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Abstract: Software clones are code fragments with similar or nearly similar functionality or structures.
These clones are introduced in a project either accidentally or deliberately during software develop-
ment or maintenance process. The presence of clones poses a significant threat to the maintenance of
software systems and is on the top of the list of code smell types. Clones can be simple (fine-grained)
or high-level (coarse-grained), depending on the chosen granularity of code for the clone detection.
Simple clones are generally viewed at the lines/statements level, whereas high-level clones have
granularity as a block, method, class, or file. High-level clones are said to be composed of multiple
simple clones. This study aims to detect high-level conceptual code clones (having granularity as java
methods) in java-based projects, which is extendable to the projects developed in other languages as
well. Conceptual code clones are the ones implementing a similar higher-level abstraction such as an
Abstract Data Type (ADT) list. Based on the assumption that “similar documentation implies similar
methods”, the proposed mechanism uses “documentation” associated with methods to identify
method-level concept clones. As complete documentation does not contribute to the method’s seman-
tics, we extracted only the description part of the method’s documentation, which led to two benefits:
increased efficiency and reduced text corpus size. Further, we used Latent Semantic Indexing (LSI)
with different combinations of weight and similarity measures to identify similar descriptions in the
text corpus. To show the efficacy of the proposed approach, we validated it using three java open
source systems of sufficient length. The findings suggest that the proposed mechanism can detect
methods implementing similar high-level concepts with improved recall values.

Keywords: clone detection; high-level concept clones; information retrieval; Latent Semantic Index-
ing; Part-of-Speech tagging

1. Introduction

Cloning of program fragments in any form has been identified both as a boon and bane
depending upon the purpose for which it is used [1–7]. Writing code from scratch often
hinders code understandability and evolvability. In such situations, reusability achieved
via the use of already existing libraries, design patterns, frameworks, and templates aids
structuring code well, while on the other hand, code clones formed as a result of the
programmer’s laziness can turn out to be harmful in the long term. These clones adversely
affect software maintenance as even the smallest change made in a code fragment may
have to be propagated to all the clones of that fragment; failing may lead to inconsistent
code, which may result in software bugs [8–11]. Clones can also arise out of language
limitations or external business forces.

Depending on the extent of similarity between code clones, they can be classified
as exact or type-1 clones. They are the result of copy paste activity of programmers, when
they find a piece of code providing exact solution to their problem. To suit their needs,
programmers may further modify the pasted code leading to Type-2 or parameterized

Symmetry 2021, 13, 447. https://doi.org/10.3390/sym13030447 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3364-7858
https://orcid.org/0000-0002-4380-4012
https://doi.org/10.3390/sym13030447
https://doi.org/10.3390/sym13030447
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13030447
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/3/447?type=check_update&version=3


Symmetry 2021, 13, 447 2 of 24

clones (modification of identifier names) and Type-3 or near miss clones (modification
in control structures, deletion or addition of statements). Further clones can also occur
when the developer re-invents the wheel. These types of clones generally occur when
the developer is unaware of the existing solution to the problem or wants to develop a
more efficient algorithm. These clones can be termed as wide miss clones. A wide miss
clone solves the same or similar problem, while having structural dissimilarities. From
the experience of marcus and maletic [12], these type of clones often manifest themselves
as higher-level abstractions in the problem or solution domain such as an Abstract Data
Type (ADT) list. They can be termed as “concept clones”. Further, on the basis of chosen
granularity of code fragments (forming the basic units of clone detection), clones can be
simple (fined grained) or high-level (coarse-grained). Simple clones are generally composed
of few set of statements, while high level clones are clones having granularity as a block,
method, class, or file. High-level clones are said to be composed of multiple simple clones.
High-level clones can further be classified into behavior clones (clones having same set of
input and output variables and similar functionality), concept clones (clones implementing
a similar higher-level abstraction), structural clones (clones having similar structures), and
domain-model clones (clones having similar domain models such as class diagram) [13].
This study aims at the detection of “high-level concept clones having granularity as java
methods” in a software system.

High-level concept clones are those code fragments that implement a similar underly-
ing concept. Their detection depends on the user’s understanding of the system. Using the
code’s internal documentation and program’s semantics could be a viable mechanism for
their detection [13]. Detecting such clones is useful in selecting an efficient implementation
of higher-level abstraction and propagating changes to all clones whenever underlying
concept changes.

Different algorithms have been proposed in prior published studies to detect clones in
source code. The algorithms can be text-based (using source code implementation or asso-
ciated text, like, comments and identifiers directly or by converting to some intermediate
form) [12,14–19], token-based (using source code converted to meaningful tokens) [20–29],
tree-based (using parse trees) [30–35], metrics based (using metrics derived from source
code) [36–41], or graph-based (using source code converted to suitable graph) [42–46].

As the use of the code’s internal documentation and program semantics is recom-
mended for detection of concept clones, several studies use text-based Information Re-
trieval (IR) techniques. The IR techniques enable us to extract relevant information from a
collection of resources [47]. There are several techniques for information retrieval, such
as Latent Semantic Indexing (LSI), Vector Space Modeling, Latent Dirichlet Allocation
(LDA), etc. Researchers have used these techniques for clone detection by extracting source
code text from software programs. Marcus and Maletic [12] conducted one of the earlier
studies that took source code text (comments and identifiers) to identify similar high-level
concept clones. They applied LSI on the text corpus formed from extracted comments and
identifiers to identify such clones. Later, the authors extended this technique to locate a
given concept in the source code [48] and then to determine conceptual cohesion between
classes in object-oriented programs [49]. Bauer et al. [50] also compared the effectiveness
of LSI with the TF-IDF approach and regarded the former as the better alternative.

One of the drawbacks of LSI is the production of a large number of false positives [51],
making it difficult for developers to identify actual concept clones. Poshyvanyk et al. [52]
combined LSI with Formal Concept Analysis (FCA) to reduce this difficulty. FCA was used
for presenting the generated ranked results with a labeled concept lattice, thereby reducing
the efforts of programmers to locate similar concepts during software maintenance. In some
of the recent studies, researchers have highlighted the potential use of information retrieval
with learning-based approaches to detect type-4 clones. Xie et al. [53] used the TF-IDF
approach with the Siamese neural network, while Fu et al. [54] combined a Continuous Bag
of Words (CBOW)/Skip Gram (SG) model with ensemble learning and reported improved
accuracy measures as compared to other solo approaches. Some researchers have used LSI



Symmetry 2021, 13, 447 3 of 24

to further examine the clones, which have already been detected by some clone detection
tools. The findings suggest that clone detection and LSI complement each other and give
better quality results [18,55]. Table 1 summarizes some of the relevant studies related to
the use of information retrieval techniques in clone detection.

Table 1. Existing works using text-based Information Retrieval techniques to identify clones in software artifacts.

Author Year Technique Applied Text Corpus Content Description

Marcus and Maletic [12] 2001 LSI + CS Comments and Identifiers Identify similar high level concepts

Marcus and Maletic [48] 2004 LSI + CS Comments and Identifiers Locate a given concept in source code

Marcus and Maletic [49] 2005 LSI + CS Comments and Identifiers Identify conceptual cohesion between
classes in object oriented programs

Kuhn et al. [56] 2007 LSI + ST + TF-IDF + CS Identifiers
LSI was used for topic modeling of

source code for detecting source artifacts
that use similar vocabulary

Tairas and Grey [55] 2009 LSI + ST + CS Identifiers
LSI improves the results obtained by

using a clone detection tool (here
CCFinder)

Grant and Cordy [57] 2009 ICA + BN + CS Non-unique method tokens Similar files are clustered

Bauer et al. [18] 2016 LSI + L(TF) + CS Identifiers LSI improves the results obtained by
using a clone detection tool (here Conqat)

Ghosh and Kuttal [58] 2018 LDA + SWR Comments Achieved better precision and recall
compared to PDG-based techniques

Reddivari and Khan [59] 2019 LDA + SWR + ST Source code after identifier
splitting

Achieved better results when compared
to CCFinder [60] and CloneDr [61]

Abid [62] 2019 Lucene (IR engine)
Comments, keywords from

function names, and API
names used in function

Based on the user query, the technique
finds similar functions that implement

identical features using the extracted text
elements.

Kuttal and Ghosh [63] 2020 LDA + SWR + TF Comments excluding task
and copyright comments

Emphasized the usage of comments for
clone detection. Hybrid of both LDA (on

comments) and PDG-based (on source
code) approach is presented with

improved accuracy metrics values.

Xie et al. [53] 2020 TF-IDF + Cosine Source code text converted
into tokens

The technique combines TF-IDF and deep
learning-based (word embeddings)

approaches to identify semantic clones.

Fu et al. [54] 2020 CBOW + SG Source code text converted
into tokens

The technique combines SG, CBOW word
embedding model, and ensemble

learning to find semantic clones. It is
shown to perform well compared to other

token-based and deep learning-based
clone detectors.

IR: Information Retrieval, LSI: Latent Semantic Indexing, LDA: Latent Dirichlet Allocation, ICA: Independent Component Analysis, BN: Binary, TF-IDF:
Term Frequency-Inverse Document Frequency, L(TF): Log (Term Frequency), TF: Term Frequency, CS: Cosine Similarity, ED: Euclidean Distance, ST:
Stemming, SWR: Stop Words Removal, API: Application Program Interface, PDG: Program Dependence Graph.

Kuhn et al. [56] also illustrated the use of LSI for topic modeling of source code
vocabulary. Later, Maskeri et al. [64] used a more efficient approach called Latent Dirichlet
Allocation (LDA) to identify similar topics. Ghosh and Kuttal applied LDA on a text
corpus formed from a combination of comments and associated source code to identify
semantic clones [58]. It gave better precision and recall values as compared to PDG-based
approaches. In their recent study, they emphasized the usage of source code comments to
detect clones. They performed clone detection by employing a PDG-based approach to
source code and LDA to source code comments (excluding task and copyright comments)
for finding file level clones [63]. Their study empirically shows the relevance of good
quality comments to scale such IR-based techniques well for larger projects and detecting
inter-project clones. Reddivari and Khan also developed CloneTM, which uses LDA to
identify code clones (up to type-3) using source code (with identifier splitting, stop-word
removal, and stemming). CloneTM gave better results when compared to CCFinder [60]
and CloneDr [61]. Abid [62] developed Feature-driven API usage-based Code Examples
Recommender (FACER) to detect and report similar functions based on the user’s query.
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The tool uses comments, keywords from the function name, API class names, and API
method names used in functions to find similar functions using an IR-based engine called
Lucene. At the data level, data clones (replicas) can help recover lost data at runtime for
quality assurance of data analysis tasks in the big data analysis [65].

The literature also provides other similar techniques for clone detection. Grant and
Cordy [57] replaced LSI with a feature extraction technique, namely, Independent Compo-
nent Analysis (ICA), and used tokens in the program to build a vector space model instead
of terms in the comments.

Several previously published studies [12,48,49,58,63] apply IR-based techniques using
source code comments (including other programming constructs) to identify clones, thereby
resulting in a bulky text corpus. This study, however, omits all the unnecessary comments
and uses only comments present in the method’s documentation. Blending suitable NLP
techniques with descriptive documentation only (excluding notes comment, explanatory
comment, contextual comment, evolutionary comment, and conditional comment) makes
the proposed mechanism lightweight and efficient.

In this study, high-level concept clones at method-level granularity are detected
by extracting descriptive documentation of each method to form the text corpus. The
descriptive part of documentation generally describes the semantics of code, thus fulfilling
the criteria for detection of concept clones as stated above [13]. Latent Semantic Indexing
(LSI) coupled with Part-of-Speech (POS) tagging strategy and lemmatization is then applied
on the formed text corpus to identify high-level concept clones. After obtaining similar
descriptions, the methods corresponding to these descriptions are regarded as concept
clones.

The followings points summarize the procedural flow and factors contributing to the
efficacy of the proposed approach:

1. The text corpus is formed only from the description of methods (other documentation
details are removed). This is because the semantics of a particular method are mostly
contained in its description. All other comments augmented with methods are also
not used. Furthermore, no additional text element of the source code is used for text
corpus preparation. All this makes the comparison process efficient with the reduced
size of the text corpus.

2. A POS tagging strategy has been employed to assign higher weights to certain parts
of speech (generally nouns and verbs) and for the removal of stop-word, filtering out
all terms not tagged as nouns, adverbs, verbs, and adjectives. The use of POS tagging
also reduces the size of text corpus and increases efficiency by combining two tasks in
one step. Other works carry out stop-word removal as a separate task.

3. Different combinations of weight and similarity measures have been examined for
clone detection. These combinations are compared based on several parameters to
enable the end user to choose suitable variant. In Section 6.3, each combination is
ranked based on their efficiency to find contextual clones.

4. The proposed mechanism is able to detect methods implementing similar high-level
concepts with good accuracy values. The mechanism is empirically validated using
3 open source java projects (JGrapht, Collections, and JHotDraw) as subject systems.

The organization of the rest of the paper is as follows. Section 2 explains the relevant
terminologies used in this study. Section 3 lays down the research questions relevant to this
study. Section 4 lists the key features of documentation in java projects. Section 5 delineates
the clone detection process. Section 6 outlines the empirical validation process used and
addresses the listed research questions. Section 7 outlines threats to the validity of results
derived in this work. The conclusion is presented in Section 8 of this exposition.
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2. Terminology

This section briefly outlines the relevant terms used in this study.

2.1. High-Level Concept Clones

High-level concept clones [12,13] are defined as implementations of a similar higher-
level abstraction like an ADT list. They arise when developers try to re-invent the wheel,
i.e., implementing the same or similar concept using different algorithms. These clones
address the same or similar problem, while having very dissimilar structures. Their
detection depends on the user’s understanding of the system. Using the code’s internal
documentation and program semantics can greatly improve detection accuracy of this type
of clone.

In this research work, we have used descriptive documentation associated with
methods (as it contributes to the method’s semantics) to detect high-level concept clones
having granularity as java methods.

2.2. Latent Semantic Indexing (LSI)

LSI [51] is an information retrieval technique used for automating the process of
semantic understanding of sentences written in a particular language. It uses Singular
Value Decomposition (SVD) of the term-document matrix developed using the Vector
Space Model (VSM) to find the relationship among documents.

To perform LSI on a given set of documents, a term-document matrix is built by
extracting terms from these documents. Every entry of the matrix indicates the weight
assigned to a particular term in the corresponding document. This term-document matrix
is decomposed using SVD. It decomposes the matrix (say A with dimension m,n) into three
matrices as follows,

A = USVT (1)

where the dimension of U is (m,m), S (diagonal matrix) is (m,n), and V is (n,n). A random
value K is chosen to form the matrix Ak (a kth approximation of matrix A). Ak is derived as

Ak = U(m, k).S(k, k).V(k, n) (2)

After Ak is successfully computed, given a document, its similarity with other docu-
ments is calculated. The measure of similarity can be cosine, jaccard, dice, etc. The result of
applying LSI is a list of similar documents. A schematic representation of LSI is given in
Figure 1.

LSI usually finds its usage in applications like search engines to extract the most
relevant documents for a given query. It can also be used for document clustering in text
analysis, recommendation systems, building user profiles, etc.

2.3. Part-of-Speech (POS) Tagging

POS tagging [66] is defined as the process of mapping words in a text to their corre-
sponding Part-of-Speech tag. The tag is assigned based on both its definition and context
(relationship with other words in the sentence)*. For example, consider two sentences say
“S1 = Sameera likes to eat ice cream” and “S2 = There are many varieties of ice cream like
butterscotch, Kesar-Pista, etc.”. Look at the word like in both sentences. The tag assigned to
“like” changes according to the sentence: in S1 like is a verb, while in S2 like is a preposition.

POS tagging uses a predefined tag-set, such as the penn treebank tagset; transition
probabilities; and word distribution. The tag-set contains a list of tags to be assigned to
different words in the corpus. Transition probabilities define the probabilities of transition
from one tag to another in a sentence. The word distribution denotes the probability that a
particular word may be assigned to a specific tag.
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Figure 1. The illustration of working of Latent Semantic Indexing (LSI). LSI is used in this study to
find similarity between documentation of methods.

Applications of POS tagging are named entity recognition (recognition of the longest
chain of proper nouns), sentiment analysis, word sense disambiguation, etc.

While comparing two sentences it is sometimes required that different parts of speech
be weighed according to the semantic information it conveys in a particular context, which
can be done using POS tagging. In this paper, we have used POS-Tagging to give extra
weight-age to nouns and verbs.

In prior studies, D. Falessi et al. [67] used this technique to find equivalent require-
ments. By comparing different combinations of Natural Language Processing (NLP)
techniques required for building algebraic model, doing term extraction, assigning weights
to each term in documents, and measuring similarity among documents, they concluded
that the best outcome is observed for a combination of VSM, raw weights, extraction of
relevant terms (verbs and nouns only), and cosine similarity measure. They also did an
empirical validation of their results using a case study [68]. Johan [69,70] used similar NLP
techniques to find related or duplicate requirements coming from different stakeholders to
avoid reworking on a similar requirement.

2.4. Lemmatization

Lemmatization refers to the process of reducing different forms of a word to its root
form [71]. For example, “builds”, “building”, or “built” gets reduced to the lemma “build”.

The purpose of lemmatization is to gain homogeneity among different documents,
though, another mechanism, stemming, can also be used. Stemming works by removing
suffixes from different forms of a word, e.g., “studies” becomes “study”, “studying” be-
comes “study”, etc. As is evident from this example, lemmatization reduces words to a
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word present in the dictionary, while stemming removes suffixes without caring whether
the reduced form is available in the dictionary or not.

Stemming/lemmatization strategies have several applications in natural language
processing. In the software engineering field, these are generally used to understand and
analyze textual artifacts of the software development process, such as documentation
provided at each level, e.g., requirement document, design document, code documentation,
etc. Falessi et al. [67,68] employed stemming along with POS tagging as a word extraction
strategy to find equivalent requirements.

2.5. Term Weighting

While generating a term-document matrix, each entry carries some weight according
to its occurrence in the documents. These weights can be assigned in several ways as
discussed below.

Raw frequency: Weights are assigned according to the number of times they appear in
a particular document.

Binary: Weight value is one if a term occurs in the document; otherwise, its value
would be zero.

Term Frequency (TF): Raw frequency divided by the length of the document. This
helps prevent giving more preference to longer text because longer text tends to contain a
particular term at a higher frequency than the shorter ones.

Inverse Document Frequency (IDF): IDF is computed as the inverse of the number of
times a term occurs in all the documents. IDF score can be useful to give less importance
to the terms that frequently occur in all documents, thereby making it semantically less
useful for the document under review.

TF-IDF: Weight for a particular term in a document is computed by combining its TF
and IDF values. This mechanism leverages the benefits of both TF and IDF scores.

Word Embeddings: Word embeddings are a way to represent words in the text corpus
using distributed representations of words instead of a one-hot encoding vector. Using
these vector representations, one can explore the semantic and syntactic similarity of words,
the context of words, etc. in the document. Various word embedding techniques exist:

(i) Word2Vec: Word2Vec is a feedforward neural network with two variants. It either
accepts two or more context words as input and returns the target word as output,
or vice versa. The former is called the Continuous Bag of Words (CBOW) model and
the latter is the Skip-Gram (SG) model.

(ii) Glove: Glove works by generating a high-dimensional vector representation of each
word. The training is based on the surrounding words. This high-dimensional
matrix (context matrix) is then reduced to a lower-dimension matrix such that
maximum variance is preserved. Glove uses pretrained models that fail for text
containing new words. The documentation of methods may contain many new
words (such as method names), therefore glove was found unsuitable for this study.

(iii) Fasttext is similar to glove, with a feature that makes it suitable for random words
not in the pretrained model. It breaks the word into n-grams and then generates
the required context-matrix, for example, given the word “fruits” and n = 3. The
n-grams generated are <fru, rui, uit, its>. Each row in the matrix represents the
generated n-grams instead of whole words.

2.6. Similarity Measures

The two text documents are compared for their similarity using established similarity
metrics. As this study uses the term-document matrix, we are only interested in vector
similarity measures. There are three commonly used vector similarity metrics: cosine,
jaccard, and dice. For two vectors, say X and Y, the three metrics are calculated as follows:

Dice(x, y) =
2|x

⋂
y|

|x| + |y| (3)
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Jaccard(x, y) =
|x

⋂
y|

|x| + |y| − |x
⋂

y| (4)

Cosine(x, y) =
|x

⋂
y|√

|x | |y|
(5)

2.7. Thresholds Used

Certain thresholds are used for the proper execution of the proposed mechanism:

(i) #Method_Tokens: This threshold is used to filter out small methods. Methods
with count of tokens greater than a certain threshold are only considered in the
comparison process. This helps in getting more relevant results.

(ii) #Simterms: #Simterms define the count of similar terms obtained by textual com-
parison of each pair of documentation to keep track of ordering of terms. This
threshold allows only those documents to be compared which have a similar
ordering of terms greater than the threshold value.

(iii) Simmeasure: Simmeasure defines the similarity value obtained by using similarity
measures given in Section 2.6 (i.e., cosine, jaccard, or dice similarity) between the
pair of documentations. This threshold ensures that the resulting clone pairs have
similarity greater than the threshold value.

(iv) K: The value used for arriving at the kth approximation of the term-document
matrix. It is used when performing LSI to ensure that maximum variance is
preserved when reducing the high-dimensional matrix to a lower dimension.

2.8. Precision and Recall

In this study, recall refers to the ratio of the number of items that are known to be true
clones and are detected successfully (number of true positives say x) to the total number of
true clones say y.

Recall =
x
y

(6)

Here, precision refers to the ratio of the number of true positives in the detected clones,
say p, set to the total number of clones detected in the detected clones set, say q.

Precision =
p
q

(7)

3. Research Questions

The different aspects of clone detection, which have been analyzed in this study, are
abstracted into the following research questions.

• RQ1: How is documentation present along with source code in a software system useful for
finding concept clones? Through this question, our aim is to investigate the effectiveness
of using documentation in finding method-level concept clone pairs. As this study
revolves around the fact that “similar documentation implies similar methods”, it is
also recommended to use internal documentation for high-level concept clone detec-
tion. Therefore, it is necessary to examine the structure of documentation followed in
the software projects. Here, we do an in-depth study of documentation structures fol-
lowed in java-based projects in general and validate that similar structures can also be
seen in the case studies used for the empirical validation of the proposed mechanism.
We then probed over the ideal documentation style of methods for the technique to
work credibly without manual checking required both for java-based projects and for
projects implemented in some other language. Further, we investigated the use of
information retrieval techniques particularly Latent Semantic Indexing (LSI) on the
text corpus formed from extracted documentation.
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• RQ2: What are the implications of applying different combinations of weight and similarity
measures for performing LSI on the extracted method’s documentation? While applying LSI
to the text corpus formed from the extracted documentation, we observed the result
sets obtained using various combinations of weight and similarity measures. This
question investigates which combinations gave better results and assigns a ranking to
each of the combinations.

• RQ3: Is the technique scalable, i.e., applicable to large-sized projects? This research
question aims to examine the scalability of the proposed mechanism. As the proposed
mechanism is centered around analyzing documentation of methods, its scalability
also correlates to the uniformity of style and availability of documentation.

4. Key Features of Java Documentation

The documentation accompanying the source code in a software system describes
the functionality of code fragments; this motivated us to use them in the clone detection
process. This is based on the assumption that “similar documentation imply similar code
fragment”. In this study, the code fragment is taken to be the method in the java projects.

In a java-based project, documentation contains the following parts:

(i) Description: Contains description of the code fragment.
(ii) Descriptive Tags: Several other details are presented in this part of documentation

prefixed with certain tags such as @param, @see, @author, @throws, @override, @return,
etc.

Here, we extract only documentation associated with methods to be used as input
to LSI. Contained in the following are the relevant viewpoints of using documentation of
methods for clone detection.

(i) It is not compulsory for the documentation to contain all its parts (description and
descriptive tags). It can contain any or both of the parts depending upon requirements.
The description of methods is extracted using both parts as described in Section 5.

(ii) Not all methods are documented in java projects. The absence of documentation can
be credited to one of the following reasons:

(a) Two or more related methods may be documented collectively. This leads to
documentation being associated with only one method, while all other methods
are seen undocumented by our technique.

(b) Some methods perform a sub-function of a task. The programmer may only doc-
ument the method performing the whole task, leaving the methods performing
sub-functions undocumented.

(c) Some methods are seen to be undocumented for unknown reasons, maybe the
laziness of the programmer leads to these methods being left undocumented.

We manually injected documentation for undocumented methods based on the rough
understanding of methods so that they can be made suitable for input as clone
candidates for our technique.

(iii) The description part may also contain other types of comments, which are as follows
(the explanation of each type is derived from Howard [72]):

(a) Notes Comment: Notes are used to communicate pending tasks to either the
developer or the team, and sometimes used to refer to other parts of the code.

(b) Explanatory Comment: Explanatory comments explain the rationale behind some
part of the code.

(c) Contextual Comment: These comments provide information about the context of
the method, e.g., the method is “called from X”, “calls Y”, or “called when.”

(d) Evolutionary Comment: Evolutionary comments describe information about the
history of the method.

(e) Conditional Comment: Conditional comments specify conditions under which this
method should be called.
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These comments do not contribute towards the semantics of methods and need to be
filtered out. Here, we also used manual ways to filter out these comments. This helps
to increase the efficiency of the algorithm as the size of the text corpus used as input
to LSI is reduced.

(iv) It may be possible that the whole description of the method does not contain any de-
scriptive comments. These methods may result in false negatives. It can be considered
similar to undocumented methods as they do not appear in results to form clone pairs
with other methods.

5. Clone Detection Process

This section briefly describes the clone detection process used in this paper. We have
taken three open source software written in java to validate our findings empirically. The
steps carried out in the process are as follows.

Step 1: Filtering out Interfaces, Abstract Methods, Small Methods, and Constructors: Pro-
grams written in java contain a large number of interfaces and methods that need to
be filtered out because they do not contribute to relevant clones. This helps in increas-
ing the performance of the proposed mechanism by reducing the number of spurious
clones and makes the overall analysis of resulting clone pairs less time-consuming (see
Algorithms 1 and 2). The following programming constructs shall be filtered out:

(i) Interfaces: An interface contains only the names of methods without any implementa-
tion. Classes that implement the interface need to implement the required functionality
for each of the methods. As interfaces do not contain any implementation, they must
be filtered out as they do not contribute much to the detection of relevant clones.

(ii) Abstract Methods: Abstract methods are similar to the methods in interfaces and do not
contain any implementation. Thus, they are also filtered out.

(iii) Small Methods: Methods that are smaller than a particular threshold, i.e., a specific
number of tokens, are also filtered out. This threshold value is a hyperparameter. This
filtering helps to remove various setter and getter methods and methods that only call
other methods to perform the required functionality. These are generally single line
methods whose detection as clones serves the least purpose.

(iv) Constructors: In this study, constructors are also not taken into account for clone
detection, thus they are also filtered out.

Algorithm 1: Filter out small methods.

1 largeMethods←− φ;
2 filterSmallMethods(projectDirectory)
3 paths←− dirExplore(projectDirectory);
/* paths contain a list of all the paths in the project directory */

4 javaFiles←− paths.endsWith(.java);
/* All java files are extracted */

5 while javaFile ∈ javaFiles do
/* This loop works by comparing the size of methods with a given threshold and

add them to the list of large methods */
6 nodes←− javaFile.getAllNodes;
7 while node ∈ nodes do
8 if node instanceOf ClassOrInterfaceDeclaration then
9 methods←− node.methods();

10 if methods.size() >= threshold then
11 largeMethods.add(method);

12 return largeMethods
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Algorithm 2: Filter out methods that least contribute to clones in software
systems.

1 filterMethods(sourceCode)
2 methods←− sourceCode.methods;
/* Extract methods from source code */

3 f iltered_methods←− f ilterSmallMethods(methods);
/* Filter out small methods using a threshold, need parsing of code */

4 methodDocs←− f iltered_methods.methodDocs;
5 while methodDoc ∈ methodDocs do
6 if methodDoc /∈ methodDoc.inter f aceMethods and

methodDoc /∈ methodDoc.constructors and
methodDoc /∈ methodDoc.abstractMethods then

/* Exclude interface’s methods, abstract methods and constructors from
comparison */

7 f ilteredMethodDocs.add(methodDoc);

8 return f ilteredMethodDocs

Step 2: Extraction of Documentation: In this work, only documentation related to
methods is used, as described in Section 4. Furthermore, we need to extract only the
description associated with methods (see Algorithm 3). If the description is not present, the
proposed method uses descriptive tags to extract a suitable description for the method
using @return and @see tags.

(i) @return tag describes what is returned from the function. The contents of the @return
tag are used when the description is absent.

(ii) @see tag is used when a lookup to another method/class is required (no description
for the method and no @return tag is present).

Overridden methods are usually annotated with @override annotation. If documenta-
tion is not available for these methods, it is extracted from the method being overridden.

Further, to extract java documentation in a processable file format, we used built-in
java library doclet (by default javadocs are generated as HTML pages). Steps 1 and 2
collectively describe the key features our generated javadoc should have.

Step 3: Part-of-Speech (POS) Tagging of Documentation and Lemmatization:
For each method’s extracted documentation, POS tagging is performed (see Algorithm 5

(Step 5)). The purpose of this step is twofold:

(i) To give more weight to nouns and verbs in a sentence.
(ii) To remove stop words by extracting only words tagged as verbs, adjectives, nouns,

and adverbs (see Algorithm 5 (Step 7)).

Lemmatization is done to reduce each term in documentation to its base form, to curb
differences among documentation arising out of different forms of words (see Algorithm 5
(Step 6)).

Step 4: Latent Semantic Indexing (LSI): LSI (see Algorithm 5 (steps 10–15)) is performed
as follows:

(i) Extract those terms tagged as verbs, nouns, adjectives, or adverbs.
(ii) Perform LSI on these extracted terms. The VSM built contains weights (matrix entries),

as described in Section 2.5. Weights can also be assigned by giving extra weight-age
to certain parts of speech (nouns and verbs).

(iii) For a pair of method’s description, use similarity measures described in Section 2.6,
also taking into account similarity based on term ordering to find clone pairs in a
software project (see Algorithm 4).

For the complete algorithm, refer to Algorithms 1 to 5. The flowchart representation
of this algorithm is given in Figure 2.
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Algorithm 3: Extract comments from program’s source code.

1 extractComment(methodDoc) /* Extract method description from method
documentation */

2 desc←− methodDoc.commentText /* commentText is the description of method
without any tags. The actual semantic description of method is often contained
in the commentText */

3 if length(desc) > 0 then
/* do nothing */

4 else if length(methodDoc.returnTag) > 0 then
5 desc←− returnTag.commentText;

/* If actual semantic description is not present, then we try to extract comment
corresponding to return tag of method documentation */

6 else if length(methodDoc.seeTag) > 0 then
7 desc←− seeTag.commentText;

/* If both the actual semantic description and return tag are not present then,
we try to extract the corresponding comment to see the tag of method
documentation which itself gives reference to the documentation of the other
method */

8 else if methodDoc.isOverriden and methodDoc.isAnnotated(@Overriden) then
9 desc←− OverridenSuperClassMethod.desc;

/* Import overridden method description from the method it overrides */

10 else
11 desc←− null;

12 return desc

Algorithm 4: Find similarity between documents.

1 similarityMeasure(doc_to_cmp, kth_approx_TD_Matrix)
2 clones←− φ;
3 terms1←− doc_to_cmp.terms;
4 while column_doc ∈ kth_approx_TD_Matrix do
5 terms2←− column_doc;
6 if similarityInOrder(terms1, terms2) > 30% then

/* Similarity in order means terms in two docs are compared in word
similarity and order similarity */

7 if Similarity(term1, terms2) > 50% then
/* Similarity can be measured using cosine, dice, or jaccard similarity

measures (refer to Section 2.6) */
8 clones.add(doc_to_cmp, column_doc);

9 return clones
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Algorithm 5: Using POS tagging and LSI to find similar methods.
Input: Source Code
Output: Similar Method Pairs

1 descs←− ”” /* Find similar method pairs given source code of software */
2 f ilteredMethodDocs←− f ilterMethods(sourceCode)
/* Filter out methods that least contributes to clones in software program, i.e.,

interfaces, abstract methods, constructors, and small methods */
3 while methodDoc ∈ f ilteredMethodsDocs do
4 desc←− extractComment(methodDoc)
5 t_desc←− desc.POS_Tagged

/* Tag each term in the documentation corpus with their corresponding POS tag */
6 lt_desc←− t_desc.Lemmatize

/* Each term is reduced to its basic form */
7 desc←− lt_desc.removeStopWords

/* Extract only nouns, adverbs, verbs, and adjectives from the description after
POS tagging and lemmatization */

8 descs←− descs + desc
9 end
/* Execute LSI on these comments */

10 descs.buildTDMatrix
/* Assign weights to each extry based on word’s POS tag (optional) and using one of

the weight measures as in Section 2.5 */
11 TD_Matrix.singularValueDecomposition
12 Derive kth approximation of TD_Matrix
13 clone_pairs←− similarityMeasure(doc_to_cmp, kth_approx_TD_Matrix)
14 print(clone_pairs)

Program Files 
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Program Files

Filter Out

1. Small Methods

2. Interfaces

3. Abstract Methods

4. Constructors

Extract 

Documentation

Documentation is extracted 

as a mapping of methods and 
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<File Name + Method Name 

= Documentation>

DocFile

.xls
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and Lemmatization
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Figure 2. Flowchart representation of proposed mechanism to find method-level concept clones.
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6. Empirical Validation

To empirically validate the proposed mechanism, it has been applied to three open
source java projects, namely, JGrapht [73], Collections [74], and JHotDraw [75]. The results
obtained were validated against the benchmark Qualitas Corpus (QCCC) [76], which was
provided by Ewan Tempero [77] to present the efficacy of the proposed approach. The
researcher prepared a corpus of clones for 111 open source java projects. However, the
corpus only presents type-1, type-2, and type-3 clones, while our mechanism reports high-
level concept clones. The validation is justified because type-1, type-2, and type-3 clones
are very similar in structure and mostly implement similar concepts. The recall values
obtained on validation also indicate that concept clones generally cover most clone pairs
falling in these three categories. Nevertheless, the manual validation of resulting clone
pairs is necessary for accuracy calculations.

Table 2 gives details of projects used for the empirical validation. The details include
#Files analyzed, #Methods (excluding constructors, abstract methods, methods of interfaces,
and small methods), Estimated Lines of Code (ELOC; excluding constructors, abstract
methods, methods of interfaces, and small methods), and % of Documented Methods (i.e.,
% of methods documented before manual modification (excluding constructors, abstract
methods, and methods of interfaces)), which shows that with increase in size, the number
of documented methods decreases.

Table 2. Details about projects used in the empirical validation of mechanism.

Project Name #Files #Methods ELOC (Approx.) % of Documented
Methods (Approx.)

JGrapht 175 467 6K 80%

Collections 273 1427 10k 70%

JHotDraw 589 2996 45k 53%

ELOC: Estimated Lines of Code.

After applying POS tagging, lemmatization, and stop-word removal to the description
of methods, different weighing measures were used to generate term-document matrix,
and thereafter to obtain a list of clone pairs, different similarity measures (to measure
similarity between several term-document vectors) were used after performing LSI. Table 3
summaries a list of all the combinations of weight and similarity measures used in this
study. Furthermore, with each combination POS tagging is used in two ways, i.e., with or
without selective weight assignment (giving priority to certain parts of speech). Selective
weight assignment cannot be used with binary weight measures because it can only hold
values 1 and 0.

Table 3. Combinations of weight and similarity measures used.

S.No. POS Weightage Weight Measure Similarity Measure Acronym

1

No

Raw Frequency Cosine RCWOPOS
2 Binary Cosine BCWOPOS
3 TF Cosine TFCWOPOS
4 Binary Jaccard BJWOPOS
5 Binary Dice BDWOPOS
6 TF-IDF Cosine TFIDFCWOPOS
7 FASTTEXT Cosine FASTTEXT
8 CBOW Cosine CBOW
9 SG Cosine SG

10

Yes

Raw Frequency Cosine RCWPOS
11 TF Cosine TFCWPOS
12 TFIDF Cosine TFIDFCWPOS

POS: Part of Speech, TF: Term Frequency, TF-IDF: Term Frequency-Inverse Document Frequency, CBOW: Contin-
uous Bag of Words model, SG: Skip-Gram model.

Owing to the small size (ELOC is approx 6K), the JGrapht project has been used to
illustrate the underlying working of the proposed mechanism. The recall is measured
by a comparison of results obtained using our mechanism with the one provided in
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QCCC. Precision calculations are made for individual methods through augmenting manual
validation of resulting clone pairs.

6.1. Relevance of Jaccard and Dice Similarity Measures with LSI

The reason behind using only binary weight measures with jaccard and dice similarity
measures can be explained with the help of a counterexample.

The jaccard similarity measure is calculated as given in Equation (4). Therefore, for
two vectors with raw frequency weights say x = {1,2,1,0,1,2} and y = {1,2,2,1,0,1}, then
Jaccard (x,y) = 2/5 = 0.4. It will treat (1,2) and (0,1) as different numbers and consider
these documents as not similar w.r.t. these terms. While, in reality, methods with vector
representation x and y are highly similar, as these numbers indicate the frequency of
occurrence of terms in the method’s descriptions being compared. A similar example
can be quoted for TF weight measure and non-applicability of LSI. Furthermore, the Dice
similarity measure, as given in Equation (3), can be used only with binary weight measure
and cannot be combined with LSI, based on a similar explanation, as indicated above.

6.2. Results and Discussion

The results of empirical validation of each of the case studies are presented here.

6.2.1. Empirical Validation Using JGrapht

JGraphT is a free Java class library that provides mathematical graph-theory objects
and algorithms. It runs on java 2 platform (requires JDK 1.8 or later starting with JGraphT
1.0.0).

This subsection provides execution details of the proposed mechanism on JGrapht.
The thresholds (see Section 2.7) used for arriving at results are as follows:

(i) #Method_Tokens: Small methods are filtered out using a minimum threshold of 50 on
the number of tokens in a method (Evans used the same threshold on the number of
Abstract Syntax Tree (AST) nodes in a method [77]).

(ii) K: For LSI, the value of K is taken as half of the total number of terms in the text
corpus.

(iii) Simmeasure is taken as 0.5, i.e., documentation of resulting method-level clone pairs
should be 50% similar.

(iv) #Simterms is set to 30%, i.e., documentation of resulting method-level clone pairs
should be at least 30% similar in term ordering.

Table 4 shows the results obtained after applying each of the 12 combinations of weight
and similarity measures to JGrapht. Column 1 gives the type of combination applied (see
Table 3). Column 2 enlists the number of clone pairs observed for each applied combination.
Column 3 gives the intersection of clone pairs present in both benchmark QCCC (provided
by Evans [77]) and the proposed mechanism. The number of clone pairs reported for
JGrapht in QCCC were 85 methods with 6 constructors (constructors have already been
filtered out in this study because of their limited relevance). Column 4 gives recall, which is
measured by comparing the obtained results against the benchmark. Last, column 5 gives
precision metric values, which are obtained by manual analysis of resulting clone pairs.

The results are then compared (see Figure 3) to analyze the relative variation of the
number of true positive clone pairs with similarity scores. Similarity scores can be Cosine,
Dice, or Jaccard. An ideal plot should exhibit a large proportion of clone pairs for higher
similarity values (say for similarity score > 0.7). The following observations can be made
while analyzing clone pairs identified for JGrapht.

(i) A large number of clone pairs observed for each combination is attributed to the basic
nature of LSI. LSI finds clone pairs by measuring the similarity between terms. In
two sentences, terms can be similar, but the overall meaning of a sentence may be
different, e.g., when a query search is performed on a search engine, a large number
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of results are obtained with ranking given to each result. This is also the reason for
less values of precision in the result set (see Column 5 of Table 4).

(ii) Maximum recall is achieved using combination number 4 (binary weight measure and
jaccard similarity measure), and maximum precision is achieved using combination
number 12 (TF-IDF weight measure and cosine similarity measure). Both of them
gave better values of precision and recall metrics.

(iii) While comparing “Similarity Score” with the count of true positive clone pairs in the
result set, we observed combinations 1(RCWOPOS), 2(BCWOPOS), 5(BDWOPOS),
3(TFCWOPOS), 8(CBOW), and 9(SG) as having an ideal property, as a large proportion
of true positive clone pairs are encountered for higher similarity values. The rest of
the combinations show a somewhat higher count of clone pairs for low values of
similarity score. Combination 4(BJWOPOS) show the worst results as the high number
of true positives are observed for similarity score as low as 0.3.

(iv) The graphs and tables suggested a trivial advantage of using POS selective weight-age.
However, it resulted in increased precision values but with a decline in the recall values.

(v) Of all the combinations, combination 1(RCWOPOS) is preferred as it gave good values
of precision and recall; it also exhibits defined idle graph property.

Table 4. Results of applying combinations 1–12 on JGrapht.

Combination Type #Clone Pairs
#Clone Pairs

Matched with
Benchmark

Recall (%) Precision (% Rough
Estimate)

RCWOPOS 1599 73 85.88 60
BCWOPOS 1326 72 84.70 57

TFCWOPOS 1561 73 85.88 57
BJWOPOS 1458 74 87.05 70
BDWOPOS 1016 70 82.35 67

TFIDFCWOPOS 740 68 80.00 75
FASTTEXT 1901 72 84.70 57

CBOW 3348 71 83.52 50
SG 1847 73 84.70 55

RCWPOS 765 67 78.82 73
TFCWPOS 762 66 77.64 72

TFIDFCWPOS 573 66 77.64 80

Refer to Table 3 for all the combination types listed here.

Figure 3. Comparison of count of true positive clone pairs with similarity values for JGrapht case
study (refer to Table 3 for all the 12 combinations listed).

6.2.2. Empirical Validation Using Collections and JHotDraw

This section gives complete details of the execution of the proposed mechanism on
Collections and JHotDraw open source software. Each of the 12 combinations of weight
and similarity measures are applied to each open source java project. Small methods are
filtered out using a minimum threshold of 50 on the number of tokens in the methods for
both projects.
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The results of the application of each of the 12 combinations on the two open source
projects are given in Table 5 (for Collections case study) and Table 6 (for JHotDraw
case study).

Only recall is measured for results obtained for Collections and JHotDraw due to time
constraints. As the precision calculated is a manual and time-intensive process for such a
large result set of clone pairs obtained, it was performed for JGrapht to show the relevance
of the proposed mechanism. The number of clone pairs reported in the benchmark for
Collections is 1037 methods and 3 constructors, and for JHotDraw is 2550 methods and 199
constructors.

Table 5. Results of applying combinations 1–12 on Collections.

Combination Type #Clone Pairs #Clone Pairs Matched with
Benchmark Recall (%)

RCWOPOS 23,586 784 75.60
BCWOPOS 21,922 784 75.60

TFCWOPOS 23,614 785 75.69
BJWOPOS 22,462 789 76.08
BDWOPOS 15,394 737 71.07

TFIDFCWOPOS 10,870 687 66.24
FASTTEXT 34,522 760 73.28

CBOW 25,683 774 74.63
SG 19,325 725 69.91

RCWPOS 12,632 678 65.38
TFCWPOS 12,646 678 65.38

TFIDFCWPOS 7478 601 57.95

Refer to Table 3 for all the combination types listed here.

Table 6. Results of applying combinations 1–12 on JHotDraw.

Combination Type #Clone Pairs #Clone Pairs Matched with
Benchmark Recall (%)

RCWOPOS 29,154 1851 72.58
BCWOPOS 28,698 1863 73.05

TFCWOPOS 29,116 1853 72.66
BJWOPOS 28,527 1865 73.13
BDWOPOS 20,510 1824 71.52

TFIDFCWOPOS 18,778 1788 70.11
FASTTEXT 48,106 1798 70.50

CBOW 49,235 1868 73.25
SG 36,283 1861 72.98

RCWPOS 22,428 1792 70.27
TFCWPOS 22,363 1795 70.39

TFIDFCWPOS 16,131 1697 66.54

Refer to Table 3 for all the combination types listed here.

A comparison similar to JGrapht (between similarity scores and count of true positive
clone pairs) is also made for the Collections and JHotDraw case study (see Figures 4 and 5).
The following observations can be made from these graphs and tables.

(i) For the Collections case study, combinations 1(RCWOPOS), 2(BCWOPOS), 3(TFC-
WOPOS), 5(BDWOPOS), 7(FASTTEXT), 8(CBOW), 10(RCWPOS), and 11(TFCWPOS)
show ideal curve property. Here, also similar to JGrapht, combination 4(BJWOPOS)
shows the worst results with a significant number of true positives being observed
for lower similarity scores. Here, combinations 1(RCWOPOS), 2(BCWOPOS), and
3(TFCWOPOS) can also be seen to show good results both in terms of recall and
concentration of clone pairs.

(ii) For the JHotDraw case study, all the combinations showed a similar behavior: all of
these satisfy the defined ideal property (except combination 4). Here, combination
4(BJWOPOS) also gave the worst results for similar reasons as mentioned above. The
highest recall values are shown by combination 2, 4 and 8. Here, combinations 1, 3
and 9 also have good recall values with only 1 % decrease in recall.

We use a Windows 10 machine with Intel(R) Core(TM) i5-6200U CPU having 2.7 GHz
frequency for the three case studies. The execution time increases exponentially with the
number of documents (documents contain methods linked with its documentation).
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Figure 4. Comparison of count of true positive clone pairs with similarity values for Collections case
study (refer to Table 3 for all the 12 combinations listed).

Figure 5. Comparison of count of true positive clone pairs with similarity values for JHotDraw Case
Study (refer to Table 3 for all the 12 combinations listed).

6.3. Exploring the Research Questions

RQ1: How is documentation present along with source code in a software system useful for
finding concept clones?

The result of the three case studies exhibited good recall values using the proposed
mechanism, thereby showing the effectiveness of considering the method’s documentation
for clone detection purposes. This shows the strength of the LSI mechanism to link
semantically related documents together. Therefore, using documentation present along
with source code is beneficial for high-level concept clone detection.

Java projects follow a certain structure and style while building the documentation
as given in Section 4. We saw a similar structure in the case studies used. Table 7 gives
examples of each documentation characteristic that is seen in the case studies and also the
manual modifications that can be applied in each situation. Looking at the availability of
the method’s documentation in these software projects, we observed that not all methods
are documented. Table 2 shows the percentage of documented methods in JGrapht (80%),
Collections (70%), and JHotDraw (53%), therefore mandating the manual modifications as
described in Section 4.

For this technique to work credibly for java-based projects without the requirement of
manual checking, the following points need to be taken care of:

1. The description part of documentation must only contain comments related to the
semantics of the method.

2. If the description part is absent, it should contain description associated with the
@return tag or a lookup to similar method documentation using @see tag (so that its
documentation can be used here).

3. Only overridden methods (methods overriding some other methods present in the
project) with @override annotations are allowed to be undocumented.

4. All the methods in a project should follow a uniform style of documentation.
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For projects in other languages, the documentation should follow uniform style and
should only contain description related to semantics of methods. These two requirements
are necessary for the proposed technique to give useful results.

Most importantly methods should not be left undocumented.

Table 7. The key features of documentation as seen in case studies. The table illustrates how we manually dealt with
documentation of methods that were not in the required format.

Documentation Characteristic
Case Study Examples Manual Modification Applied

Category Characteristics

InComplete comments [78,79]

The documentation of code fragments
(here methods) can contain both or
any part of documentation (descrip-
tion or descriptive tags or both).

The method alg.BellmanFordIterator.
putPrevSeenData contain only

@param and @return descriptive tags.
The @return tag is also accompanied

by only a “.”

The contents associated with @return
tag are modified to contain a

meaningful return description, which
is later extracted to form the
description of method. The

description can be “@return a set
containing previously seen vertices”

Not documented methods [80]

Two or more related methods may be
documented collectively. This leads
to documentation being associated
with only one method, while all other
methods are seen undocumented.

Methods
jhotdraw.geom.Bezier.b0/b1/b2/b3
are documented collectively only for

b0 while b1,b2,b3 are seen
undocumented

Make separate documentation for
each method.

Some methods perform a sub-function
of a task.The programmer may only
document the method performing
the whole task, leaving the methods
performing sub-functions undocu-
mented.

The method jhotdraw.app.
OpenApplicationFileAction.

openView is a sub-method of
jhotdraw.app.

OpenApplicationFileAction.
actionPerformed method. Hence left

undocumented

The method may be left
undocumented or documented with
description, e.g., “open the specified

view of the application”

Some methods are seen to be undocu-
mented for unknown reasons, maybe
the laziness of the programmer leads
to these methods being left undocu-
mented

The method
jgrapht.graph.AbstractBaseGraph.
DirectedSpecifics.addVertex is left
undocumented due to developer’s

laziness

The method may be left
undocumented or documented with
description, e.g., “ add vertex to the

directed graph ”

Not required comments [72]

Notes comment The ending tasks are generally present
in class documentation as whole

If any notes comments are present in
method’s documentation, it is

removed.

Explanatory comment
jgrapht.Graph.addEdge method

contains a lot of explanation about
how an edge is added to the graph

These kind of explanations are
removed

Contextual comment
jgrapht.Graph.removeAllVertices

method contains a comment linking it
to removeVertex method

All the linking comments are removed
from documentation.

Evolutionary comment

jgrapht.alg.ConnectivityInspector.
pathExists contains an evolutionary

comment describing its future
versions

These comments are removed from
documentation.

Conditional comment

jgrapht.Graph.vertexSet method
contains a comment describing the

situation when the graph gets
modified while it is iterated over

These comments are removed from
documentation.

Low-quality comments [79–81]

It may be possible that the whole
description of method do not contain
any descriptive comment. These
methods may result in false negatives

See documentation of the method
jhotdraw.beans.

WeakPropertyChangeListener.
removeFromSource, which do not

contain any semantic details of
method

One should add some semantic details
to the documentation or leave the

method with the given
documentation, making it similar to
not documented methods. They do

not come in result sets.

RQ2: What are the implications of applying different combinations of weight and similarity
measures for performing LSI on the extracted method’s documentation?

We examined the result obtained using all the combinations listed in Table 3. We
observed that all of them gave similar results with minor variation in recall values. In all
the case studies, combination 3 (TF weights and Cosine Similarity without POS Selective
weight-age) outperform others, while combination 4 (binary weights and Jaccard similarity
measure) performed the least. The ranking of the 12 combinations is given in Table 8.
This ranking is based on the recall values and whether the combination exhibits an ideal
property (a large proportion of clone pairs concentrated at higher similarity values). It can
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be seen that while combination 4 gave good recall values, it is ranked lowest because it
shows a large proportion of clone pairs for similarity values as low as 0.3.

Table 8. Ranking of each combination of weight and similarity measures used in this study. Ranking is based on recall values
and whether the combination exhibit ideal property (a large proportion of clone pairs concentrated at higher similarity
values) (see Table 3 for the full forms of acronyms used in column 2).

Rank Combination Type
Recall Values Follow Ideal Property

JGrapht Collections JHotDraw JGrapht Collections JHotDraw

1 TFCWOPOS (3) 85.88 75.69 72.66 YES YES YES
2 RCWOPOS (1) 85.88 75.60 72.58 YES YES YES
3 BCWOPOS (2) 84.70 75.60 73.05 YES YES YES
4 CBOW (8) 83.52 74.63 73.25 YES YES YES
5 BDWOPOS (5) 82.35 71.07 71.52 YES NO YES
6 SG (9) 84.70 69.91 72.98 YES NO YES
7 FASTTEXT (7) 84.70 73.28 70.50 NO YES YES
8 RCWPOS (10) 78.82 65.38 70.27 NO YES YES
9 TFCWPOS (11) 77.64 65.38 70.39 NO YES YES
10 TFIDFCWOPOS (6) 80 66.24 70.11 NO NO YES
11 TFIDFCWPOS (12) 77.64 57.97 66.54 NO NO YES
12 BJWOPOS (4) 87.05 76.08 73.13 NO NO NO

RQ3: Is the technique scalable, i.e., applicable to large-sized projects?
In the case studies, it can be observed that with an increase in size, the number of

methods documented decreases. The style of documentation becomes nonuniform, as for
larger-sized projects, more developers get involved, and they follow different styles of doc-
umentation. Section 7 explains how the documentation of methods becomes nonuniform.
However, if the proper documentation structures are followed, the proposed mechanism
shall scale well even to the large-sized projects.

7. Threats to Validity

Documentation of software is done in the English language. A method can be de-
scribed in a language in varied different styles of sentences. For example, consider a
method that checks for the equality of two integers: a and b. This method can be described
in the following different styles:

1. “Returns true iff a = b”.
2. “Checks whether a equals b”.
3. “Checks for the equality of two integers”.
4. “Checks for the equality of a and b” and so on.

For LSI to work, a uniform style of documentation should be followed to find cloned
methods. It is also sometimes encountered that a method is not documented with a
descriptive comment or is not documented at all. To deal with this issue, a manual analysis
of all the method documentation is necessary. This vagueness in documentation style and
its absence poses a significant threat to results validity. Further, the absence of Javadoc
comments may result in missing clone pairs, and manual injection of documentation is a
subjective issue and depends on the code understanding.

8. Conclusions and Future Work

A software’s documentation of methods shows an excellent expressiveness in describ-
ing “what the method does”. In this study, applying information retrieval techniques to
these documentations to extract functionally similar or nearly functionally similar methods
exhibited impressive results. Recall values are found to be between 68% to 89% for the
three case studies, i.e., JGrapht, JHotDraw, and Collections. However, the number of clone
pairs identified are significant, which is attributed to LSI’s superior capability to match
two contextually similar terms in different documents. The proposed technique not only
considers similar terms in the documentation, but also considers their ordering, e.g., two
strings “Are you there?” and “there you are” shall be processed differently. For certain
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combinations, we used selective POS weight assignment strategy, which is not found to
exhibit significant improvement in results when compared to their counterparts that do
not use selective POS weight assignment. Different weight measures (Raw, Binary, TF,
and TF-IDF) and models (SG, CBOW, and FASTTEXT) are used in the study. The study
shows that the combination using TF weights, cosine similarity, and without POS selective
weight-age shows better results for all the three case studies performed for predicting
similar methods from their documentations. The relatively low values of the “Precision”
metric could be justified owing to the simplicity and lower implementation cost of the
proposed mechanism.

Future works may consider tag-based comparison, i.e., the content of each tag (@param,
@see, @return, etc.) may be compared separately, especially for java-based projects. Preci-
sion can also be greatly improved if along with documentation of code, the source code
itself takes part in clone detection process. Various researchers also recommend the use of
IR techniques combined with other clone detection tools to improve upon their results. Ad-
vanced variations of latent semantic indexing can also be used for further experimentation
to analyze and compare their capabilities towards giving improved clone detection results.
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