three degrees of freedom of SU(3). In the top position of the matrix diagonal, we
have already the three Pauli matrices. By changing the basis for the middle and bottom
positions, one can however transform their three components to attain the standard form
as used in the top. Therefore, after adequate unitary transformations we can recover the
original simple definition σ3 = 13 ⊗ σ, we started with previously. The highly symmetric
form in (30) obtained by cyclic permutation is only possible for SU(3), though, since the
three dimensions of its matrices in fundamental representation correspond to the three
axes spanning the real three-dimensional space, for the rotation of which the three Pauli
matrices provide the generators.

Let us return to the original Dirac equation for SU(3), which reads

Γµ = 13 ⊗ (γ0, γ) = (13 ⊗ σx ⊗ 12, 13 ⊗ iσy ⊗ σ), (31)

which we want to bring into the form

Γ̃µ = (γ0, γ)⊗ 13 = (σx ⊗ 12 ⊗ 13, iσy ⊗ σ ⊗ 13). (32)

For that purpose we define, in analogy to the previous case for SU(2), the following
matrices

Y = X⊗ 12, Y† = X† ⊗ 12; Z = 12 ⊗ X, Z† = 12 ⊗ X†, (33)

by which we obtain for the combined transformation the concise result

ZY Γ0,2,3 Y†Z† = Γ̃0,2,3, ZY Γ1 Y†Z† = −Γ̃1, (34)

whereby we have to carefully obey the sequence of the multiplications and use the associa-
tive law of tensor multiplication of matrices. Additionally note that YZ is not equal to ZY.
Both Y and Z are fairly large 12× 12 matrices. The spinor field Ψ thereby transforms as
Ψ̃ = ZYΨ. The minus sign at the 1-component has no physical meaning, as the Clifford
algebra is not affected by it, which has its origin in the transformation properties of σ3
according to the matrix X in (29). Therefore, Γµ and Γ̃µ are unitarily equivalent, which is the
main point we wanted to show. The general phase operator of Ψ̃ for the SU(3) symmetry
group then reads

P̃(x) = exp (iθa(x) 14 ⊗ Ga), (35)



Symmetry 2021, 13, 475 7 of 9

where Ga denotes a standard generator of SU(3), and the index a runs from 1 to 8. The
previous general considerations of Section 5 remain of course valid for the present case of
N = 3.

7. Partial Unification of Symmetries

The intention of this last section is to include several symmetry groups of SU(N)
for various N in the extended Dirac equation, for example, the unified SU(2) ⊗ SU(4)
symmetry as discussed in references [11,12], which also contain a table of the SU(4) group.
We concentrate below on SU(3) (a subgroup of SU(4)), which is relevant for the strong
interactions of colored quarks. The common dimension of the matrices involved then
is eight (2× 4 = 8). Following the previous reasoning, we shall employ therefore the
following extended Dirac equation

Γµ = γµ ⊗ 18, Γ5 = γ5 ⊗ 18. (36)

Although we will mainly consider SU(3) as a subgroup of SU(4), we shall retain the
fifteenth element of the latter group, which commutes with all the elements of the subgroup
SU(3), and is represented by the diagonal 4× 4 hypercharge matrix operator

h =
1

2
√

3


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

. (37)

It has a vanishing trace and is normalized such that Trace(h2) = 1. The elements of
SU(3) as subgroup of SU(4) are named Ga (with index a running from 1 to 8) then have
the appearance of the matrix (37), yet with different normalization factor, and −3 being
replaced by 0, and the remaining 3× 3 unit matrix by the elements of SU(3). Therefore, Ga

commutes with h. We can then define the corresponding 32× 32 matrices as

Sa = 14 ⊗ 12 ⊗ Ga. (38)

The second dimensional factor is needed to accommodate commutation with the
elements of the symmetry group SU(2). These elements are given by the Pauli matrices
in Equation (1). Consistently with the extended Dirac equation, the isospin matrices also
need to be formally extended to 32× 32 matrices as follows

I =
1
2
14 ⊗ σ ⊗ 14. (39)

Comparison of Equations (38) and (39) with (36) shows that the gamma matrices
commute with all elements of both symmetry groups. The tensor product notation makes
this fact transparaent. The same conclusion also holds for the hypercharge operator H,
which is adequately defined as

H = 14 ⊗ 12 ⊗ h. (40)

Collecting all terms, we can therefore write the summed up and unified symmetry-
group elements following the notation of (16) and (25) in the concise exponential form

P(x) = exp (iϕ(x)132) exp (iλ(x) · I) exp (iθa(x) Sa) exp (iθ(x) H). (41)

The first exponential factor just considers a trivial phase. For local symmetries the
various parameters are assumed to vary in space-time, for global they are all constant.
Close inspection and comparison of the Equations (38), (39) and (36) confirms that all the
group elements of SU(2) and SU(3)⊕ H commute with each other, and so also do all the
related exponential functions that appear in (41), which can therefore also be written as a
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single exponential function. In association with this general phase operator, after (5) the
summed up covariant derivate (for ϕ = 0) is given as

Dµ = ∂µ − i
(

gUµ(x) · I + g′Va
µ (x) Sa + g′′Bµ(x) H

)
, (42)

where g is the coupling constant for SU(2), g′ for SU(3) and g′′ for H. Here, the related
gauge four-vector fields are Va

µ (x) for SU(3) (with a running from 1 to 8), Bµ(x) for the hy-
percharge H and the three-vector field Uµ(x) for SU(2). In this approach of unified gauge
symmetry we followed the unification model suggested by Marsch and Narita [11,12].

8. Summary and Conclusions

In conclusion, we may say that various ways exist to unite SU(N) symmetry with the
standard Dirac equation for a spin-one-half fermion with its four (particle/antiparticle and
spin up/down) degrees of freedom. Instead of transforming the Dirac spinor multiplet (7)
under SU(N) with the transformation (6), we may extend the Dirac equation by tensor-
multiplication at the right to obtain the related gamma matrices as Γ̃µ = γµ ⊗ 1N, which
also have the dimension of 4N. By repeated multiplications, we can even accommodate
several symmetry groups together in a single Dirac equation. This possibility was briefly
evaluated in the previous section.

Of course, the mathematical scheme discussed here can be easily extended to larger
symmetry groups, many of which have been discussed in the ample literature. In partic-
ular, the group SU(5) has been proposed [15] or SO(10) [16], which can accommodate
all fermions of the first family in a sixteen-component spinor representation. Lucid in-
troductions into the subject of unification of gauge interactions can be found in the cited
textbooks [2–4] and the recent concise textbook of Fritzsch [17] for German readership.

Finally, we want to recall that chiral symmetry is also valid for the massless extended
Dirac equation, for which then the projection operator P̃± = 1

2 (14N ± Γ̃5) after (24) com-
mutes as well with all the SU(N) symmetry elements as defined in (23). Consequently,
for m = 0 this symmetry applies separately to the left- and right-chiral extended Weyl
spinor fields.
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