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Abstract: A nonlinear quantum boundary value problem (q-FBVP) formulated in the sense of
quantum Caputo derivative, with fractional q-integro-difference conditions along with its fractional
quantum-difference inclusion q-BVP are investigated in this research. To prove the solutions’ existence
for these quantum systems, we rely on the notions such as the condensing functions and approximate
endpoint criterion (AEPC). Two numerical examples are provided to apply and validate our main
results in this research work.
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1. Introduction

It is a fact supported by many researchers that fractional calculus (FC) establishes
a flexible extension for the classical one to arbitrary orders. FC has attracted particular
attention from many researchers of mathematics, applied sciences, and engineering because
of the various important applications of this field in modeling certain scientific phenomena
and complex physical systems. Modeling systems using fractional derivatives can provide
a good interpretation of the physical behavior of the studied systems due to the nonlocality
and memory effects that have been exhibited in some systems. Some studies have been
conducted on the mathematical analysis of FC and its applications such as European op-
tion pricing models [1], p-Laplacian nonperiodic nonlinear boundary value problem [2],
nonlocal Cauchy problem [3], economic models involving time fractal [4], complex in-
tegral [5], incompressible second-grade fluid models [6], complex-valued functions of a
real variable [7], and separated homotopy method [8]. Likewise, quantum calculus is a
corresponding field of the standard infinitesimal one without the concept of limits. In spite
of the long history that they already have, both theories are in the field of mathematical
analysis, the investigation of their properties has emerged not so long ago. The quantum
fractional calculus (q-fractional calculus), considered as the fractional correspondence of
the q-calculus, was initially proposed by Jackson [9–11]. Researchers such as Al-Salam [12]
and Agarwal [13] gave a great boost to the fractional q-calculus and obtained important
theoretical results. Based on these results, the fractional q-calculus has emerged as an
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instrument with great potential in the field of applications [14–17]. Even in recent years,
many articles have been appeared on quantum integro-difference boundary value problems
(BVPs), which are valuable abstract tools for modeling many phenomena in various fields
of science [18–30].

Asawasamrit et al. [31] provided a multi-term q-integro-difference equation subject to
nonlocal multi-quantum integral conditions displayed as

R
q1
D

ς
0+}(r) = φ(r,}(r), R

q2
I

σ1
0+}(r)), (r ∈ [0, K]),

}(0) = 0, νR
q3
Iσ2

0+}(η1) =
R
q4
I

σ3
0+}(η2),

where q1, q2, q3, q4 ∈ (0, 1), ς ∈ (1, 2), σ1, σ2, σ3 > 0, η1, η2 ∈ (0, K) and ν ∈ R. The approach
implemented by them to arrive at the existence property of solutions for the suggested
q-BVP is based on the fixed-point techniques [31]. After that in 2015, Etemad, Ettefagh and
Rezapour [32] concerned the three-term q-difference FBVP

(C
qD

ς
0+})(r) = w(r,}(r), C

qD
1
0+}(r)),

with four-point q-integro-difference conditions

λ1}(0) + ζ1
C

qD
1
0+}(0) = m1

R
qI

β
0+}(ξ1) = m1

∫ ξ1

0

(ξ1 − qv)(β−1)

Γq(β)
}(v)dqv,

λ2}(1) + ζ2
C

qD
1
0+}(1) = m2

R
qI

β
0+}(ξ2) = m2

∫ ξ2

0

(ξ2 − qv)(β−1)

Γq(β)
}(v)dqv,

where 0 ≤ r ≤ 1, 1 < ς ≤ 2, q ∈ (0, 1), β ∈ (0, 2], λ1, λ2, ζ1, ζ2, m1, m2 ∈ R and ξ1, ξ2 ∈
(0, 1) with ξ1 < ξ2. Ntouyas and Samei [33] turned to studying the solutions’ existence for
the q-integro-difference FBVP

C
qD

ς
0+h(r) = w(r, h(r), (φ1h)(r), (φ2h)(r), C

qD
ς1
0+h(r), C

qD
ς2
0+h(r), . . . , C

qD
ςn
0+h(r)),

via boundary conditions h(0) + ah(1) = 0 and h′(0) + bh′(1) = 0, in which r ∈ [0, 1],
q ∈ (0, 1), 1 < ς < 2, ςk ∈ (0, 1) with k = 1, 2, . . . , n, a, b 6= −1, φm are defined by the rule

(φmh)(r) =
∫ r

0
µm(r, v)h(v)dqv for m = 1, 2 and w : [0, 1]×Rn+3 → R is assumed to be

continuous with respect to all (n + 4) variables [33].
Stimulated by the above research studies, the following proposed nonlinear Caputo

fractional quantum BVP is furnished with the fractional quantum integro-conditions:

C
qD

ς
0+}(r) = ϕ∗(r,}(r)), (ς ∈ (2, 3), q ∈ (0, 1)),

}(0) + }(ξ) = `1
R
qI

σ
0+}(1), (`1 ∈ R>0),

C
qD

$
0+}(0) +

C
qD

$
0+}(ξ) = `2

R
qI

σ
0+
[C

qD
$
0+}
]
(1), (`2 ∈ R>0),

C
qD

1
0+}(0) +

C
qD

1
0+}(ξ) = `3

R
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σ
0+
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qD
1
0+}
]
(1), (`3 ∈ R>0),

(1)

along with its inclusion version given by

C
qD

ς
0+}(r) ∈ T∗(r,}(r)), (ς ∈ (2, 3), q ∈ (0, 1)),

}(0) + }(ξ) = `1
R
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1
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(2)
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where r ∈ [0, 1], ξ ∈ (0, 1), $ ∈ (1, 2) and σ > 0. Two operators C
qD

(·)
0+ and R

qI
(·)
0+ represent

the Caputo quantum derivative (CpQD) and the Riemann-Liouville quantum integral
(RLQI). Furthermore, continuous single-valued function ϕ∗ : [0, 1]×R → R and multi-
valued function T∗ : [0, 1]×R→ P(R) are assumed to be arbitrary equipped with some
required specifications that will be explained subsequently. In comparison to other re-
searches on the quantum difference BVPs that were published in the literature, we here
deal with two abstract and extended structures of new fractional quantum difference
equations/inclusions via q-integro-difference conditions in which the existing property of
the relevant solutions is derived by terms of new notions of the functional analysis such as
the condensing maps and the measure of noncompactness and the approximate endpoint
criterion. These procedures on the suggested q-difference-BVPs (1) and (2) have been
implemented in a limited range of research studies on the quantum fractional modelings.
This yields the novelty and our main motivation to finalize this manuscript.

This research scheme is outlined as follows: We present the main concepts of the
quantum calculus in Section 2. Our main results caused by new fixed-point approaches
about solutions’ existence of quantum BVP (1) and (2) will be obtained in Section 3. In
Section 4, two numerical examples will be provided to support and validate our obtained
results. A conclusion about our research work will be stated in Section 5.

2. Fundamental Preliminaries

In this section, some important issues in the sense of q-calculus are discussed. We
suppose that 0 < q < 1. On the function (m1 −m2)

n given for n ∈ N0, its q-analogue is
defined by (m1 −m2)

(0) = 1, and

(m1 −m2)
(n) =

n−1

∏
k=0

(m1 −m2qk),

so that m1, m2 ∈ R and N0 := {0, 1, 2, . . . } [17]. Now, n = ς is a constant which is assumed
to be contained in R. Let us now display the follwoing q-analogue of the existing power
mapping (m1 −m2)

n in a q-fractional settings:

(m1 −m2)
(ς) = mς

1

∞

∏
n=0

1− (m2
m1

)qn

1− (m2
m1

)qς+n , (3)

for m1 6= 0. We note that by having m2 = 0, an equality m(ς)
1 = mς

1 is obtained
immediately [17]. For the given real number m1 ∈ R, a q-number [m1]q is expressed as:

[m1]q =
1− qm1

1− q
= qm1−1 + · · ·+ q + 1.

The q-Gamma function is illustrated using the following format:

Γq(r) =
(1− q)(r−1)

(1− q)r−1 , (4)

so that r ∈ R \ {0,−1,−2, . . .} [9,17]. It is notable that Γq(r + 1) = [r]qΓq(r) is valid [9].
A pseudo-code inspired by (3) and (4) is proposed in Algorithm 1 for computing various
Gamma function’s values in the proposed quantum settings.

Given a real-valued continuous function }, the quantum derivative of this function
can be formulated by:

( qD0+})(r) =
}(r)− }(qr)
(1− q)r

, (5)

and also ( qD0+})(0) = limr→0( qD0+})(r) [34]. Given a function }, the quantum deriva-
tive of this function can be extended to an arbitrary higher order by ( qD

n
0+})(r) =
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qD0+( qD
n−1
0+ })(r) for any n ∈ N [34]. Obviously, we notice that ( qD

0
0+})(r) = }(r).

Similarly, for computing this kind of q-derivative of }, in Algorithm 2, we propose a
pseudo-code inspired by (5).

Algorithm 1 Pseudo-code for Γq(ς):

Require: ς ∈ R\{0} ∪Z−, q ∈ (0, 1), n
1: w← 1
2: for l = 0 to n do
3: w← w((1− ql+1)/(1− qς+l))
4: end for
5: Γq(ς)← w/(1− q)ς−1

Ensure: Γq(ς)

Algorithm 2 Pseudo-code for qD0+}(r):

Require: q ∈ (0, 1), }(r), r
1: syms b
2: if r = 0 then
3: φ← lim((}(b)− }(q ∗ b))/((1− q)b), b, 0)
4: else
5: φ← (}(r)− }(q ∗ r))/((1− q) ∗ r)
6: end if

Ensure: qD0+}(r)

Given continuous map } : [0, m2]→ R, the quantum integral of this function can be
expressed as:

( qI0+})(r) =
∫ r

0
}(v)dqv = r(1− q)

∞

∑
k=0

}(rqk)qk, (r ∈ [0, m2]) (6)

provided the absolute convergence of the existing series holds [34]. The quantum integral
of } can be similarly extended like quantum derivative to an arbitrary higher order using
an iterative rule ( qI

n
0+})(r) = qI0+( qI

n−1
0+ })(r) for all n ≥ 1 [34]. Moreover, it is clear to

note that ( qI
0
0+})(r) = }(r). A pseudo-code caused by (6) is proposed in in Algorithm 3.

We now suppose that m1 ∈ [0, m2]. This time, the similar q-operator of } from m1 to m2 can
be defined in this case as follows:∫ m2

m1

}(v)dqv = qI0+}(m2)− qI0+}(m1)

=
∫ m2

0
}(v)dqv−

∫ m1

0
}(v)dqv

= (1− q)
∞

∑
k=0

[m2}(m2qk)−m1}(m1qk)]qk, (7)

when the series exists [34]. A proposed pseudo-code caused by (7) is organized in
Algorithm 4 for such a purpose.

If we assume that a function } is continuous at r = 0, then ( qI0+ qD0+})(r) =
}(r) − }(0) is obtained [34]. Moreover, the equality ( qD0+ qI0+})(r) = }(r) holds for
each r. By considering a real number ς ≥ 0 in this case such that n − 1 < ς < n, i.e.,
n = [ς] + 1, for given function } ∈ CR([0,+∞)), the RLQI of } is introduced by:

R
qI

ς
0+}(r) =

1
Γq(ς)

∫ r

0
(r− qv)(ς−1)}(v)dqv, ς > 0
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provided that the above value is finite and R
qI

0
0+}(r) = }(r) [35,36]. Further, the semi-

group specification for the mentioned q-operator occurs such that R
qI

ς1
0+ (R

qI
ς2
0+})(r) =

R
qI

ς1+ς2
0+ }(r) for σ1, σ2 ≥ 0 [35]. For θ ∈ (−1, ∞),

R
qI

ς
0+rθ =

Γq(θ + 1)
Γq(θ + ς + 1)

rθ+ς, (r > 0).

It is evident that if we take θ = 0, then R
qI

ς
0+1(r) =

1
Γq(ς + 1)

rς for any r > 0. Given a

function } ∈ C(n)R ([0,+∞)), the CpQD for this function is formulated by:

C
qD

ς
0+}(r) =

1
Γq(n− ς)

∫ r

0
(r− qv)(n−ς−1)

qD
n
0+}(v)dqv,

if the integral exists [35,36]. The following property is valid:

C
qD

ς
0+rθ =

Γq(θ + 1)
Γq(θ − ς + 1)

rθ−ς, (r > 0).

It is evident that C
qD

ς
0+1(r) = 0 for any r > 0. For instance, by letting θ = 2, q = 0.5

and }(r) = r2, we have
C
0.5D

ς
0+r2 =

Γ0.5(3)
Γ0.5(3− ς)

r2−ς.

In this direction, the graph of the CpQD for the function }(r) = r2 for q = 0.5 is
available in Figure 1.

Algorithm 3 Pseudo-code for qI
ς
0+}(r):

Require: ς, n, }(r), r, q ∈ (0, 1)
1: P← 0
2: for k = 0 to n do
3: φ← (1− qk+1)ς−1

4: P← P + φ ∗ qk ∗ }(r ∗ qk)
5: end for
6: ψ← (rς ∗ (1− q) ∗ P)/(Γq(r))

Ensure: qI
ς
0+}(r)

Algorithm 4 Pseudo-code for
∫ m2

m1

}(v)dqv:

Require: }(r), m1, k, m2, q ∈ (0, 1)
1: P← 0
2: for l = 0 : k do
3: P← P + ql ∗ (m2 ∗ }(m2 ∗ ql)−m1 ∗ }(m1 ∗ ql))
4: end for
5: φ← (1− q) ∗ P

Ensure:
∫ m2

m1

}(v)dqv
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Figure 1. The graph of the Caputo q-derivative of }(r) = r2 for q = 0.5.

Lemma 1 ([37]). Assume that n− 1 < ς < n and } ∈ C(n)R ([0,+∞)). Then, we have:

(C
qI

ς
0+

C
qD

ς
0+})(r) = }(r)−

n−1

∑
k=0

rk

Γq(k + 1)
( qD

k
0+})(0).

According to the above lemma, the given fractional quantum differential equation,
C

qD
ς
0+}(r) = 0, has a general solution which is obtained by }(r) = µ̃0 + µ̃1r + µ̃2r2 + · · ·+

µ̃n−1rn−1 so that µ̃0, . . . , µ̃n−1 ∈ R, and n = [ς] + 1 [37]. It is worth noting that for each
continuous }, according to Lemma 1, we get:

(R
qI

ς
0+

C
qD

ς
0+})(r) = }(r) + µ̃0 + µ̃1r + µ̃2r2 + · · ·+ µ̃n−1rn−1,

where µ̃0, . . . , µ̃n−1 illustrate constants contained in R, and n = [ς] + 1 [37].
Next, we recall some essential inequalities and concepts. The Kuratowski measure of

noncompactness O is defined by

O(H) := inf{ε > 0 : H =
n⋃

k=1

Hk and diam (Hk) ≤ ε for k = 1, . . . , n},

where diam(Hk) = sup{|}− }′| : },}′ ∈ Hk} andH is bounded subset of Banach space A.
Moreover, it is identified that 0 ≤ O(H) ≤ diam (H) < +∞ [38].

Lemma 2 ([38]). Consider the bounded subsetsH,H1 andH2 of an arbitrary real Banach space
A. Then, the following conditions hold:

(C1) O(H) = 0 iffH is precompact;

(C2) O(H) = O(H̄) = O(cnvx(H)), where H̄ and cnvx(H) are the closure and convex hull
ofH;

(C3) ifH1 ⊆ H2, then O(H1) ≤ O(H2);

(C4) ∀κ ∈ R, O(κ +H) ≤ O(H);
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(C5) ∀κ ∈ R, O(κH) = |κ|O(H);

(C6) O(H1 +H2) ≤ O(H1) +O(H2), whereH1 +H2 = {}1 + }2;}1 ∈ H1,}2 ∈ H2};
(C7) O(H1 ∪H2) ≤ max{O(H1) +O(H2)}.

Lemma 3 ([39]). Regard A as a Banach space. Then, for each bounded setH ⊆ A, a countable set
H0 ⊆ H exists subject to O(H) ≤ 2O(H0).

Lemma 4 ([38]). Regard A as a Banach space. LetH be bounded and equi-continuous set contained
in CA([a, b]). Then, O(H(r)) is continuous on [a, b], and we have O(H) = supr∈[a,b]O(H(r)).

Lemma 5 ([38]). Let A be a Banach space. Let H = {}n}n≥1 ⊆ CA([a, b]) be bounded and
countable set. Then, O(H(r)) is Lebesgue integrable on [a, b], and we have:

O
({∫ r

0
}n(v) dv

}
n≥1

)
≤ 2

∫ r

0
O({}n(v)}n≥1) dv.

Definition 1 ([38]). Regard A as a Banach space and ϕ∗ : S ⊂ A → A as a bounded and
continuous operator. Then, the map ϕ∗ is termed condensing if for any bounded closed setH ⊆ S ,
the inequality O(ϕ∗(H)) < O(H) holds.

Theorem 1 ([38], Sadovskii’s fixed point theorem). Regard A as a Banach space. Let H be a
bounded, closed and convex set contained in A. Furthermore, assume that continuous mapping
ϕ∗ : H → H is condensing. Then, there exists at least one fixed point for the map ϕ∗ inH.

Let us denote the normed space by (A, ‖ · ‖A). Regard P(A),Pbd(A),Pcl(A),Pcm(A)
and Pcx(A) as a family of all non-empty, all bounded, all closed, all compact and all convex
sets contained in A, respectively.

Definition 2 ([40]). An element } ∈ A is termed an endpoint of a multi-valued function T∗ :
A→ P(A) whenever we get T∗(}) = {}}.

The multi-valued map T∗ has an approximate endpoint criterion (AEPC) if

inf
}1∈A

sup
}2∈T∗(}1)

d(}1,}2) = 0,

Ref. [40]. Next, a required theorem related to the proposed quantum boundary problem
is recalled.

Theorem 2 ([40], Endpoint theorem). Let’s assume that (A, d) is a complete metric space, and
ψ : [0, ∞) → [0, ∞) is u.s.c subject to for each r > 0, lim infr→∞(r− ψ(r)) > 0, and ψ(r) < r.
Assume that T∗ : A→ Pcl,bd(A) is a multi-valued map such that for each }1,}2 ∈ A, the following
inequality holds:

Hd(T∗}1,T∗}2) ≤ ψ(d(}1,}2)).

Then, there is exactly one endpoint for T∗ iff T∗ has an approximate endpoint criterion.

3. Main Results

We regard the family of continuous functions on [0, 1] by A = CR([0, 1]) and the
defined sup-norm ‖}‖A = supr∈[0,1] |}(r)|, for all members } ∈ A, confirms that the space
A becomes a Banach space. In the sequel, we will establish the existence results for quantum
BVP (1) and (2). Before moving to the existence results, the following proposition will play
an essential role:
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Proposition 1. Let ϕ∗ ∈ A, ς ∈ (2, 3), $ ∈ (1, 2), ξ ∈ (0, 1), `1, `2, `3 ∈ R>0 and σ > 0. Then,
the function }∗ satisfies as a solution for the given quantum integro-difference FBVP (CpQFP)
formulated by 

C
qD

ς
0+}
∗(r) = ϕ∗(r), (r ∈ [0, 1], q ∈ (0, 1)),

}(0) + }(ξ) = `1
R
qI

σ
0+}(1),

C
qD

$
0+}(0) +

C
qD

$
0+}(ξ) = `2

R
qI

σ
0+
[C

qD
$
0+}
]
(1),

C
qD

1
0+}(0) +

C
qD

1
0+}(ξ) = `3

R
qI

σ
0+
[C

qD
1
0+}
]
(1),

(8)

iff }∗ is a solution for the fractional quantum integral (FQI) equation given by

}∗(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
ϕ∗(v)dqv +

`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
ϕ∗(v)dqv (9)

− 1
δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
ϕ∗(v)dqv + `3Λ1(r)

∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
ϕ∗(v)dqv

−Λ1(r)
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
ϕ∗(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
ϕ∗(v)dqv−Λ2(r)

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
ϕ∗(v)dqv. (10)

Proof. Firstly, the given function }∗ is regarded as a solution for (8). By virtue of ς ∈ (2, 3),
taking the integral in the RL-settings of order ς to (8), we arrive at

}∗(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
ϕ∗(v)dqv + µ̃0 + µ̃1r + µ̃2r2, (11)

so that µ̃0, µ̃1, µ̃2 ∈ R are some constants that are needed to be obtained. By considering
$ ∈ (1, 2), the following immediate results are obtained

C
qD

1
0+}
∗(r) =

∫ r

0

(r− qv)(ς−2)

Γq(ς− 1)
ϕ∗(v)dqv + µ̃1 + µ̃2(1 + q)r,

C
qD

$
0+}
∗(r) =

∫ r

0

(r− qv)(ς−$−1)

Γq(ς− $)
ϕ∗(v)dqv + µ̃2

2r2−$

Γq(3− $)
,

R
qI

σ
0+}
∗(r) =

∫ r

0

(r− qv)(ς+σ−1)

Γq(ς + σ)
ϕ∗(v)dqv + µ̃0

rσ

Γq(σ + 1)
+ µ̃1

rσ+1

Γq(σ + 2)

+ µ̃2
(1 + q)rσ+2

Γq(σ + 3)
,

R
qI

σ
0+
(C

qD
1
0+}
∗(r)

)
=
∫ r

0

(r− qv)(ς+σ−2)

Γq(ς + σ− 1)
ϕ∗(v)dqv + µ̃1

rσ

Γq(σ + 1)
+ µ̃2

(1 + q)rσ+1

Γq(σ + 2)
,

R
qI

σ
0+
(C

qD
$
0+}
∗(r)

)
=
∫ r

0

(r− qv)(ς+σ−$−1)

Γq(ς + σ− $)
ϕ∗(v)dqv + µ̃2

2rσ+2−$

Γq(σ + 3− $)
.

Now, by virtue of the given boundary conditions, we get

µ̃0 =
`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
ϕ∗(v)dqv− 1

δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
ϕ∗(v)dqv
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− `3Θ1

∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
ϕ∗(v)dqv + Θ1

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
ϕ∗(v)dqv

+ `2Θ2

∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
ϕ∗(v)dqv−Θ2

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
ϕ∗(v)dqv,

µ̃1 =
`3

∆1

∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
ϕ∗(v)dqv− 1

∆1

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
ϕ∗(v)dqv

− `2∆2

∆1∆3

∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
ϕ∗(v)dqv +

∆2

∆1∆3

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
ϕ∗(v)dqv,

and

µ̃2 =
`2

∆3

∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
ϕ∗(v)dqv− 1

∆3

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
ϕ∗(v)dqv,

where we regard the constants

δ1 =
2Γq(σ + 1)− `1

Γq(σ + 1)
, δ2 =

ξΓq(σ + 2)− `1

Γq(σ + 2)
, δ3 =

ξ2Γq(σ + 3)− `1(1 + q)
Γq(σ + 3)

,

∆1 =
2Γq(σ + 1)− `3

Γq(σ + 1)
, ∆2 =

(1 + q)
(
ξΓq(σ + 2)− `3

)
Γq(σ + 2)

,

∆3 =
2ξ2−$Γq(σ + 3− $)− 2`2Γq(3− $)

Γq(3− $)Γq(σ + 3− $)
, Θ1 =

δ2
δ1∆1

, Θ2 =
δ2∆2 − δ3∆1

δ1∆1∆3
,

along with the functions with respect to r as

Λ1(r) =
r−Θ1∆1

∆1
, Λ2(r) =

r2∆1 − r∆2 + Θ2∆1∆3

∆1∆3
. (12)

By substituting the values of µ̃0, µ̃1 and µ̃2 in (11), integral solution (9) is obtained.
The converse part can be easily deduced.

Remark 1. Note that for simplicity in the subsequent computations, we set the following upper
bounds by virtue of the functions displayed in (12):

|Λ1(r)| ≤
1 + |Θ1||∆1|
|∆1|

:= Λ∗1 > 0,

|Λ2(r)| ≤
|∆1|+ |∆2|+ |Θ2||∆1||∆3|

|∆1||∆3|
:= Λ∗2 > 0. (13)

Theorem 3. Let ϕ∗ : [0, 1] × A → R be continuous. In addition, assume that there exists a
continuous ϑ : [0, 1] → R>0 along with a nondecreasing continuous map ℘ : [0, ∞) → (0, ∞)
such that for each r ∈ [0, 1] and } ∈ A,

|ϕ∗(r,}(r))| ≤ ϑ(r)℘(‖}‖A). (14)

We suppose that there exists a function mϕ∗ : [0, 1] → R such that for each bounded set
H ⊆ A and r ∈ [0, 1],

O(ϕ∗(r,H)) ≤ mϕ∗(r)O(H). (15)
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Then, at least one solution of the given Caputo fractional quantum BVP (1) exists on [0, 1] if[
m̃ϕ∗

Γq(ς + 1)
+

m̃ϕ∗

|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)
+ m̃ϕ∗Λ

∗
1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)

+ m̃ϕ∗Λ
∗
2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)]
<

1
4

, (16)

where m̃ϕ∗ = supr∈[0,1] |mϕ∗(r)|.

Proof. Introduce the mapping G : H→ H defined as:

G(})(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
ϕ∗(v,}(v))dqv (17)

+
`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
ϕ∗(v,}(v))dqv− 1

δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
ϕ∗(v,}(v))dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
ϕ∗(v,}(v))dqv (18)

−Λ1(r)
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
ϕ∗(v,}(v))dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
ϕ∗(v,}(v))dqv (19)

−Λ2(r)
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
ϕ∗(v,}(v))dqv,

where H = {} ∈ A : ‖}‖A ≤ ε∗, ε∗ ∈ R>0} ⊆ A and is classified as a convex bounded
closed space. Obviously, the fixed point of the proposed operator G is the quantum
fractional BVP’s solution (1).

Firstly, we verify the continuity of G on H. Take the sequence {}n}n≥1 in H such
that }n → } for each } ∈ H. Since ϕ∗ is continuous on [0, 1] × A, so we can write
limn→∞ ϕ∗(r,}n(r)) = ϕ∗(r,}(r)). Now, with the aid of Lebesgue dominated conver-
gence theorem, we obtain:

lim
n→∞

(G}n)(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
lim

n→∞
ϕ∗(v,}n(v))dqv

+
`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
lim

n→∞
ϕ∗(v,}n(v))dqv

− 1
δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
lim

n→∞
ϕ∗(v,}n(v))dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
lim

n→∞
ϕ∗(v,}n(v))dqv

−Λ1(r)
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
lim

n→∞
ϕ∗(v,}n(v))dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
lim

n→∞
ϕ∗(v,}n(v))dqv
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−Λ2(r)
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
lim

n→∞
ϕ∗(v,}n(v))dqv

= (G})(r),

for each r ∈ [0, 1]. Thus, we get limn→∞(G}n)(r) = (G})(r). Hence, the continuity of G on
H is proved. Now, we want to examine uniform boundedness of G on H. To accomplish
this goal, consider } ∈ H. In view of inequalities (13) and (14), we have:

|(G})(r)| =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
|ϕ∗(v,}(v))|dqv

+
`1

|δ1|

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
|ϕ∗(v,}(v))|dqv

+
1
|δ1|

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
|ϕ∗(v,}(v))|dqv

+ `3|Λ1(r)|
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
|ϕ∗(v,}(v))|dqv

+ |Λ1(r)|
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
|ϕ∗(v,}(v))|dqv

+ `2|Λ2(r)|
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
|ϕ∗(v,}(v))|dqv

+ |Λ2(r)|
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
|ϕ∗(v,}(v))|dqv

≤ 1
Γq(ς + 1)

ϑ(r)℘(‖}‖A) +
`1

|δ1|Γq(ς + σ + 1)
ϑ(r)℘(‖}‖A)

+
ξ(ς)

|δ1|Γq(ς + 1)
ϑ(r)℘(‖}‖A)

+
`3Λ∗1

Γq(ς + σ)
ϑ(r)℘(‖}‖A) +

Λ∗1ξ(ς−1)

Γq(ς)
ϑ(r)℘(‖}‖A)

+
`2Λ∗2

Γq(ς + σ− $ + 1)
ϑ(r)℘(‖}‖A) +

Λ∗2ξ(ς−$)

Γq(ς− $ + 1)
ϑ(r)℘(‖}‖A).

Set

Ω̂ =
1

Γq(ς + 1)
+

1
|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)
+ Λ∗1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)

+ Λ∗2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)
. (20)
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Consequently, we can declare that ‖G}‖A ≤ Ω̂ϑ∗℘(ε) < ∞, and this implies uniform
boundedness of G on H. Next, we ensure the equi-continuity of G. In order to check this,
consider r1, r2 ∈ [0, 1] such that r1 < r2 and } ∈ H. Then, we get:

|(G})(r2)− (G})(r1)| ≤
∫ r1

0

[(r2 − qv)(ς−1) − (r1 − qv)(ς−1)]

Γq(ς)
|ϕ∗(v,}(v))|dqv

+
∫ r2

r1

(r2 − qv)(ς−1)

Γq(ς)
|ϕ∗(v,}(v))|dqv

+ `3[Λ1(r2)−Λ1(r1)]
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
|ϕ∗(v,}(v))|dqv

+ [Λ1(r2)−Λ1(r1)]
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
|ϕ∗(v,}(v))|dqv

+ `2[Λ2(r2)−Λ2(r1)]
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
|ϕ∗(v,}(v))|dqv

+ [Λ2(r2)−Λ2(r1)]
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
|ϕ∗(v,}(v))|dqv.

Note that the above inequality’s right hand side goes to zero as r1 → r2 (independent
of }). Hence, it is evident that ‖(G})(r2)− (G})(r1)‖A → 0 as r1 → r2, and this confirms
that G is an equi-continuous. Consequently, we conclude that G is a compact operator on H

in view of the famous Arzela–Ascoli theorem.
At this point, we will check that G is condensing operator on H. By Lemma 3, it is

obvious that a countable set H0 = {}n}n≥1 ⊂ H exists for each bounded subset H ⊂ H

such that O(G(H)) ≤ 2O(G(H0)) holds. Hence, in the light of Lemmas 2, 4 and 5, the
following is obtained

O(G(H)(r)) ≤ 2O(G({}n}n≥1))

≤ 2
∫ r

0

(r− qv)(ς−1)

Γq(ς)
O(ϕ∗(v, {}n(v)}n≥1))dqv

+
2`1
|δ1|

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
O(ϕ∗(v, {}n(v)}n≥1))dqv

+
2
|δ1|

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
O(ϕ∗(v, {}n(v)}n≥1))dqv

+ 2`3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
O(ϕ∗(v, {}n(v)}n≥1))dqv

+ 2Λ1(r)
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
O(ϕ∗(v, {}n(v)}n≥1))dqv

+ 2`2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
O(ϕ∗(v, {}n(v)}n≥1))dqv

+ 2Λ2(r)
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
O(ϕ∗(v, {}n(v)}n≥1))dqv
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≤ 4
∫ r

0

(r− qv)(ς−1)

Γq(ς)
mϕ∗ (v)O({}n(v)}n≥1)dqv

+
4`1
|δ1|

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
mϕ∗ (v)O({}n(v)}n≥1)dqv

+
4
|δ1|

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
mϕ∗ (v)O({}n(v)}n≥1)dqv

+ 4`3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
mϕ∗ (v)O({}n(v)}n≥1)dqv

+ 4Λ1(r)
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
mϕ∗ (v)O({}n(v)}n≥1)dqv

+ 4`2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
mϕ∗ (v)O({}n(v)}n≥1)dqv

+ 4Λ2(r)
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
mϕ∗ (v)O({}n(v)}n≥1)dqv

≤ 4m̃ϕ∗O(H)
∫ r

0

(r− qv)(ς−1)

Γq(ς)
dqv

+
4`1m̃ϕ∗O(H)

|δ1|

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
dqv +

4m̃ϕ∗O(H)

|δ1|

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
dqv

+ 4`3Λ∗1m̃ϕ∗O(H)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
dqv

+ 4Λ∗1m̃ϕ∗O(H)
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
dqv

+ 4`2Λ∗2m̃ϕ∗O(H)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
dqv

+ 4Λ∗2m̃ϕ∗O(H)
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
dqv

≤
4m̃ϕ∗O(H)

Γq(ς + 1)
+

4`1m̃ϕ∗O(H)

|δ1|Γq(ς + σ + 1)
+

4ξ(ς)m̃ϕ∗O(H)

|δ1|Γq(ς + 1)
+

4`3Λ∗1m̃ϕ∗O(H)

Γq(ς + σ)

+
4ξ(ς−1)Λ∗1m̃ϕ∗O(H)

Γq(ς)
+

4`2Λ∗2m̃ϕ∗O(H)

Γq(ς + σ− $ + 1)
+

4ξ(ς−$)Λ∗2m̃ϕ∗O(H)

Γq(ς− $ + 1)
.

Hence,

O(G(H)) ≤ 4

[
m̃ϕ∗

Γq(ς + 1)
+

m̃ϕ∗

|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)

+ m̃ϕ∗Λ
∗
1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)

+ m̃ϕ∗Λ
∗
2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)]
O(H).
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By applying condition (16), we get O(G(H)) < O(H). This clearly implies that G
is condensing operator on H. Ultimately, by employing Theorem 1, we can infer that
the map G possesses one fixed point leastwise in H. Thus, it is found at least one solu-
tion for the supposed quantum-integro-difference FBVP (1) and finally the proof process
is terminated.

Now, we set up an existence criterion for the given fractional quantum inclusion
BVP (2). The inclusion problem’s solution (2) is determined by an absolutely continuous
function } : [0, 1]→ R whenever it satisfies the given fractional quantum integro-difference
conditions, and a function z ∈ L1([0, 1],R) exists such that the inclusion z(r) ∈ T∗(r,}(r))
holds for almost all r ∈ [0, 1], and we have:

}(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
z(v)dqv +

`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
z(v)dqv

− 1
δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
z(v)dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
z(v)dqv−Λ1(r)

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
z(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
z(v)dqv−Λ2(r)

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
z(v)dqv,

for each r ∈ [0, 1]. Let ST∗ ,} represents the collection of all selections of T∗ for each } ∈ A

and is defined as

ST∗ ,} = {z ∈ L1([0, 1]) : z(r) ∈ T∗(r,}(r)) for almost all r ∈ [0, 1]}.

Construct a multi-valued map J : A→ P(A) which is defined as

J (}) = {h ∈ A : h(r) = v(r)}, (21)

where

v(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
z(v)dqv +

`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
z(v)dqv

− 1
δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
z(v)dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
z(v)dqv−Λ1(r)

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
z(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
z(v)dqv

−Λ2(r)
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
z(v)dqv, z ∈ ST∗ ,}.

Theorem 4. Let T∗ : [0, 1]×A→ Pcm(A) be a multi-valued map. Suppose that

(A1) an increasing u.s.c map ψ : [0, ∞) → [0, ∞) exists such that lim infr→∞(r− ψ(r)) > 0,
and ψ(r) < r for every r > 0;

(A2) T∗ : [0, 1]× A → Pcm(A) is integrable and bounded and T∗(·,}) : [0, 1] → Pcm(A) is
measurable for every } ∈ A;
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(A3) ζ ∈ C([0, 1], [0, ∞)) exists subject to

Hd(T∗(r,}1(r)),T∗(r,}2(r))) ≤ ζ(r)ψ(|}1(r)− }2(r)|)
1
Q ,

for each r ∈ [0, 1] and }1,}2 ∈ A, where supr∈[0,1] |ζ(r)| = ‖ζ‖ and

Q =

[
1

Γq(ς + 1)
+

1
|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)
+ Λ∗1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)

+ Λ∗2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)]
‖ζ‖; (22)

(A4) the multi-valued map J : A → P(A) formulated in (21) satisfies approximate endpoint
criterion.

Then, a solution is found for the given quantum-difference inclusion FBVP (2).

Proof. We are going to determine that an endpoint exists for the multifunction J : A→
P(A) given by (21). Since the map r → T∗(r,}(r)) is measurable and closed-valued set-
valued mappingl therefore, it has a measurable selection. As a result, ST∗ ,} 6= ∅. Firstly,
we show that J (}) is closed for every } ∈ A. Consider the sequence {}n}n≥1 in J (}) such
that }n converges to }. For each n, there exists zn ∈ ST∗ ,} such that

}n(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
zn(v)dqv +

`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
zn(v)dqv

− 1
δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
zn(v)dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
zn(v)dqv−Λ1(r)

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
zn(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
zn(v)dqv−Λ2(r)

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
zn(v)dqv,

for almost all r ∈ [0, 1]. Since the multi-valued function T∗ is compact, we have a subse-
quence {zn}n≥1 converging to z ∈ L1([0, 1]). Thus, z ∈ ST∗ ,} and

lim
n→∞

}n(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
z(v)dqv

+
`1
δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
z(v)dqv− 1

δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
z(v)dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
z(v)dqv−Λ1(r)

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
z(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
z(v)dqv−Λ2(r)

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
z(v)dqv

= }(r),

for almost all r ∈ [0, 1]. This indicates that } ∈ J and therefore, J is closed-valued. Since
T∗ is compact multi-valued function, it is simple to check that J (}) is bounded for all
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} ∈ A. At last, we prove that Hd(J (}1),J (}2)) ≤ ψ(‖}1 − }2‖) holds. Let }1,}2 ∈ A and
τ1 ∈ J (}2). Select z1 ∈ ST∗ ,} such that

τ1(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
z1(v)dqv

+
`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
z1(v)dqv− 1

δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
z1(v)dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
z1(v)dqv−Λ1(r)

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
z1(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
z1(v)dqv−Λ2(r)

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
z1(v)dqv,

for all r ∈ [0, 1]. Since

Hd(T∗(r,}1(r)),T∗(r,}2(r))) ≤ ζ(r)ψ(|}1(r)− }2(r)|)
1
Q

for each r ∈ [0, 1], so there exists z∗ ∈ T∗(r,}1(r)) such that

|z1(r)− z∗| ≤ ζ(r)ψ(|}1(r)− }2(r)|)
1
Q ,

for each r ∈ [0, 1]. Now, the multi-valued map X : [0, 1] → P(A) is considered, which is
characterized by

X(r) =
{
z∗ ∈ A : |z1(r)− z∗| ≤ ζ(r)ψ(|}1(r)− }2(r)|)

1
Q

}
.

Since z1 and η = ζ(ψ(}1 − }2))
1
Q are measurable, so it is obvious that the multifunction

X∩T∗(·,}(·)) is measurable. Now, select z2(r) ∈ T∗(r,}(r)) such that

|z1(r)− z2(r)| ≤ ζ(r)(ψ(|}1(r)− }2(r)|))
1
Q ,

for all r ∈ [0, 1]. Choose τ2 ∈ J (}1) such that

τ2(r) =
∫ r

0

(r− qv)(ς−1)

Γq(ς)
z2(v)dqv

+
`1

δ1

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
z2(v)dqv− 1

δ1

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
z2(v)dqv

+ `3Λ1(r)
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
z2(v)dqv−Λ1(r)

∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
z2(v)dqv

+ `2Λ2(r)
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
z2(v)dqv−Λ2(r)

∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
z2(v)dqv,

for any r ∈ [0, 1]. Then, we get

|τ1(r)− τ2(r)| ≤
∫ r

0

(r− qv)(ς−1)

Γq(ς)
|z1(v)− z2(v)|dqv
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+
`1
|δ1|

∫ 1

0

(1− qv)(ς+σ−1)

Γq(ς + σ)
|z1(v)− z2(v)|dqv

+
1
|δ1|

∫ ξ

0

(ξ − qv)(ς−1)

Γq(ς)
|z1(v)− z2(v)|dqv

+ `3|Λ1(r)|
∫ 1

0

(1− qv)(ς+σ−2)

Γq(ς + σ− 1)
|z1(v)− z2(v)|dqv

+ |Λ1(r)|
∫ ξ

0

(ξ − qv)(ς−2)

Γq(ς− 1)
|z1(v)− z2(v)|dqv

+ `2|Λ2(r)|
∫ 1

0

(1− qv)(ς+σ−$−1)

Γq(ς + σ− $)
|z1(v)− z2(v)|dqv

+ |Λ2(r)|
∫ ξ

0

(ξ − qv)(ς−$−1)

Γq(ς− $)
|z1(v)− z2(v)|dqv

≤ 1
Γq(ς + 1)

‖ζ‖ψ(‖}1 − }2‖)
1
Q

+
`1

|δ1|Γq(ς + σ + 1)
‖ζ‖ψ(‖}1 − }2‖)

1
Q +

ξ(ς)

|δ1|Γq(ς + 1)
‖ζ‖ψ(‖}1 − }2‖)

1
Q

+
`3Λ∗1

Γq(ς + σ)
‖ζ‖ψ(‖}1 − }2‖)

1
Q +

Λ∗1ξ(ς−1)

Γq(ς)
‖ζ‖ψ(‖}1 − }2‖)

1
Q

+
`2Λ∗2

Γq(ς + σ− $ + 1)
‖ζ‖ψ(‖}1 − }2‖)

1
Q +

Λ∗2ξ(ς−$)

Γq(ς− $ + 1)
‖ζ‖ψ(‖}1 − }2‖)

1
Q

=

[
1

Γq(ς + 1)
+

1
|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)

+ Λ∗1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)

+ Λ∗2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)]
‖ζ‖ψ(‖}1 − }2‖)

1
Q

= Qψ(‖}1 − }2‖)
1
Q

= ψ(‖}1 − }2‖).

Thus, we get ‖τ1− τ2‖ ≤ ψ(‖}1−}2‖). Hence, Hd(J (}1),J (}1)) ≤ ψ(‖}1−}2‖) for
each }1,}2 ∈ A. By utilizing (A4), we realize that J has an approximate endpoint criterion.
Now by employing Theorem 2, a member }∗ ∈ A exists such that J (}∗) = {}∗}. This
indicates that }∗ is the solution of the fractional quantum-difference inclusion problem (2),
hence, our proof is finally completed.

4. Numerical Examples

This section provides some interesting numerical examples to apply and validate our
results in this research work.

Example 1. Consider the following Caputo quantum-difference FBVP:
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C
0.5D

2.5
0+}(r) =

3r + 1
8000e−r sin(}(r)),

}(0) + }(0.25) = (0.1) R
0.5I

0.75
0+ }(1),

C
0.5D

1.5
0+}(0) +

C
0.5D

1.5
0+}(0.25) = (0.2) R

0.5I
0.75
0+
[C

0.5D
1.5
0+}
]
(1),

C
0.5D

1
0+}(0) +

C
0.5D

1
0+}(0.25) = (0.3) R

0.5I
0.75
0+
[C

0.5D
1
0+}
]
(1),

(23)

such that q = 0.5, `1 = 0.1, ς = 2.5, ξ = 0.25, `2 = 0.2, σ = 0.75, $ = 1.5, `3 = 0.3
and r ∈ [0, 1]. Furthermore, we consider a continuous function ϕ∗(r,}(r)) : [0, 1]× R → R
constructed as:

ϕ∗(r,}(r)) = 3r + 1
8000e−r sin(}(r)).

The graph of this function is shown in Figure 2.

Figure 2. Graph of the function ϕ∗(r,}) on [0, 1]× [0, 50].

Then, for each } ∈ R, we have:

|ϕ∗(r,}(r))| = 3r + 1
8000e−r | sin(}(r))| ≤ 3r + 1

8000e−r = ϑ(r)℘(‖}‖R),

where ϑ : [0, 1]→ R>0 is a continuous function defined by ϑ(r) = 3r+1
8000e−r and ℘ : R≥0 → R>0

is nondecreasing and continuous via ℘(‖}‖R) = 1. Now, for any }1, }2 ∈ R, we can write:

|ϕ∗(r,}1(r))− ϕ∗(r,}2(r))| =
3r + 1

8000e−r | sin(}1(r))− sin(}2(r))|

≤ 3r + 1
8000e−r |}1(r)− }2(r)|.
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Hence, for any bounded setH contained in R, we reach

O(ϕ∗(r,H)) ≤ 3r + 1
8000e−r O(H) := mϕ∗O(H).

We compute m̃ϕ∗ = supr∈[0,1] |mϕ∗ | ' 0.001355. Then, by taking into account the above
calculations and the following inequality, we get[

m̃ϕ∗

Γq(ς + 1)
+

m̃ϕ∗

|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)
+ m̃ϕ∗Λ

∗
1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)

+ m̃ϕ∗Λ
∗
2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)]
' 0.001741 < 0.25 =

1
4

.

We figure out that Theorem 3 is settled. As a result, at least one solution exists for Caputo
fractional quantum-difference FBVP (23).

Example 2. Consider the following Caputo fractional quantum-difference inclusion FBVP:

C
0.8D

2.75
0+ }(r) ∈

[
0,

5(r + 1) arctan(}(r))
256(4 + 3r2)

]
,

}(0) + }(0.9) = (0.11) R
0.8I

0.6
0+}(1),

C
0.8D

1.7
0+}(0) +

C
0.8D

1.7
0+}(0.9) = (0.12) R

0.8I
0.6
0+
[C

0.8D
1.7
0+}
]
(1),

C
0.8D

1
0+}(0) +

C
0.8D

1
0+}(0.9) = (0.13) R

0.8I
0.6
0+
[C

0.8D
1
0+}
]
(1),

(24)

where q = 0.8, ς = 2.75, ξ = 0.9, `1 = 0.11, `2 = 0.12, `3 = 0.13, σ = 0.6, $ = 1.7, and
r ∈ [0, 1]. Now, we introduce a multi-valued function T∗ : [0, 1]×R→ P(R) as follows:

T∗(r,}(r)) =
[

0,
5(r + 1) arctan(}(r))

256(4 + 3r2)

]
.

Next, we regard ψ : [0, ∞)→ [0, ∞) as increasing upper semi-continuous function defined
by ψ(r) = r

4 for any r > 0. It can easily be noted that lim infr→∞(r− ψ(r)) > 0 and ψ(r) < r
for each r > 0. We select ζ ∈ C([0, 1], [0, ∞)) formulated by ζ(r) = 5(r+1)

64(4+3r2)
. Thus, ‖ζ‖ '

0.0390625. For any },}∗ ∈ R, we have:

Hd(T∗(r,}(r))−T∗(r,}∗(r))) = 5(r + 1)
256(4 + 3r2)

| arctan(}(r))− arctan(}∗(r))|

≤ 5(r + 1)
256(4 + 3r2)

|}(r)− }∗(r)|

=
5(r + 1)

64(4 + 3r2)
ψ(|}(r)− }∗(r)|)

≤ ζ(r)ψ(|}(r)− }∗(r)|) 1
Q ,

where

Q =

[
1

Γq(ς + 1)
+

1
|δ1|

(
`1

Γq(ς + σ + 1)
+

ξ(ς)

Γq(ς + 1)

)
+ Λ∗1

(
`3

Γq(ς + σ)
+

ξ(ς−1)

Γq(ς)

)
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+ Λ∗2

(
`2

Γq(ς + σ− $ + 1)
+

ξ(ς−$)

Γq(ς− $ + 1)

)]
‖ζ‖ ' 0.066907.

The graphs of the functions: Λ1(r) and Λ2(r) for r ∈ [0, 1] are shown in Figure 3.

Figure 3. Graphs of functions: Λ1(r) and Λ2(r) for r ∈ [0, 1].

Next, consider the multifunction J : A→ P(A) given by:

J (}) = {h ∈ A : there exists z ∈ ST∗ ,} such that h(r) = v(r) for all r ∈ [0, 1]},

where

v(r) =
∫ r

0

(r− qv)(2.75−1)

Γq(2.75)
z(v)dqv +

0.11
1.8784

∫ 1

0

(1− qv)(2.75+0.6−1)

Γq(2.75 + 0.6)
z(v)dqv

− 1
1.8784

∫ 0.9

0

(0.9− qv)(2.75−1)

Γq(2.75)
z(v)dqv

+ (0.13)Λ1(r)
∫ 1

0

(1− qv)(2.75+0.6−2)

Γq(2.75 + 0.6− 1)
z(v)dqv−Λ1(r)

∫ 0.9

0

(0.9− qv)(2.75−2)

Γq(2.75− 1)
z(v)dqv

+ (0.12)Λ2(r)
∫ 1

0

(1− qv)(2.75+0.6−1.7−1)

Γq(2.75 + 0.6− 1.7)
z(v)dqv

−Λ2(r)
∫ 0.9

0

(0.9− qv)(2.75−1.7−1)

Γq(2.75− 1.7)
z(v)dqv,

with δ1 ' 1.8784 and

Λ1(r) = 0.5387r− 0.2348 and Λ2(r) = 0.53002r2 − 0.4133r− 0.02959.

Hence, by utilizing Theorem 4, it is found a solution for the quantum-difference inclusion
FBVP (24).

5. Conclusions

The proposed nonlinear Caputo quantum-difference FBVP with fractional quantum
integro-conditions along with its fractional quantum-difference inclusion BVP has been
studied in this work. In this direction, we proved the existence of a solution for the first
quantum-difference Equation (1) with the help of some notions in topological degree theory.
In other words, we defined a new operator and checked its properties and finally showed
that it is a condensing function. The existence of a fixed point for this operator ensured
the existence of a solution for the mentioned quantum-difference Equation (1). In the next
step, we considered the inclusion version of the above FBVP which had a form as (2). To
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arrive at the main purpose this time for confirming the existence of solutions of (2), we
used new techniques based on the approximate endpoint property and the existence of
endpoints for a newly-defined multifunction. Numerical illustrative examples have been
provided to display the validity and potentiality of our main results to be applied in future
research works. We recommend that other researchers can study different generalizations
of the proposed q-difference-FBVPs by using novel fractional difference-operators such as
(p, q)-difference ones.
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