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Abstract: This manuscript aims to study a generalized, set-valued, mixed-ordered, variational inclu-
sion problem involvingH(·, ·)-compression XOR-αM-non-ordinary difference mapping and relaxed
cocoercive mapping in real-ordered Hilbert spaces. The resolvent operator associated withH(·, ·)-
compression XOR-αM-non-ordinary difference mapping is defined, and some of its characteristics
are discussed. We prove existence and uniqueness results for the considered generalized, set-valued,
mixed-ordered, variational inclusion problem. Further, we put forward a three-step iterative algo-
rithm using a ⊕ operator, and analyze the convergence of the suggested iterative algorithm under
some mild assumptions. Finally, we reconfirm the existence and convergence results by an illustrative
numerical example.

Keywords: H(·, ·)-compression mapping; resolvent operator; ordered inclusion problem; three-step
iterative algorithm; XOR-operator; XNOR-operator
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1. Introduction

The theory of variational inequalities was studied in the early 1960s to solve a problem
which appeared in a mechanical system. In 1964, Stampacchia [1] solved the variational
inequality problem, where it was found that x̄ ∈ K such that

〈T(x̄), x̃− x̄〉 ≥ 0, for all x̃ ∈ K, (1)

where K( 6= φ) is a closed convex subset of a real Hilbert space H and T : H → H is a
single-valued mapping. The author studied the existence and uniqueness of the solution
for this proposed problem. This theory is one of the most powerful tools for studying
problems arising in nonlinear analysis, including differential equations, mechanics, control
problems, equilibrium problems, transportation, and so forth, which has proven to be quite
application-oriented and fruitful.

Since its inception, the variational inequalities are being appealed to investigate
problems appearing in miscellaneous areas of basic and applied sciences, such as [2–8].
These unusual utilizations motivated researchers to drive and expand the variational
inequalities and related optimization problems in different format using advanced and
innovatory techniques, such as [9–14] and the references cited therein. One of the most
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important generalizations of variational inequality due to Verma [15] is the system of
variational inequalities, because a number of equilibrium problems, such as the traffic
equilibrium, the spatial equilibrium, the Nash equilibrium, and the general equilibrium
programming problems can be designed as a system of variational inequalities. The birth
of this theory can be observed as the simultaneous acquirement of two different lines of
research—namely, it affirms the qualitative aspects of the solution to important classes of
problems, and also empowers us to establish influential and fruitful new techniques for
the solving of problems.

In 1994, Hassouni and Moudafi [16] evolved a class of mixed-type variational inequali-
ties with single-valued mappings using the technique of a resolvent operator for monotone
mapping, namely- variational inclusion problem. They developed a perturbed algorithm
to estimate the solution of mixed variational inequalities. Recently, the fixed-point theory
is widely applied to study problems appearing in real ordered Banach spaces, see [17–21].
Li [22] studied the nonlinear ordered variational inequalities and developed an iterative
algorithm to estimate its solution in real ordered Banach spaces. In 2012, Li [23] planted a
new class of variational inclusions for (α, λ)-NODM set-valued mappings in an ordered
Hilbert space. Using the technique of resolvent operator, the existence result was proven
and the convergence of sequence obtained from iterative algorithm was discussed. In [24],
Li et al. investigated the solution of a general nonlinear ordered variational inclusion
with (γG, λ)-weak-GRD mappings. Recently, Li et al. [25] presented the convergence of
an Ishikawa-type iterative method for the general nonlinear ordered variational inclusion
with (γG, λ)-weak-GRD set-valued mappings, and exhibited the stability of the algorithm.
Very recently, ordered variational inclusions with XOR operator are considered in diverse
direction—see, for example, [26,27].

Following the facts mentioned above and encouraged by recent investigations in
this order, we introduce H(·, ·)-compression XOR-αM-non-ordinary difference mapping.
A resolvent operator associated to this mapping is defined, and we discuss some of its
characteristics. We examine a generalized, set-valued, mixed-ordered, variational inclusion
with H(·, ·)-compression XOR-αM-non-ordinary difference mapping and relaxed cocoer-
cive mapping in real ordered Hilbert spaces. We validate the existence and uniqueness
of the solution for the considered ordered variational inclusion. In addition, we present
a three-step iterative algorithm using a ⊕ operator and analyze the convergence of the
proposed iterative algorithm under suitable assumptions. At last, a numerical example is
given to show that the considered three-step iterative algorithm converges to the unique
solution of a generalized, set-valued, mixed-ordered, variational inclusion.

2. Preliminaries and Auxiliary Results

We remind some necessary definitions, notions, and auxiliary results which are con-
structive tools and will be used throughout this paper.

LetHp be a real Hilbert space equipped with the norm ‖ · ‖, and inner product 〈·, ·〉
where d is the metric induced by the norm ‖ · ‖. Let C be a normal cone inHp with normal
constant λC , and “ ≤′′ denotes the partial ordering defined by C. The Hilbert space Hp
equipped with partial ordering ≤ defined by C is called an ordered Hilbert space. Let
CB(Hp) (respectively, 2Hp ) be the family of all non-empty closed and bounded subsets
(respectively, all non-empty subsets) of Hp. For any arbitrary µ, ν ∈ Hp, glb{µ, ν} and
lub{µ, ν} represent the greatest lower bound and least upper bound, respectively, for the
set {µ, ν} with partial ordering ≤. The operators ∧,∨,⊕, and � are called AND, OR, XOR,
and XNOR operators, respectively, and defined as follows:

(i) µ ∧ ν = inf{µ, ν},
(ii) µ ∨ ν = sup{µ, ν},
(iii) µ⊕ ν = (µ− ν) ∨ (ν− µ),
(iv) µ� ν = (µ− ν) ∧ (ν− µ).

Throughout this paper, unless otherwise stated, we denote positive, real ordered
Hilbert space byHp.
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Definition 1 ([28]). A non-empty closed convex subset C ofHp is called a cone:

(i) If µ ∈ C and λ > 0, then λµ ∈ C;
(ii) If µ ∈ C and −µ ∈ C, then µ = 0.

Definition 2 ([28,29]). Let C be a cone. Then,

(i) C is called a normal cone if there exists a normal constant λC > 0 such that 0 ≤ µ ≤ ν
implies ‖µ‖ ≤ λC‖ν‖, for all µ, ν ∈ Hp;

(ii) For arbitrary elements µ, ν ∈ Hp, µ ≤ ν if, and only if µ− ν ∈ C;
(iii) µ and ν are said to be comparable to each other if, and only if µ ≤ ν or ν ≤ µ exists, and we

denote it by µ ∝ ν.

Proposition 1 ([29]). Let C be a normal cone with normal constant λC in Hp. Then, for each
µ, ν ∈ Hp, the following relations hold:

(i) ‖0⊕ 0‖ = ‖0‖ = 0;
(ii) ‖µ ∨ ν‖ ≤ ‖µ‖ ∨ ‖ν‖ ≤ ‖µ‖+ ‖ν‖;
(iii) ‖µ⊕ ν‖ ≤ ‖µ− ν‖ ≤ λC‖µ⊕ ν‖;
(iv) If µ ∝ ν, then ‖µ⊕ ν‖ = ‖µ− ν‖.

Lemma 1 ([30]). Let {ωn} be a nonnegative real sequence satisfying the following inequality

ωn+1 ≤ (1− ϑn)ωn + εn, ∀n ≥ n0,

where ϑn ∈ [0, 1], ∑∞
n=0 ϑn = ∞ and εn = o(ϑn). Then, lim

n→∞
ωn = 0.

Definition 3 ([31]). A mapping T : Hp → Hp is said to be relaxed (µ, γ)-cocoercive if there exist
constants µ, γ > 0 such that

〈Tx− Ty, x− y〉 ≥ (−µ)‖Tx− Ty‖2 + γ‖x− y‖2, for all x, y ∈ Hp.

Remark 1. Every γ strongly monotone mapping is relaxed (µ, γ)-cocoercive mapping, and every

γ-cocoercive mapping is
1
γ

-Lipschitz-continuous.

Proposition 2 ([23,29]). Let C be a cone in Hp with partial ordering ≤ induced by C. Let ⊕ be
an XOR operation and � be an XNOR operation. Then, for any ϑ, υ, µ, ν, ω ∈ Hp, the following
relations hold:

(i) µ� µ = 0, µ� ν = ν� µ = −(µ⊕ ν) = −(ν⊕ µ);
(ii) If µ ∝ 0, then −µ⊕ 0 ≤ µ ≤ µ⊕ 0;
(iii) 0 ≤ µ⊕ ν if µ ∝ ν;
(iv) (ρµ)⊕ (ρν) = |ρ|(µ⊕ ν), for any real ρ;
(v) If µ ∝ ν, then µ⊕ ν = 0 if, and only if µ = ν;
(vi) (ϑ + υ)� (µ + ν) ≥ (ϑ� µ) + (υ� ν);
(vii) (ϑ + υ)� (µ + ν) ≥ (ϑ� ν) + (υ� µ);
(viii) If µ, ν, ω are comparable to each other, then (µ⊕ ν) ≤ (µ⊕ω) + (ω⊕ ν);
(ix) αϑ⊕ βϑ = |α− β|ϑ = (α⊕ β)ϑ if ϑ ∝ 0, for any real α, β.

Definition 4 ([22,23]). A single-valued mapping A : Hp → Hp is said to be:

(i) Comparison mapping if µ ∝ ν for any µ, ν ∈ Hp, then A(µ) ∝ A(ν), µ ∝ A(µ), ν ∝ A(ν);
(ii) strong comparison mapping if A is comparison mapping and A(µ) ∝ A(ν) if, and only if

µ ∝ ν, for any µ, ν ∈ Hp;
(iii) π-ordered compression mapping if A is a comparison mapping and if there exists a constant

π ∈ (0, 1) such that

A(µ)⊕A(ν) ≤ π(µ⊕ ν), for all µ, ν ∈ Hp.
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Definition 5 ([26]). LetA,B : Hp → Hp be the single-valued mappings. Then, the single-valued
mappingH : Hp ×Hp → Hp is called

(i) π1-ordered compression mapping with respect to A if there exists a constant π1 ∈ (0, 1)
such that

H(A(µ), ·)⊕H(A(ν), ·) ≤ π1(µ⊕ ν), for all µ, ν ∈ Hp;

(ii) π2-ordered compression mapping with respect to B if there exists a constant π2 ∈ (0, 1)
such that

H(·,B(µ))⊕H(·,B(ν)) ≤ π2(µ⊕ ν), for all µ, ν ∈ Hp;

(iii) Mixed comparison mapping with respect to A and B if for all µ, ν ∈ Hp, µ ∝ ν then
H(A(µ),B(µ)) ∝ H(A(ν),B(ν)), µ ∝ H(A(µ),B(µ)) and ν ∝ H(A(ν),B(ν));

(iv) Mixed strong comparison mapping with respect to A and B if, for all µ, ν ∈ Hp,H(A(µ),
B(µ)) ∝ H(A(ν),B(ν)) if, and only if µ ∝ ν, for all µ, ν ∈ Hp.

Definition 6 ([26]). Let A,B,F ,G : Hp → Hp and H : Hp ×Hp → Hp be the single-valued
mappings. Then,

(i) H(A, ·) is said to be β1-ordered compression mapping with respect to F and G if there exists
a constant β1 ∈ (0, 1) such that

〈H(A(µ),B(µ))⊕H(A(ν),B(µ)), (F (µ),G(µ))⊕ (F (ν),G(ν))〉
≤ β1‖(F (µ),G(µ))⊕ (F (ν),G(ν))‖2, for all µ, ν ∈ Hp;

(ii) H(·,B) is called β2-ordered compression mapping with respect to F and G if there exists a
constant β2 ∈ (0, 1) such that

〈H(A(µ),B(µ))⊕H(A(µ),B(ν)), (F (µ),G(µ))⊕ (F (ν),G(ν))〉
≤ β2‖(F (µ),G(µ))⊕ (F (ν),G(ν))‖2, for all µ, ν ∈ Hp.

Definition 7 ([23]). Let A : Hp → Hp; T : Hp ×Hp → Hp be the single-valued mappings and
P : Hp → CB(Hp) be a set-valued mapping. Then,

(i) A is called Lipschitz-continuous if for any µ, ν ∈ Hp and µ ∝ ν, there exists a constant
δA > 0 such that

‖A(µ)⊕A(ν)‖ ≤ δA‖µ⊕ ν‖;

(ii) P is called D-Lipschitz-continuous if for any µ, ν ∈ Hp and µ ∝ ν, there exists a constant
ζP > 0 such that

D(P(µ),P(ν)) ≤ ζP‖µ⊕ ν‖;

(iii) T is scalled Lipschitz-continuous in the first argument if, for any µ, ν ∈ Hp and µ ∝ ν, there
exists a constant δT1 > 0 such that

‖T (µ, ·)⊕ T (ν, ·)‖ ≤ δT1‖µ⊕ ν‖.

In the same fashion, the Lipschitz continuity of T can be defined in the second
argument.

Definition 8 ([18,23]). Let F ,G : Hp → Hp be the single-valued mappings and M : Hp ×
Hp → 2Hp be a set-valued mapping. Then,

(i) M is called a comparison mapping with respect toF and G if, for any pµ ∈ M(F (µ),G(µ)),
µ ∝ pµ and if µ ∝ ν, then for any pµ ∈ M(F (µ),G(µ)) and pν ∈ M(F (ν),G(ν)), pµ ∝
pν, for all µ, ν ∈ Hp;
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(ii) A comparison mapping M is called an XOR-αM-non-ordinary difference mapping with
respect to A and B if there exists a constant αM > 0, for each µ, ν ∈ Hp there exist
pµ ∈ M(F (µ),G(µ)) and pν ∈ M(F (ν),G(ν)) such that

(pµ ⊕ pν)⊕ αM(H(A(µ),B(µ))⊕H(A(ν),B(ν))) = 0;

(iii) a comparison mapping M is called ϑM-ordered rectangular with respect to F and G if
there exists a constant ϑM > 0, for each µ, ν ∈ Hp there exist pµ ∈ M(F (µ),G(µ)) and
pν ∈ M(F (ν),G(ν)) such that

〈pµ � pν,−[(F (µ),G(µ))⊕ (F (ν),G(ν))]〉 ≥ ϑM‖(F (µ),G(µ))⊕ (F (ν),G(ν))‖2,

for all µ, ν ∈ Hp;

(iv) A comparison mappingM is called $-XOR-ordered strongly monotone mapping with respect
to F and G if for any µ, ν ∈ Hp, pµ ∈ M(F (µ),G(µ)) and pν ∈ M(F (ν),G(ν)) there
exists a constant $ > 0

$(pµ ⊕ pν) ≥ [(F (µ),G(µ))⊕ (F (ν),G(ν))].

Definition 9. Let A,B,F ,G : Hp → Hp and H : Hp × Hp → Hp be the single-valued
mappings. The set-valued mapping M : Hp × Hp → 2Hp is said to be H(·, ·)-compression
XOR-αM-non-ordinary difference mapping, ifH is π1 and π2-ordered compression mapping with
respect toA and B, respectively, andM is XOR-αM-non-ordinary difference mapping with respect
to A and B such that

[H(A,B)⊕ ρM(F ,G)](Hp) = Hp, for every ρ, αM > 0 and 0 < π1, π2 < 1.

Definition 10. Let A,B,F ,G : Hp → Hp and H : Hp × Hp → Hp be the single-valued
mappings. LetM : Hp ×Hp → 2Hp be a set-valuedH(·, ·)-compression XOR-αM-non-ordinary

difference mapping. The resolvent operator RH(A,B)
ρ,M(F ,G) : Hp → Hp associated with A,B,F and G

is defined by

RH(A,B)
ρ,M(F ,G)(µ) = [H(A,B)⊕ ρM(F ,G)]−1(µ), for all µ ∈ Hp, ρ, αM > 0. (2)

Lemma 2. Let A,B,F ,G : Hp → Hp be the single-valued mappings such that F and G are
one–one mappings;H : Hp ×Hp → Hp be a single-valued mapping such thatH(A, ·) is β1 and
H(·,B) is β2-ordered compression mapping with respect to F and G. LetM : Hp×Hp → 2Hp be
a set-valued θM-ordered rectangular mapping with respect to F and G such that ρθM > β1 + β2

and (µ⊕ ν) ∝ 0. Then the resolvent operator RH(A,B)
ρ,M(F ,G) : Hp → Hp associated with A,B,F and

G is a single-valued mapping.

Proof. For any given ω ∈ Hp, µ ∝ ν and ρ > 0, let µ, ν ∈ [H(A,B)⊕ ρM(F ,G)]−1(ω).
Then, we have

pµ =
1
ρ
[ω⊕H(A(µ),B(µ))] ∈ M(F (µ),G(µ)),

and
pν =

1
ρ
[ω⊕H(A(ν),B(ν))] ∈ M(F (ν),G(ν)).
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By utilizing (i) and (ii) of Proposition 2, we have

pµ � pν =
1
ρ
[ω⊕H(A(µ),B(µ))]� 1

ρ
[ω⊕H(A(ν),B(ν))]

= −1
ρ
[(ω⊕H(A(µ),B(µ)))⊕ (ω⊕H(A(ν),B(ν)))]

= −1
ρ
[(ω⊕ω)⊕ (H(A(µ),B(µ))⊕H(A(ν),B(ν)))]

= −1
ρ
[0⊕ (H(A(µ),B(µ))⊕H(A(ν),B(ν)))]

≤ −1
ρ
[H(A(µ),B(µ))⊕H(A(ν),B(ν))].

(3)

SinceM is θM-ordered rectangular mapping with respect to F and G,H(A, ·) is β1
andH(·,B) is β2-ordered compression mapping with respect to F and G. Therefore,

θM‖(F (µ),G(µ))⊕ (F (ν),G(ν))‖2 ≤ 〈pµ � pν,−((F (µ),G(µ))⊕ (F (ν),G(ν)))〉

≤ 1
ρ
〈(H(A(µ),B(µ))⊕H(A(ν),B(ν)),

((F (µ),G(µ))⊕ (F (ν),G(ν)))〉

=
1
ρ
〈(H(A(µ),B(µ))⊕H(A(ν),B(µ)),

((F (µ),G(µ))⊕ (F (ν),G(ν)))〉

+
1
ρ
〈(H(A(ν),B(µ))⊕H(A(ν),B(ν)),

((F (µ),G(µ))⊕ (F (ν),G(ν)))〉

≤ β1
ρ
‖(F (µ),G(ν))⊕ (F (ν),G(ν))‖2

+
β2
ρ
‖(F (µ),G(µ))⊕ (F (ν),G(ν))‖2

=
β1 + β2

ρ
‖(F (µ),G(µ))⊕ (F (ν),G(ν))‖2,

(4)

which implies that(
θM −

β1 + β2

ρ

)
‖(F (µ),G(µ))⊕ (F (ν),G(ν))‖2 ≤ 0.

Since ρθM > β1 + β2, therefore, ‖(F (µ),G(µ))⊕ (F (ν),G(ν))‖ = 0. Thus, we have

(F (µ),G(µ))⊕ (F (ν),G(ν)) = 0,

which in turn becomes
(F (µ),G(µ)) = (F (ν),G(ν)).

That is, F (µ) = F (ν) and G(µ) = G(ν). Since the mappings F and G are one–one,
therefore, µ = ν. Hence, RH(A,B)

ρ,M(F ,G) associated with A,B,F and G is single-valued.

Lemma 3. Let A,B,F ,G : Hp → Hp andH : Hp ×Hp → Hp be the single-valued mappings
such that H(·, ·) is a mixed strong comparison mapping with respect to A and B. Let M :
Hp ×Hp → 2Hp be a set-valued ρ-XOR-ordered strongly monotone mapping with respect to
F and G and assume that (F (µ),G(µ))⊕ (F (ν),G(ν)) ∝ µ⊕ ν. Then, the resolvent operator
RH(A,B)

ρ,M(F ,G) : Hp → Hp associated with A,B,F and G is a comparison mapping.

Proof. For any given µ, ν ∈ Hp, suppose µ ∝ ν,

pµ =
1
ρ
[µ⊕H(A(RH(A,B)

ρ,M(F ,G)(µ)),B(RH(A,B)
ρ,M(F ,G)(µ)))] ∈ M(F (RH(A,B)

ρ,M(F ,G)(µ)),G(RH(A,B)
ρ,M(F ,G)(µ))), (5)
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and

pν =
1
ρ
[ν⊕H(A(RH(A,B)

ρ,M(F ,G)(ν)),B(RH(A,B)
ρ,M(F ,G)(ν)))] ∈ M(F (RH(A,B)

ρ,M(F ,G)(ν)),G(RH(A,B)
ρ,M(F ,G)(ν))). (6)

For the sake of simplicity, we take

κ(µ) = RH(A,B)
ρ,M(F ,G)(µ) and κ(ν) = RH(A,B)

ρ,M(F ,G)(ν).

SinceM is a ρ-XOR-ordered strongly monotone mapping with respect to F and G,
and using (5) and (6), we have

(F (µ),G(µ))⊕ (F (ν),G(ν)) ≤ ρ(pµ ⊕ pν)

= [µ⊕H(A(κ(µ)),B(κ(µ)))]⊕ [ν⊕H(A(κ(ν)),B(κ(ν)))]
= (µ⊕ ν)⊕ [H(A(κ(µ)),B(κ(µ)))⊕H(A(κ(ν)),B(κ(ν)))].

Thus, we have

0 ≤ [(F (µ),G(µ))⊕ (F (ν),G(ν))⊕ (µ⊕ ν)]⊕ [H(A(κ(µ)),B(κ(µ)))⊕H(A(κ(ν)),B(κ(ν)))].

Since (F (µ),G(µ))⊕ (F (ν),G(ν)) ∝ µ⊕ ν, therefore

0 ≤ [(µ⊕ ν)⊕ (µ⊕ ν)]⊕ [H(A(κ(µ)),B(κ(µ)))⊕H(A(κ(ν)),B(κ(ν)))],

which implies that

0 ≤ [H(A(κ(µ)),B(κ(µ)))⊕H(A(κ(ν)),B(κ(ν)))].

The above inequality gives

0 ≤ [H(A(κ(µ)),B(κ(µ)))−H(A(κ(ν)),B(κ(ν)))]
∨ [H(A(κ(ν)),B(κ(ν)))−H(A(κ(µ)),B(κ(µ)))].

Thus, we have

either 0 ≤ [H(A(κ(µ)),B(κ(µ)))−H(A(κ(ν)),B(κ(ν)))]

or 0 ≤ [H(A(κ(ν)),B(κ(ν)))−H(A(κ(µ)),B(κ(µ)))].

That is,
H(A(κ(ν)),B(κ(ν))) ≤ H(A(κ(µ)),B(κ(µ))) (7)

or H(A(κ(µ)),B(κ(µ))) ≤ H(A(κ(ν)),B(κ(ν))). (8)

It follows from (7) and (8) that

H(A(κ(µ)),B(κ(µ))) ∝ H(A(κ(ν)),B(κ(ν))).

That is,

H(A(RH(A,B)
ρ,M(F ,G)(µ)),B(RH(A,B)

ρ,M(F ,G)(µ))) ∝ H(A(RH(A,B)
ρ,M(F ,G)(ν)),B(RH(A,B)

ρ,M(F ,G)(ν))).

Since H is a mixed strong comparison mapping with respect to A and B, then we
have RH(A,B)

ρ,M(F ,G)(µ) ∝ RH(A,B)
ρ,M(F ,G)(ν), that is, RH(A,B)

ρ,M(F ,G) is a comparison mapping.

Lemma 4. Let A,B,F ,G : Hp → Hp andH : Hp ×Hp → Hp be the single-valued mappings.
LetM : Hp ×Hp → 2Hp be a set-valuedH(·, ·)-compression XOR-αM-non-ordinary difference
mapping, αM > 0. Assume that [H(A(ε),B(ε))⊕H(A(ω),B(ω))] ∝ ε⊕ω, for all ε, ω ∈ Hp.
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Then the resolvent operator RH(A,B)
ρ,M(F ,G) : Hp → Hp is

(
1

1 + ραM

)
-Lipschitz-continuous—that

is,

‖RH(A,B)
ρ,M(F ,G)(µ)⊕ RH(A,B)

ρ,M(F ,G)(ν)‖ ≤
1

1 + ραM
‖µ⊕ ν‖, for all µ, ν ∈ Hp.

Proof. Let pµ and pν assume the same values as in (5) and (6), respectively. Then,

pµ ⊕ pν =
1
ρ
[µ⊕H(A(RH(A,B)

ρ,M(F ,G)(µ)),B(RH(A,B)
ρ,M(F ,G)(µ)))]

⊕1
ρ
[ν⊕H(A(RH(A,B)

ρ,M(F ,G)(ν)),B(RH(A,B)
ρ,M(F ,G)(ν)))]

≤ 1
ρ

[
(µ⊕ ν)⊕ [H(A(RH(A,B)

ρ,M(F ,G)(µ)),B(RH(A,B)
ρ,M(F ,G)(µ)))

⊕H(A(RH(A,B)
ρ,M(F ,G)(ν)),B(RH(A,B)

ρ,M(F ,G)(ν)))]
]
.

(9)

Since M is XOR-αM-non-ordinary difference mapping with respect to A and B,
we have

αM[H(A(RH(A,B)
ρ,M(F ,G)(µ)),B(RH(A,B)

ρ,M(F ,G)(µ)))⊕H(A(RH(A,B)
ρ,M(F ,G)(ν)),B(RH(A,B)

ρ,M(F ,G)(ν)))] = pµ ⊕ pν,

which implies that

αM[H(A(RH(A,B)
ρ,M(F ,G)(µ)),B(RH(A,B)

ρ,M(F ,G)(µ)))⊕H(A(RH(A,B)
ρ,M(F ,G)(ν)),B(RH(A,B)

ρ,M(F ,G)(ν)))]

≤ 1
ρ

[
(µ⊕ ν)⊕ [H(A(RH(A,B)

ρ,M(F ,G)(µ)),B(RH(A,B)
ρ,M(F ,G)(µ)))

⊕H(A(RH(A,B)
ρ,M(F ,G)(ν)),B(RH(A,B)

ρ,M(F ,G)(ν)))]
]
.

Thus, we have

[1 + ραM][H(A(RH(A,B)
ρ,M(F ,G)(µ)),B(RH(A,B)

ρ,M(F ,G)(µ)))⊕H(A(RH(A,B)
ρ,M(F ,G)(ν)),B(RH(A,B)

ρ,M(F ,G)(ν)))] ≤ (µ⊕ ν).

It follows from the assumption that

[H(A(RH(A,B)
ρ,M(F ,G)(µ)),B(RH(A,B)

ρ,M(F ,G)(µ)))⊕H(A(RH(A,B)
ρ,M(F ,G)(ν)),B(RH(A,B)

ρ,M(F ,G)(ν)))]

∝ RH(A,B)
ρ,M(F ,G)(µ)⊕ RH(A,B)

ρ,M(F ,G)(ν),

which gives us

[1 + ραM][RH(A,B)
ρ,M(F ,G)(µ)⊕ RH(A,B)

ρ,M(F ,G)(ν)] ≤ (µ⊕ ν).

That is, RH(A,B)
ρ,M(F ,G)(µ)⊕ RH(A,B)

ρ,M(F ,G)(ν) ≤
(

1
1 + ραM

)
(µ⊕ ν). Thus, we have

‖RH(A,B)
ρ,M(F ,G)(µ)⊕ RH(A,B)

ρ,M(F ,G)(ν)‖ ≤
(

1
1 + ραM

)
‖µ⊕ ν‖,

i.e., RH(A,B)
ρ,M(F ,G) is

(
1

1 + ραM

)
-Lipschitz-continuous.

3. Formulation of the Problem and Existence Result

This section begins with the designing of a generalized ordered variational inclu-
sion problem involvingH(·, ·)-compression XOR-αM-non-ordinary difference mapping
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and relaxed cocoercive mapping. We discuss the existence of a unique solution for the
considered problem.

LetHp be a real ordered Hilbert space and C be a normal cone with normal constant λC .
Let A,B,F ,G,P ,S : Hp → Hp andH, ϕ : Hp ×Hp → Hp be the single-valued mappings.
Let R, T : Hp → CB(Hp) be the set-valued mappings and M : Hp ×Hp → 2Hp be a
set-valuedH(·, ·)-compression XOR-αM-non-ordinary difference mapping. We deal with
the following generalized ordered variational inclusion problem:

For some a ∈ Hp and any b ∈ R, find x ∈ Hp, µ ∈ R(x), ν ∈ T (x) such that

a ∈ P(µ)⊕ τM(F (x),G(x))− bϕ(x− Sx, ν), (10)

where τ > 0 is a constant. Problem (10) is termed as generalized, set-valued, mixed-ordered,
variational inclusion problem with XOR-operator (in short, GSMOVIP).

Note that GSMOVIP (10) is more general, and for appropriate selection of the map-
pings comprised in the designing, it includes many problems existing in the literature.
Some particular cases of GSMOVIP (10) are reported below:

(i) If F = I, the identity mapping, G,S = 0,M(F (x),G(x)) =M(x) andR, T are the
single-valued mappings, and then GSMOVIP (10) becomes an equivalent problem of
finding x ∈ Hp, for some a ∈ Hp and any b ∈ R such that

a ∈ P(x)⊕ τM(x)− bϕ(x, g(x)). (11)

Problem (11) was constructed and examined by Ahmad et al. [27], using (γR, λ)-weak-
RRD mappings.

(ii) If τ = 1 and ϕ(·, ·) = 0, then problem (11) coincides with the problem of finding
x ∈ Hp such that

a ∈ P(x)⊕M(x). (12)

Problem (12) was investigated by Li et al. [18] in the framework of weak-ANODD
set-valued mappings.

(iii) If a = 0 and P = 0, then problem (11) coincides to the problem of finding x ∈ Hp
such that

0 ∈ τM(x)− bϕ(x, g(x)). (13)

Problem (13) was examined by Li et al. [25].
(iv) If ϕ(·, ·) = 0 and P = 0, then problem (11) becomes an equivalent problem of finding

x ∈ Hp such that
a ∈ τM(x). (14)

Problem (14) was investigated by Li et al. [24] in the framework of (γG, λ)-weak-RRD
mappings.

In the following Lemma, we set up an equivalence between ordered fixed-point
problem and GSMOVIP (10).

Lemma 5. Let C be a normal cone with normal constant λC inHp. Let A,B,F ,G,P ,S : Hp →
Hp and H, ϕ : Hp ×Hp → Hp be the single-valued mappings. Let R, T : Hp → CB(Hp)

be the set-valued mappings, and M : Hp × Hp → 2Hp be a set-valued H(·, ·)-compression
XOR-αM-non-ordinary difference mapping. Then, (x, µ, ν), x ∈ Hp, µ ∈ R(x), ν ∈ T (x) solves
GSMOVIP (10), if and only if

x = RH(A,B)
ρ,M(F ,G)[H(Ax,Bx) +

ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a]. (∗)

Proof. The proof of the lemma follows immediately by using the definition of a resolvent
operator, so we omit the proof.
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Theorem 1. Let C be a normal cone inHp with normal constant λC . LetA,B,F ,G,P ,S : Hp →
Hp and H, ϕ : Hp ×Hp → Hp be the single-valued mappings such that P is a δP -Lipschitz-
continuous mapping; S is δS -Lipschitz-continuous and relaxed (αS , kS )-cocoercive;H(·, ·) is π1-
ordered compression mapping with respect to A in the first argument and π2-ordered compression
mapping with respect to B in the second argument, and ϕ(·, ·) is δϕ1 and δϕ2 -Lipschitz-continuous
mapping with respect to the first and second argument, respectively. LetR, T : Hp → CB(Hp) be
D-Lipschitz-continuous mappings with constant ζR, ζT , respectively, andM : Hp ×Hp → 2Hp

be a set-valuedH(·, ·)-compression XOR-αM-non-ordinary difference mapping. If x1 ∝ x2 and the
following condition is satisfied:

(π1 + π2)τ + ρλC [δP ζR ⊕ |b|(δϕ1

√
(1− 2kS ) + (1 + 2αS )δS ⊕ δϕ2 ζT )] < 1; ρ, αM > 0. (15)

Then, GSMOVIP (10) admits a unique solution.

Proof. For the sake of convenience, we assume Q(xi) = P(µi)⊕ bϕ(xi − Sxi, νi) + a, for
i = 1, 2. It follows from Lemma 4 and Proposition 2 that

‖
(

RH(A,B)
ρ,M(F ,G)[H(A,B) + ρ

τ
Q]
)
(x1)⊕

(
RH(A,B)

ρ,M(F ,G)[H(A,B) + ρ

τ
Q]
)
(x2)‖

≤ 1
1 + ραM

‖[H(A(x1),B(x1)) +
ρ

τ
Q(x1)]⊕ [H(A(x2),B(x2)) +

ρ

τ
Q(x2)]‖

≤ 1
1 + ραM

[
‖H(A(x1),B(x1))⊕H(A(x2),B(x2))‖+

ρ

τ
‖Q(x1)⊕Q(x2)‖

]
.

(16)

SinceH(·, ·) is π1-ordered compression mapping with respect toA in the first argument
and π2-ordered compression mapping with respect to B in the second argument,

‖H(A(x1),B(x1))⊕H(A(x2),B(x2))‖ ≤ (π1 + π2)‖x1 ⊕ x2‖. (17)

Since P is δP -Lipschitz-continuous mapping andR is D-Lipschitz-continuous map-
ping with constant ζR, then we have

0 ≤Q(x1)⊕Q(x2)

=[P(µ1)⊕ bϕ(x1 − Sx1, ν1) + a]⊕ [P(µ2)⊕ bϕ(x2 − Sx2, ν2) + a]

=[(P(µ1)⊕P(µ2))⊕ ((bϕ(x1 − Sx1, ν1) + a)⊕ (bϕ(x2 − Sx2, ν2) + a))]

≤δP (µ1 ⊕ µ2)⊕ |b|(ϕ(x1 − Sx1, ν1)⊕ ϕ(x2 − Sx2, ν2)) + (a⊕ a)

≤δP ζR(x1 ⊕ x2)⊕ |b|(ϕ(x1 − Sx1, ν1)⊕ ϕ(x2 − Sx2, ν2)).

(18)

Thus, from the definition of a normal cone, utilizing the Lipschitz continuity of ϕ in
the first and second argument and the D-Lipschitz continuity of T , we can write

‖Q(x1)⊕Q(x2)‖ ≤λCδP ζR‖x1 ⊕ x2‖ ⊕ λC |b|‖ϕ(x1 − Sx1, ν1)⊕ ϕ(x2 − Sx2, ν2)‖
≤λCδP ζR‖x1 ⊕ x2‖ ⊕ λC |b|‖ϕ(x1 − Sx1, ν1)⊕ ϕ(x2 − Sx2, ν1)‖
⊕ λC |b|‖ϕ(x2 − Sx2, ν1)⊕ ϕ(x2 − Sx2, ν2)‖
≤λCδP ζR‖x1 ⊕ x2‖ ⊕ λC |b|δϕ1‖(x1 − Sx1)⊕ (x2 − Sx2)‖
⊕ λC |b|δϕ2‖ν1 ⊕ ν2‖
≤λCδP ζR‖x1 ⊕ x2‖ ⊕ λC |b|δϕ1‖(x1 − x2)− (Sx1 − Sx2)‖
⊕ λC |b|δϕ2 ζT ‖x1 ⊕ x2‖.

(19)

Since S is δS -Lipschitz-continuous and relaxed (αS , kS )-cocoercive mapping, there-
fore

‖(x1 − x2)− (Sx1 − Sx2)‖2 = ‖x1 − x2‖2 − 2〈Sx1 − Sx2, x1 − x2〉+ ‖Sx1 − Sx2‖2

≤ ‖x1 − x2‖2 + 2αS‖Sx1 − Sx2‖2 − 2kS‖x1 − x2‖2 + ‖Sx1 − Sx2‖2

≤ [(1− 2kS ) + (1 + 2αS )δS ]‖x1 − x2‖2,
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which inferred that

‖(x1 − x2)− (Sx1 − Sx2)‖ ≤
√
(1− 2kS ) + (1 + 2αS )δS‖x1 − x2‖

= λC

√
(1− 2kS ) + (1 + 2αS )δS‖x1 ⊕ x2‖.

(20)

Utilizing (17)–(20), (16) becomes

‖
(

RH(A,B)
ρ,M(F ,G)[H(A,B) + ρ

τ
Q]
)
(x1)⊕

(
RH(A,B)

ρ,M(F ,G)[H(A,B) + ρ

τ
Q]
)
(x2)‖

≤ 1
1 + ραM

[
(π1 + π2) +

ρ

τ
[λCδP ζR ⊕ λC |b|δϕ1

√
(1− 2kS ) + (1 + 2αS )δS

⊕ λC |b|δϕ2 ζT ]
]
‖x1 ⊕ x2‖

=
1

τ(1 + ραM)

[
π1 + π2)τ + ρ[λCδP ζR ⊕ λC |b|δϕ1

√
(1− 2kS ) + (1 + 2αS )δS

⊕ λC |b|δϕ2 ζT ]
]
‖x1 ⊕ x2‖,

which implies that

‖
(

RH(A,B)
ρ,M(F ,G)[H(A,B) + ρ

τ
Q]
)
(x1)⊕

(
RH(A,B)

ρ,M(F ,G)[H(A,B) + ρ

τ
Q]
)
(x2)‖ ≤ Θ‖x1 ⊕ x2‖, (21)

where

Θ =
(π1 + π2)τ + ρλC [δP ζR ⊕ |b|(δϕ1

√
(1− 2kS ) + (1 + 2αS )δS ⊕ δϕ2 ζT )]

τ(1 + ραM)
. (22)

From condition (15), we deduce that Θ < 1. Thus, from (21), we can see that the
mapping RH(A,B)

ρ,M(F ,G)[H(A,B) + ρ

τ
Q] is contraction. There exists a unique point x ∈ Hp

such that
x = RH(A,B)

ρ,M(F ,G)[H(Ax,Bx) +
ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a].

Thus, from Lemma 5, one can conclude that (x, µ, ν), x ∈ Hp, µ ∈ R(x), ν ∈ T (x) is
the unique solution of GSMOVIP (10).

4. Convergence Analysis

This section begins with the construction of a three-step iterative algorithm. Finally,
the convergence analysis of the proposed iterative algorithm to the unique solution of
GSMOVIP (10) is discussed.

Theorem 2. Let C be a normal cone inHp with normal constant λC . Let the mappingsA,B,F ,G,P ,
S ,H, ϕ,R, T be identical as in Theorem 1, such that all the suppositions of Theorem 1 are satisfied. Let
M : Hp ×Hp → 2Hp be a set-valuedH(·, ·)-compression XOR-αM-non-ordinary difference mapping.
If xn+1 ∝ x and the following condition holds:

(π1 + π2)τ + ρλC [δP ζR ⊕ |b|(δϕ1

√
(1− 2kS ) + (1 + 2αS )δS ⊕ δϕ2 ζT )] < 1; ρ, αM > 0. (23)

Then, the approximate sequences {xn}, {µn} and {νn} generated by Algorithm 1 converge
strongly to the unique solution x, µ, and ν, respectively, of GSMOVIP (10).
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Algorithm 1 Let C be a normal cone with normal constant λC in Hp. Let
A,B,F ,G,P ,S : Hp → Hp and H, ϕ : Hp ×Hp → Hp be the single-valued
mappings.

LetR, T : Hp → CB(Hp) be the set-valued mappings andM : Hp ×Hp → 2Hp

be a set-valuedH(·, ·)-compression XOR-αM-non-ordinary difference mapping.
For any initial guesses x0 ∈ Hp, µ0 ∈ R(x0), ν0 ∈ T (x0), compute the sequences
{xn}, {µn}, {νn} by the following iterative scheme:

zn = (1− cn)xn + cn[R
H(A,B)
ρ,M(F ,G)[H(Axn,Bxn) +

ρ

τ
(P(µn)⊕ bϕ(xn − Sxn, νn)) + a],

yn = (1− bn)xn + bn[R
H(A,B)
ρ,M(F ,G)[H(Azn,Bzn) +

ρ

τ
(P(µ′′n)⊕ bϕ(zn − Szn, ν′′n )) + a],

xn+1 = (1− an)xn + an[R
H(A,B)
ρ,M(F ,G)[H(Ayn,Byn) +

ρ

τ
(P(µ′n)⊕ bϕ(yn − Syn, ν′n)) + a],

µn+1 ∈ R(xn+1) : ‖µn+1 ⊕ µn‖ ≤ D(R(xn+1),R(xn)),

νn+1 ∈ T (xn+1) : ‖νn+1 ⊕ νn‖ ≤ D(T (xn+1), T (xn)),

where
µn ∈ R(xn), µ′n ∈ R(yn), µ′′n ∈ R(zn), νn ∈ T (xn), ν′n ∈ T (yn), ν′′n ∈ T (zn) and
0 ≤ an, bn, cn ≤ 1 satisfying ∑∞

n=0 an = ∞, for all n = 0, 1, 2, · · · . Stop the
iteration if the sequences {xn}, {µn} and {νn} satisfy the fixed-point problem
(∗), otherwise continue.

Proof. Assume that x ∈ Hp is a solution of GSMOVIP (10). Then, from Theorem 1, we have

x = (1− an)x + an

(
RH(A,B)

ρ,M(F ,G)[H(Ax,Bx) +
ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a]

)
= (1− bn)x + bn

(
RH(A,B)

ρ,M(F ,G)[H(Ax,Bx) +
ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a]

)
= (1− cn)x + cn

(
RH(A,B)

ρ,M(F ,G)[H(Ax,Bx) +
ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a]

)
.

(24)

From Algorithm 1, (22), (24), Lemma 4, and Proposition 2, it follows that

0 ≤ xn+1 ⊕ x

=
[
(1− an)xn + an

(
RH(A,B)

ρ,M(F ,G)[H(Ayn,Byn) +
ρ

τ
(P(µ′n)⊕ bϕ(yn − Syn, ν′n)) + a]

)]
⊕
[
(1− an)x + an

(
RH(A,B)

ρ,M(F ,G)[H(Ax,Bx) +
ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a]

)]
≤ (1− an)(xn ⊕ x)

+ an

(
RH(A,B)

ρ,M(F ,G)[H(Ayn,Byn) +
ρ

τ
(P(µ′n)⊕ bϕ(yn − Syn, ν′n)) + a]

⊕ RH(A,B)
ρ,M(F ,G)[H(Ax,Bx) +

ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a]

)
≤ (1− an)(xn ⊕ x) + Θan(yn ⊕ x).

(25)
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Again, using the similar arguments, we estimate

0 ≤ yn ⊕ x

=
[
(1− bn)xn + bn

(
RH(A,B)

ρ,M(F ,G)[H(Azn,Bzn) +
ρ

τ
(P(µ′′n)⊕ bϕ(zn − Szn, ν′′n )) + a]

)]
⊕
[
(1− bn)x + bn

(
RH(A,B)

ρ,M(F ,G)[H(Ax,Bx) +
ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a]

)]
≤ (1− bn)(xn ⊕ x)

+ bn

(
RH(A,B)

ρ,M(F ,G)[H(Azn,Bzn) +
ρ

τ
(P(µ′′n)⊕ bϕ(zn − Szn, ν′′n )) + a]

⊕ RH(A,B)
ρ,M(F ,G)[H(Ax,Bx) +

ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a]

)
≤ (1− bn)(xn ⊕ x) + Θbn(zn ⊕ x).

(26)

Again, using the same facts as mentioned above, we have
0 ≤ zn ⊕ x

=
[
(1− cn)xn + cn

(
RH(A,B)

ρ,M(F ,G)[H(Axn,Bxn) +
ρ

τ
(P(µn)⊕ bϕ(xn − Sxn, νn)) + a]

)]
⊕
[
(1− cn)x + cn

(
RH(A,B)

ρ,M(F ,G)[H(Ax,Bx) +
ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a]

)]
≤ (1− cn)(xn ⊕ x)

+cn

(
RH(A,B)

ρ,M(F ,G)[H(Axn,Bxn) +
ρ

τ
(P(µn)⊕ bϕ(xn − Sxn, νn)) + a]

⊕RH(A,B)
ρ,M(F ,G)[H(Ax,Bx) +

ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a]

)
≤ (1− cn)(xn ⊕ x) + Θcn(xn ⊕ x).

(27)

It follows from (25)–(27) that

0 ≤ xn+1 ⊕ x

≤ (1− an)(xn ⊕ x) + Θan[(1− bn)(xn ⊕ x)

+ Θbn((1− cn)(xn ⊕ x) + Θcn(xn ⊕ x))]

≤ (1− an(1−Θ))(xn ⊕ x).

(28)

Utilizing the definition of normal cone and applying Proposition 1, we acquire

‖xn+1 − x‖ ≤ (1− an(1−Θ))‖xn − x‖. (29)

Setting ωn = ‖xn − x‖, ϑn = an(1−Θ), we get

ωn+1 ≤ (1− ϑn)ωn. (30)

Thus, from Lemma 1 and (30), we get ωn → 0 as n→ ∞. Hence, xn → x as n→ ∞. It
follows from the Algorithm 1 that

‖µn+1 ⊕ µ‖ ≤ D(R(xn+1),R(x)) ≤ ζR‖xn+1 − x‖; (31)

‖νn+1 ⊕ ν‖ ≤ D(T (xn+1), T (x)) ≤ ζT ‖xn+1 − x‖. (32)

From (31) and (32), one can see that {µn} and {νn} are Cauchy sequences in Hp.
Therefore, there exist µ, ν ∈ Hp such that µn → µ and νn → ν, strongly for sufficiently
large n. Next, we show that µ ∈ R(x) and ν ∈ T (x). Since µn ∈ R(xn), then we have

d(µ,R(x)) ≤ ‖µ− µn‖+ d(µn,R(x))

≤ ‖µ− µn‖+D(R(xn),R(x))

≤ ‖µ− µn‖+ ζR‖xn − x‖ → 0, as n→ ∞.

(33)

Hence, d(µ,R(x)) → 0, and therefore µ ∈ R(x) as R(x) ∈ CB(Hp). In a similar
fashion, we can show that ν ∈ T (x). Therefore, by Lemma 5, one can come to an conclusion
that {(xn, µn, νn)} converges strongly to the unique solution (x, µ, ν) of GSMOVIP (10).
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5. Numerical Example

Example 1. LetHp = (−∞, ∞) with the usual inner product and norm, and let C = [0, 1] be a
normal cone with normal constant λC = 1. Let A,B,F ,G,P ,S : Hp → Hp be the single-valued
mappings defined by

A(x) =
x
2

,B(x) =
x
3

,F (x) =
2x
3

,G(x) =
2x
3

,P(x) =
x
2

,S(x) =
x
4

, for all x ∈ Hp.

Now, for each x, y ∈ Hp, x ∝ y. Then, we can easily verify that P is 2
3 -Lipschitz-continuous,

S is 1
3 -Lipschitz-continuous and relaxed (1, 1

4 )-cocoerecive.
LetH, ϕ : Hp ×Hp → Hp be the single-valued mappings defined by

H(x, y) =
x⊕ y

2
, ϕ(x, y) =

x⊕ y
3

, for all x, y ∈ Hp.

Then for any u, x, y ∈ Hp, x ∝ y, we have

H(A(x), u)⊕H(A(y), u) =
(A(x)⊕ u

2

)
⊕
(A(y)⊕ u

2

)
≤ 1

2
[A(x)⊕A(y)]

=
1
2

( x
2
⊕ y

2

)
≤ 1

3
(x⊕ y).

That is, H(A(x), u) ⊕ H(A(y), u) ≤ 1
3 (x ⊕ y). Hence, H(A,B) is 1

3 -ordered compression
mapping with respect to A. Similarly, one can show that H(A,B) is 1

5 -ordered compression
mapping with respect to B. Now for any u, x, y ∈ Hp, x ∝ y, we have

ϕ(x− S(x), ν)⊕ ϕ(y− S(y), ν) =
[ (x− S(x))⊕ ν

3

]
⊕
[ (y− S(y))⊕ ν

3

]
≤ 1

3
[(x− S(x))⊕ (y− S(y))]

=
1
3
[(x− x

4
)⊕ (y− y

4
)]

=
1
4

(
x⊕ y

)
≤ 1

3
(x⊕ y).

Hence, ϕ is 1
3 -Lipschitz-continuous with respect to the first argument. Similarly, we can show

that ϕ is 1
2 -Lipschitz-continuous with respect to the second argument.

LetR, T : Hp → CB(Hp) and M : Hp ×Hp → 2Hp be the set-valued mappings defined by

R(x) =
{( x

2
,

1
3

)
: x ∈ Hp, 0 ≤ x ≤ 1

}
, for all x ∈ Hp,

T (x) =
{( x

3
,

1
5

)
: x ∈ Hp, 0 ≤ x ≤ 1

}
, for all x ∈ Hp,

M(x, y) = {3(x + y)}, for all x, y ∈ Hp.
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Then, it is easy to show thatR and T are D-Lipschitz-continuous mappings with constants 1
2

and 1
3 , respectively. Additionally,

M(F (x),G(x)) = 3(F (x) + G(x))

= 3
(2x

3
+

2x
3

)
= 4x.

Let px = 4x ∈ M(F (x),G(x)) and py = 4y ∈ M(F (y),G(y)), thenM is a comparison
mapping, and we estimate

(px ⊕ py)⊕ αM(H(A(x),B(x))⊕H(A(y),B(y))) = 4(x⊕ y)⊕ αM
( 5

12
(x⊕ y)

)
= 4[(x⊕ y)⊕ (x⊕ y)] = 0.

Hence,M is a XOR- 48
5 -non-ordinary difference mapping with respect to A and B. Addition-

ally, for ρ = 1,
[H(A,B) + ρM(F ,G)](Hp) = Hp.

Hence,M isH(·, ·)-compression XOR- 48
5 -non-ordinary difference mapping. The resolvent

operator RH(A,B)
ρ,M(F ,G) : Hp → Hp associated with A,B,F and G is given by

RH(A,B)
ρ,M(F ,G)(x) =

6x
29

, for all x ∈ Hp.

It is easy to verify that the resolvent operator is single-valued and comparison mapping.
Additionally,

‖RH(A,B)
ρ,M(F ,G)(x)⊕ RH(A,B)

ρ,M(F ,G)(y)‖ = ‖
6x
29
⊕ 6y

29
‖

=
6

29
‖x⊕ y‖

≤ 1
5
‖x⊕ y‖, for all x, y ∈ Hp.

That is, the resolvent operator is 1
5 -Lipschitz-continuous. For ρ, τ, b = 1 and b = 0, we have

RH(A,B)
ρ,M(F ,G)[H(Ax,Bx) +

ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a]

=
6

29
[H(Ax,Bx) + (P(µ)⊕ ϕ(x− Sx, ν))]

=
6

29

[(A(x)⊕B(x)
2

)
+
( x

4

)
⊕ 1

3

(
x− x

4
⊕ x

3

)]
=

6
29

[5x
12
⊕ 4x

3

]
=

21x
58

.

Clearly, 0 is the fixed-point of RH(A,B)
ρ,M(F ,G)[H(Ax,Bx) +

ρ

τ
(P(µ)⊕ bϕ(x− Sx, ν)) + a].

Let an = 1/(n + 1), bn = 3n/(3n + 2) and cn = n + 2/(n + 3). It is easily seen that the
sequences {an}, {bn} and {cn} satisfy the condition 0 ≤ an, bn, cn ≤ 1, ∑∞

n=0 an = ∞.



Symmetry 2021, 13, 444 16 of 17

Now, we can approximate the sequences {xn}, {yn} and {zn} by the Algorithm 1 as follows:

xn+1 =
n

n + 1
xn +

21
58(n + 1)

yn,

yn =
2

3n + 2
xn +

63n
58(3n + 2)

zn,

zn =
1

n + 1
xn +

21(n + 2)
58(n + 3)

xn.

It is also clear that the condition (23) is satisfied. Hence, all the suppositions of Theorem 2 are
verified. Therefore, the sequence {(xn, µn, νn)} converges strongly to the unique solution 0, which
is the solution of GSMOVIP (10).

6. Conclusions

We introduced a new class of mapping, namely, H(·, ·)-compression XOR-αM-non-
ordinary difference mapping. A resolvent operator associated to this mapping was defined,
and we discussed some of its characteristics. We examined a generalized, set-valued,
mixed-ordered, variational inclusion problem involving H(·, ·)-compression XOR-αM-non-
ordinary difference mapping and relaxed cocoercive mapping in the setting of real ordered
Hilbert spaces. An existence result was discussed for our considered ordered inclusion
problem. Further, a three-step iterative algorithm using a ⊕ operator was suggested,
and a convergence analysis of the proposed iterative algorithm was presented. Finally, a
numerical example was given to illustrate the existence and convergence results. Further,
the results presented in this paper can be generalized in ordered Banach spaces and ordered
uniformly smooth Banach spaces.
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