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Abstract: In this paper, a memory-efficient outlier detection (MEOD) approach for streaming data
is proposed. The approach uses a local correlation integral (LOCI) algorithm for outlier detection,
finding the outlier based on the density of neighboring points defined by a given radius. The radius
value detection problem is converted into an optimization problem. The radius value is determined
using a particle swarm optimization (PSO)-based approach. The results of the MEOD technique
application are compared with existing approaches in terms of memory, time, and accuracy, such
as the memory-efficient incremental local outlier factor (MiLOF) detection technique. The MEOD
technique finds outlier points similar to MiLOF with nearly equal accuracy but requires less memory
for processing.

Keywords: outlier detection; data streaming; memory efficiency; particle swarm optimization;
swarm intelligence

1. Introduction

A variety of modern telecommunications and Internet of Things (IoT) applications
generate a large amount of streaming data in which, along with the regular data entries,
there are entries that contain extreme or unexpected values, called outliers. From the whole
dataset, the outliers are very few and are nothing but an abnormal behavior of data. Outlier
detection techniques are applied in a variety of domains such as fraud detection, human
gait analysis, intrusion detection, etc.

Outlier detection techniques are broadly classified into three types:

1. Distance-based outlier detection: For finding outliers, the distance between the data
points is calculated, and outlier points are those whose distance is much bigger
than the average distance [1,2]. As compared with the other two techniques, this
technique is much simpler to use, and unlike the statistical-based approach, no prior
assumptions are required.

2. Density-based outlier detection: This approach compares the object density with
respect to neighboring objects. Outlier points have a lower density than neighboring
points. Local outlier factor (LOF) [3] and local correlation integral (LOCI) [4] are the
popular density-based approaches provided by most of the machine learning libraries.
Most of the methods, for example, DBSCAN [5], use a clustering technique for outlier
detection. The outliers are treated as a by-product of the clustering technique. Initially,
clustering is applied, and then the points far away from the centroid are identified
as outliers.

3. Statistical approach: The statistical approach [6–8] assumes a distribution of the
data and generates a probability model on the basis of which a discordance test is
performed to detect whether a given object is an outlier or not.

The distance-based and density-based approaches are widely used. In LOF, the
reachability distance is calculated for each point, and then the ratio of the average density
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of n neighboring points to the density of the point itself is calculated. For normal data
points, the densities are the same as the other points, and the ratio tends to 1, whereas
for outliers, the ratio is high. There is a dependency on the number of nearest neighbors’
value k when calculating the LOF factor. LOCI addresses this issue by finding the nearest
neighbors within a radius r, and using these points, the reachability density is calculated.
The LOCI technique does not have any mechanism to find the optimal value of radius r.
The value of r is set a priori, or there should be some optimization algorithm that finds the
value of r. The other disadvantage of LOF and LOCI is that the time and space complexity
for finding the outlier score for each point increases by increasing the dataset size.

In the approach proposed in this paper, an evolutionary algorithm to find the optimal
value of radius r is used. The evolutionary algorithms are population-based metaheuristics
that find the optimal solution using multiple iterations [9]. The swarm-based optimization
algorithms are a category of the evolutionary algorithms using swarm-based metaheuristics,
which are mainly derived from particle swarm optimization (PSO) and ant colony optimiza-
tion (ACO) metaheuristics. Rough set outlier detection [10] and web bots detection [11] are
examples of PSO-based outlier detection techniques.

In the proposed approach, an optimization problem is established to find the optimal
value of r, and the outlier scores for the candidate points that have the potential to be an
outlier [12,13] are calculated. The swarm optimization technique is used to find the value
of r. According to Knorr’s definition [14], the data point is an outlier if it has at least a
fraction of 1−β points further away from the radius r. It means that a data point O should
have k nearest neighbors within the radius r centered from point O. The goal is to minimize
the ratio k/r. In the proposed approach, the optimal value of r is determined, minimizing
the ratio k/r, and calculated for those points that have the potential to be an outlier using
the particle swarm optimization technique.

Outlier detection techniques generally are applied on a static dataset containing a finite
number of samples. In the case of streaming, data outlier detection is a challenging task
due to the data volume and the limitations in available processing memory. The challenges
and various techniques in outlier detection using streaming data are discussed in [15].
Incremental local outlier factor (iLOF) [16] and memory-efficient incremental local outlier
factor (MiLOF) [17] are outlier detection techniques that work with streaming data. MiLOF
is a memory-efficient outlier detection algorithm as compared to iLOF, and it computes the
LOF value with defined memory constraints and uses a sliding window protocol with a
data summarization technique. Rather than preserving all the data points in memory, a
summary of the previous data points with limited memory resources is kept using data
summarization. Hybrid PSO-MiLOF [18] is a memory-efficient technique to find outliers
using PSO and LOF in a memory-efficient manner over streaming data.

Inspired by particle swarm optimization(PSO)-based outlier detection using
LOCI [12,13] and MiLOF [17], a new outlier detection approach named memory-efficient
outlier detection (MEOD) is proposed in this paper. This approach works on streaming
data similar to the MiLOF technique and finds the outlier using the LOCI algorithm. Using
the PSO-based technique, the optimal value of radius r is calculated. Following are the
main advantages of the proposed MEOD approach:

• It is a local outlier detection technique over streaming data based on the local correla-
tion integral (LOCI) technique.

• It works with limited memory resources using a data summarization mechanism.
• It uses a swarm intelligence technique to find the optimal value for radius r for LOCI

calculations.
• To improve the efficiency of the algorithm, MEOD finds an outlier factor value for

only candidate points rather than the whole dataset.

The paper is organized as follows. Section 2 includes preliminaries followed by the
proposed methodology in Section 3. Section 4 presents the experimental setup containing
hardware and software requirements, dataset, and performance measure details. Section 5
presents and analyzes the results. Section 6 concludes the paper.
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2. Preliminaries

LOCI-, PSO-, and MiLOF-based streaming data processing are the key aspects of the
proposed approach. Following are some details of each technique.

2.1. Local Correlation Integral

LOCI uses a multi-granularity deviation factor (MDEF) and normalized deviation fac-
tor (σMDEF) at radius r. Using these factors, the outliers can be identified and calculated as:

MDEF(pi, r, α) = 1− n(pi, αr)
n′(pi, r, α)

(1)

σMDEF(pi, r, α) =
σn′(pi, r, α)

n′(pi, r, α)
(2)

where pi is part of a set of objects, P = {p1, . . . , pi, . . . , pN}, n(pi, αr) is the number of objects
in the αr-neighborhood of pi, and n′(pi, r, α) is the average of all objects present in the
αr-neighborhood of pi. It is calculated as:

n′(pi, r, α) =

∑
pεN(Pi ,r)

n(p, αr)

n(pi, r)
(3)

The standard deviation of n(p, αr) over the set of r neighbors is σn′(pi, α, r) and can be
calculated as:

σn′(pi, α, r) =

√√√√√ ∑
pεN(Pi ,r)

(n(p, αr)− n′(pi, r, α))2

n(pi, r)
(4)

The point is said to be an outlier if:

MDEF(pi, r, α) > kσσMDEF(pi, r, α) (5)

where kσ is the constant value set as 3.

2.2. Particle Swarm Optimization

PSO is a population-based stochastic optimization tool. The algorithm is designed
based on bird flocking behavior, assigning multiple particles that are moving around the
defined space. This algorithm finds the solution iteratively, updating the position of the
particles after each iteration. The loop is executed until maximum iterations are reached or
up to reaching a satisfactory solution.

The position Xi and velocity Vi of each particle i is updated at each iteration using the
following formula:

Vi = xX
(

Vi + θ1c1

(
Xbest

i − Xi

)
+ θ2c2

(
Xgbest

i − Xi

))
(6)

where x is the constriction factor (set to 0.729); θ1 and θ2 are acceleration coefficients; c1 and
c2 are random numbers in the range [0,1]; Xi

best is the best position of particle i; and Xi
gbest

is the global best position found among neighborhood particles of i.
In the proposed approach, the ring topology for information exchange is used where

the particles are connected to two other neighboring particles. This topology avoids the
swarm of falling into a local optimum.

The PSO-based approach finds the optimal value of r for MDEF calculations in LOCI.
The system tries to find the points that have a minimum k/r ratio. By keeping this objective,
the fitness function f (X) for PSO is defined as [12]:

f (X) =
α

r X k
+

k
r
+

k
n− k

(7)
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where α is a constant value; n is the size of the dataset; α/(r X k) is the value to limit the
lower bound value of r; and k/(n − k) limits the upper bound value of r.

Lower and upper bound limits help to select the appropriate value of r. If r is too
low, then very few neighboring points will be considered, whereas if the value is too
high, then too many neighboring points will be considered, thus affecting the outlier
detection procedure.

2.3. Memory-Efficient Approach

Streaming data points are processed using the sliding window protocol. From a stream
b, data points are selected after every interval defined as a sliding window size. The system
identifies the local outlier for each sliding window. The b/2 points are processed using the
following three phases:

1. Summarization: Due to memory constraints, it is not feasible to preserve all the data
points in the stream. If the previous data points are deleted, then the new events
cannot be distinguished from the past ones. This affects the accuracy of the evaluation
as there is no history of data to be considered while checking the local outlier. In the
summarization phase, the summary of previous data points is preserved. For every
window slot, b/2 points are processed, and a summary is generated of these points.
For summary generation, the clustering technique is used. A large number f of cluster
counts is set, and the cluster centers are preserved as a summary of information
with granularity deviation factor (MDEF) and normalized deviation factor (σMDEF) at
radius r values. The remaining points are deleted, and then the next slot is processed.

2. Merging: The cluster centers generated in previous sliding window i-1 and clusters
generated in the current sliding window i are merged in this phase, and a single value
of cluster centers is preserved. For clustering, the cluster centers from the sliding
windows i-1 and i are merged using a weighted c-means clustering algorithm where
each point has a weight that shows the point importance value in the clustering
process. In this process, each point is a cluster center. Hence the count of cluster
members is assigned as a weight to the cluster center. After the clustering process, the
weights of the cluster centers are updated as:

zj =

∑
xi∈Xj ,wi∈Wj

wixi

∑
wi∈Wj

wi
(8)

3. Revised insertion: In the revised insertion phase, the processing is completed using
the b/2 points in the current sliding window and the summarized points preserved
in the memory. The outlier of a point is calculated using MDEF values. If the point is
present in a radius of previously summarized points, then this point is not considered
an outlier. Hence, there is no need to calculate the outlier factor of such points.

3. Proposed Outlier Detection Technique

Figure 1 shows the processing architecture of the MEOD technique. The streaming
data and predefined constant parameters are input into the system. The system generates
an outlier point list and the data point summary for the sliding window.

For each sliding window, the outliers are enlisted, and only the important reference
points are preserved in the memory as history using the memory-efficiency approach. This
approach allows outlier detection to be applied on streaming data while using limited
memory resources as the outliers are detected using the LOCI technique. LOCI detects
the outlier based on the density of neighboring points defined using the radius r. The
radius value can be user-defined, but in order to remove such dependency, the r-value is
automatically found using an optimization function applying the PSO-based approach to
find the optimal value of the radius r.
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Figure 1. Processing architecture of memory-efficient outlier detection (MEOD).

The system operation is mainly divided into three phases executed iteratively for each
sliding window.

1. Revised insertion: For each sliding window, the outliers are detected using the LOCI
technique, finding the outlier based on the density of neighboring points defined
using the radius r. The radius value can be user-defined, but in order to remove
such dependency, the r-value is automatically found using an optimization function
applying the PSO-based approach to find the optimal value of the radius r.

2. Summarization: The data representative points are extracted using a k-means cluster-
ing algorithm. The cluster centroids, treated as representative points for the rest of the
cluster points, are preserved as summary information with a granularity deviation
factor (MDEF) and a normalized deviation factor (σMDEF) at radius r values.

3. Merging: A summary generated in the current sliding window is merged with the
previous sliding window summary using the weighted c-means algorithm.

Figure 2 (Algorithm 1) shows the implementation of the PSO-LOCI algorithm based
on the swarm optimization technique to find the optimal value of radius r using a fitness
function as defined in (7). In steps 1 and 2, particles are initialized with random values.
The optimization process is executed until the maximum value of iterations is reached. In
steps 4 and 5, the k neighboring points are found, and the fitness value for each particle
is calculated. Using these values, the value of r, as well as the global best and local best
values, are calculated in steps 7 and 9, respectively. The particle position is updated in
steps 11 to 13. Based on the optimal value of the radius r, the MDEF and σMDEF values
are calculated for candidate points that are not in a radius of previously preserved points
(steps 16 to 19). The outlier points are detected in step 20 using Equation (5).

The detailed performance of the MEOD technique is explained in Figure 3
(Algorithm 2). From the data points O, b data points are read, and the outlier is de-
tected based on PSO-LOCI (Algorithm 1 in Figure 2). In step 4, the system summarizes
the b/2 data points and creates K clusters with Vi centroids. The calculation is completed
in each sliding window. The current sliding window result is merged with the previous
sliding window. For merging, the MDEF(Vi, r, α) and σMDEF(Vi, r, α) values are calculated
for centroidi in step 5 using the following formulas:

MDEF(vi, r, α) =

∑
p∈Ci

MDEF(pi, r, α)

|Ci|
(9)
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σMDEF(vi, r, α) =

∑
p∈Ci

σMDEF(pi, r, α)

|Ci|
(10)

where |Ci| represents the number of points in cluster Ci.
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The centroid values are the average value of MDEF and σMDEF values of all cluster
points. Centroids are preserved, and b/2 points are removed from memory in step 6. The
weighted c-means are applied in step 7, and the centroid points are updated again with
MDEF and σMDEF values in step 8. The previous centroids are deleted, and the summary is
updated in step 9, preserving in memory as history only the important reference points
using the memory-efficiency approach.

4. Implementation Details

The system is developed and tested on a machine with 4 GB RAM and an i3 proces-
sor running the Windows 10 operating system. Python programming language for the
implementation of the suggested MEOD outlier detection approach is used.

The experimental evaluation is based on various real-time datasets downloaded from
the UCI repository [19] and the Kaggle repository [20]. Table 1 shows the database infor-
mation in terms of the number of instances and the number of dimensions of the dataset.

Table 1. Datasets.

Sr. No. Dataset Data Points (n) Dimensions (D)

1. UCI Vowel (Vl) 1040 10
2. UCI Glass 214 10
3. UCI Pendigit (Pt) 3600 16
4. IBRL 3000 2
5. Kaggle Wine 177 2

In addition, three synthetic datasets are generated using the Gaussian clustering func-
tion. A mixture of two Gaussians is used to generate each dataset. For better visualization
purposes, two-dimensional datasets are generated.

The parameter values are set based on the common settings described in [12]. For the
PSO algorithm, the population size is set as 30 particles. The maximum iteration count
is set to 1000. The ring topology is used for particle connections. The constriction factor
required for the velocity calculation is set to 0.729. The parameters c1 and c2 required for
the velocity calculation are set to 2.02.

For streaming, the window size is defined as 1000. The number of cluster counts is set
to 50. The number of iterations for the k-means and weighted c-means are set to 100 and 10,
respectively [17].

For distance calculation, the Euclidean distance measure is used. Initially, the attribute
values of the dataset are normalized in the range [0,1], according to the following equation:

fi =
fi − fimin

fimax − fimin
(11)

where fi is the attribute value, and fimax and fimin are the minimum and maximum values
in attribute fi.

5. Results

The evaluation time and the memory required for processing the above-described
datasets using the suggested MEOD technique are compared with the results using MiLOF.
The influence of the window size on the time and the memory required for data process-
ing is evaluated. The accuracy of the outlier detection results is also compared for the
selected datasets.

Figure 4 shows the effect of the value K of the k-means algorithm on the outlier
detection process obtained using the Kaggle wine dataset [20]. The results are collected
by changing the value of K as 5, 10, 15, and 20. As can be seen from the results obtained,
varying the number of neighbors used in the k-means clustering significantly influences
the number of outliers detected. The suggested MEOD technique finds the optimal value
of r by removing the dependence on the K value.
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5.1. Accuracy Analysis

The effect of the value K on the outlier detection process is compared for the above-
described two-dimensional synthetic datasets. The outlier points are manually annotated
by checking the data distribution, and the detected outlier points using the MEOD tech-
nique are compared with the dataset outlier points. Figure 5 shows the accuracy obtained
for the synthetic datasets applying the MEOD technique. The precision value is compared
for different parameter K settings. The x-axis represents the used values of K: 5, 10, 15, and
20. The optimal r-value obtained using MEOD finds more accurate outlier points; thus,
the accuracy of the MEOD technique compared to MiLOF for two of the datasets is higher.
Moreover, the suggested MEOD technique not only outperforms MiLOF in terms of outlier
detection accuracy but also the accuracy does not vary with respect to any parameter.

5.2. Time and Memory Analysis

Figure 6 shows a comparison of the execution time and the memory requirements
for outlier detection applied on various UCI datasets [19] using MiLOF and MEOD. The
suggested MEOD technique finds the optimal value of r that increases the outlier detection
accuracy and removes parameter dependency, but the process requires extra computation
time as compared to the existing MiLOF technique. After finding the optimal r-value,
only the distance record of r neighbors is kept in memory. There is no need to generate
a distance matrix among all the points; hence, memory consumption is less as compared
to MiLOF.

In Figure 7, the influence of the sliding window size on the time and the memory
requirements of MiLOF and MEOD outlier detection techniques for the synthetic dataset
are compared. Increasing the size of the sliding window, the number of processing points
increases, and hence the required computational time and memory for processing in each
window is increased. As the experimental results show, for various sliding window sizes
corresponding to processing points varying from 1000 to 500, the MiLOF technique is
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time efficient but requires higher memory as compared to the MEOD technique. For each
sliding window, the points present in the radius of previously saved points are not taken
into account in the outlier detection process, thus reducing computational overhead. The
computational efficiency varies with respect to the dataset structure and points present in
each sliding window.
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6. Conclusions

In this paper, a memory-efficient outlier detection (MEOD) approach for streaming
data is proposed. For the outlier detection process, the LOCI algorithm is used. The
neighboring points are defined using radius r that is automatically determined by applying
optimization using the PSO-based approach to find the optimal value of radius r. A
summary of previous data points is created, and a subset of data points is preserved in
the memory, which helps to preserve the evolutionary history of data. The experimental
results show that the proposed MEOD approach removes the dependency of the K value
of the used k-means clustering algorithm in the outlier detection process as opposed to
MiLOF, finds outlier points with similar accuracy to the MiLOF, but requires less memory
for processing compared to MiLOF.
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