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Abstract: In this paper, we introduce a new three-step Newton method for solving a system of nonlin-
ear equations. This new method based on Gauss quadrature rule has sixth order of convergence (with
n = 3). The proposed method solves nonlinear boundary-value problems and integral equations in
few iterations with good accuracy. Numerical comparison shows that the new method is remarkably
effective for solving systems of nonlinear equations.
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1. Introduction

In numerical analysis and other branches of scientific interests, solving a system
of nonlinear equations by means of computational methods has always been very well
motivated and convincing for researchers. For a system of nonlinear equations:

,pa(S)) =0, (1)

P(S) = (p1(S), p2(S), - -
where S = (s1,82,-+-,8;)T and P : D C R* — R" is a nonlinear system, and p;,i =
1,2,---,n:D CR" — R is a nonlinear mapping. The solution of the nonlinear system
of equations in (1) may be defined as the process of finding a vector S* = (s},s5,- -+ ,s5)T
such that P(S*) = 0. The classical Newton method is one of the most commonly used
iterative methods:

skt — gk pr(st~p(s®)y  (k=0,1,2,---),
where P/(5()) is the Jacobian matrix of the nonlinear function P(S) in the kth iteration at
the point S®) (see [1-3]). Newton’s method quadratically converges to the solution S* if
the function P is continuous and differentiable. In recent years, several methods have been
developed to analyze the solution of systems of nonlinear equations to improve interaction
by using the quadrature formulas and fractional iterative method in the literature (see [4-12]).
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In particular, Codero and Torregrosa [9] developed the third-order Newton-Simpson method
as follows:

® 4y !
skt — gtk _g [P’(S(k)) + 4P (SJZFY> + P’(Y(k))] p(s™), )

and the Open Newton method:

st = 50 3 [zp(“"”ﬂ(")) - p(M>
4 2

3)
k 7 (k 1
2P1(3S( >+ ( ))] P(S(k)),

where Z®) represents the Newton approximation. Khirallah and Hafiz [13] suggested

a cubically convergent method using the four-point Newton—-Cotes formula for solving
systems of nonlinear equations as follows:

k k k k

sk+1) — gk) _g {p’(s(k)) +3p’ <25()2+Z()> +3p/ (S()ZZZ()>

1 @)

+ P’(Z(k))} P(s%).

The quadrature rule is used to approximate the definite integral of a function. The
general form of a quadrature rule is given by [14]

b m
Q= / o(r)s(r)dr ~ Qm = Y _ w;s(r;)
a i=0

where v(r) is a weight function, w;, i = 0,1, 2, ... m are coefficients (weights). r; are points of
the rule and s is a given function integrable on the interval [a, b] with the weight function v.

Motivated and inspired by the research going on in this area, we have introduced a
new iterative for solving nonlinear equations. Several numerical examples are considered
to show the effectiveness of the proposed method. The new iterative method shows the
compatibility of numerical results with the scheme’s theoretical analysis. We have solved
nonlinear boundary-value problems by using the proposed method. Our method gives
better results than the other methods and converges more rapidly to the solution. Section 5
concludes the paper.

2. Three-Step Newton Method

Let P: D C R" — R", be s-times Fréchet differentiable function on a convex set
D C R". Using the Mean-Value Theorem of multi-variable vectors function P(SK)) (see [1]),
we have

P(S) — P(sW)) = /01 P'(S® + (s — s®)) (s — sW)dr. (5)
Using the left rectangular rule, the right-hand side of (5) can be written as
/01 P'(8® +r(s — sK)) (s — sW)dr = p'(s®) (s — 50, (6)
From (5) and (6), we get
s=5® _p(stH-1pis®)y  (k=0,1,2,---). @)

Replacing S by S k1) in (7), we get the Newton method. Using (5) and different
numerical integration formulas, one can obtain different iterative methods such as (2), (3),
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and (4). To develop the new iterative method, we approximate the integral in (5) by the
following three-point Gauss Legendre integration formula:

[ w5 or(5) s 3o (5) - 157)
+§f<(y—x)<\/§> +y42rx>]’

Thus, from (5) and (8), we have

®)

1
/ P'($® 4 7(5 — 5®)) (S — $H))dr
0

S — sk S+ 5k 3 )
~ T {41)’( +2 >+gP’<(S—S(k))(— 5>+ +2 ) )

+gp<@_6@»( §)+Sﬁfm>}

Moreover, from (1), (5), and (9), we get

()
+gP’<<S—S(k))(\/§)+S+ZS ﬂ

From (10), the iterative scheme is given by

szs<k>—9[4p’(s+s(k))
2
50(q_cton(_ [3), S+SW
+2P<(s s )( )2 an
50 ( (e aton (3 L SHSONT e
+2P<(S S )( i R P(s\%).

Subsequently, we use the kth iteration T®) and Z(*) of Newton’s method to replace
S and S respectively on the right-hand side of (11) and obtain a new iterative scheme
as follows:




Symmetry 2021, 13, 432 40f12

Algorithm 1: Three-Step Newton Method

Step 1: Select an initial guess S(°) € R” and start k from 0.
Step 2: Compute

S = 70 =9 4P/ (1) + SP(HI + W)

-1
+ ;P’(H(k) + ]<k))} p(T®).

Step 3: Set for the next step:

and

Step 4: Compute
z®) = gk _ p'(sk)y=1p(sk)y (k=0,1,2,---)

Tk = z0 _ p(z)-1pz®Yy  (k=0,1,2,---).

Step 5: If ||Sk+1) — S(K)|| < ¢, then stop; otherwise. put k = k + 1 and go to Step 2.

In the next section, we discuss the convergence of the proposed method.

3. Convergence Analysis

In the following theorem, we prove the convergence of the proposed method.

Theorem 1. Suppose that the function P : U C R" — R" is sufficiently Fréchet differentiable
at each point of an open convex neighborhood U of the solution S* € R" of (1). Assume also that
P/(S) is continuous and nonsingular at S = S*. Then, the sequence {SX) } generated by Algorithm
5 converges to S* with the sixth order of convergence and the error equation is given by

eri1 = 3C3ed +0(e]), (12)

where
e = S — g%,

Proof. Let P: D C R" — R" be s-times Fréchet differentiable in U. Then, by using the
usual notation for the mth derivative of P at v € R”, the m-linear function P(")(v) : R" x
.- x R" — R" is such that P"") (v) (uy, uz, - - - ,up) € R™. Suppose now that $* + 1 € R"
lies in the neighborhood of S*. The Taylor polynomial for P(S* + k) can be of the form:

f-1
P(S* +h) = P'(S8%) <h +Y thm> +O(K), (13)

m=2
where
G = (57 ) PSP (n 2 2)

m!

We observe that C,,h"™ € R", since

Pm(s*ye L e (R"xR",---,R") and [P/(X*)] 'eLecR"



Symmetry 2021, 13, 432 50f12

In addition, we can express P’ as follows:

f-1
P'(S*+h) = P'(S%) (I + ) mthm_l) +O(nf), (14)
m=2
where I € R™" is the identity matrix. We note that mC,,h" ! € £ € R". From (13) and
(14), we get
P(SW)) = P'(S*)[ey + Cae? + Cse} + Caef + Csel + Coel + - - ]. (15)
P'(80)) = P'(S*)[I +2Caey + 3C3e? 4 4Cye} + 5Csef + 6Csep + -+ -, (16)
where .
Ck:(ﬁ)[P,(s*)]_lp(k)(S*) (k:213/4/)
and

e = SH — 5%,
From (15), we have
P'(S0) ™1 = [I — 2Cye; + (4C3 — 3C3)e? + (—4Cy + 6C2C3 + 6C3Ca
—8C3)e} + (16C5 — 36C3C3 + 16CCy + 9C3 — 5Cs e} (17)
oy —1
+J(P(S))

By multiplying P/ (S®)) ™" and P(S%), we obtain

P'(SWYT1P(SH)) = ¢ — Cre? +2(C2 — C3)e} + (—4C3 + 4CoC3 + 3C3C,
—3Cy)ef + (8C5 — 20C3C5 + 6C5 + 10C,Cy — 4Cs)e;

(18)
+ (—=16C5 4 52C3C3 — 33C,C3 — 28C5Cy + 17C3Cy+
13CyCs — 5Cg)ef + - - - .
Taylor’s series expansion of P(Z(®)) is given by
P(z®) = P'(s*)[(2®) — 5%) + Co(2®) — 5%)* + C3(zM) — §%)3 4 Cy (20 — 5*)* 19)
_ C5(Z(k) — 5*>5 + C6(Z(k) — 5*)6 +---],
where .
* -1 *
Ce= <k,) [P'(s)] PW(S*)  (k=2,34,--).
Moreover, Z(¥) can be written as follows:
Z®) = 8% 4 Cye? —2(C% — C3)ef — ( —4C3 +7CoC3 — 3Cy) e}
+ (4Cs — 12C3 + 24C3C3 — 10C,Cy — 6C3)ep + (16C5 20)
— 52C3C3 + 28C3Cy + 33CoC3 — 13C,Cs — 17C3Cy
+5C6)€2+"' .
Taylor’s series expansion of P’ (Z*)) is given by
P'(z0) = P/(S*)[I +2Co(Z2®) — §%) +3C3(Z®) — §%)2 +4Cy) (z®) — 53 o

+5Cs5(z0) — §)4] + 0(z® — 5%)°.
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and

Putting (20) in (21), we have

P'(SW)) = P'(8*)[I +2C3e2 — 4C5(C3 — C3)e} — Co(—8C5 + 11C2C5 — 6Cy )ef

+ (—16C3 + 28C3C3 — 20C3Cy + 8C2Cs)eg + (32C5 — 68C5C3
+60C3Cy — 26C3C5 — 16CoC — 3Cy + 12C3 + 10C2| Co el
4+

Upon multiplying P’ (Z(¥)) Ty P(z®)), we have

P'(z®)"1P(20)) = Cpe? +2(—C3 4 C3)e} + (3C3 — 7CoC3 + 3Cy et
+ (—4C3 + 16C3C3 — 10C,Cy — 6C3 4 4Cs)e?
+ (6C5 — 32C5C3 + 22C3Cy +29C,C3 — 13C,Cs
—17C3C4 +5Ce)ef + - - - .

The expression for T is given below:

T = §* 1 3C3e} — (16C5 — 20C2C3 + 6C3 4 10C2C4Cs) e}
— (—24C5 +96C3C5 — 41CoC3 — 40C3Cy — 12C5 + 17C3Cy
+13C,C5 4+ 8C5 —5Ce)ef + -+ - .
Similarly, P (T(k)) can be written as follows:
P(TW) = P'(8%)[3C3e} — (16C3 — 20C3C5 + 6C% +10C2Cy — 4Cs) e}
— (—24C3 +96C3C5 — 41C,C3 — 40C3Cy — 12C5
+17C3C4 + 13C,Cs +8C5 — 5Cq)ep + - -+ |.

Furthermore, we have

1 7 3 5
H® = (2>c2e£+ (—C3+GC3)ep + (— 5C2C+5C+ zcg)e‘,er <—6c§

69

+12C3C3 — 5C,Cy4 — 3C3 +2Cs + §c§c3 - 10c§c4> e

- (327c2c§ +17C3Cy — ?czcg —36C5C3 + ic6>e2 4o

1 1 2 2
](k) = (2C2 + 5\/EC2>B£ + (— C% +C3 — g\/EC% + 5\/BC3>6£
3 5 5.3 3 3 7
+{5Ci+5C+ g\/ﬁc2 + g\/ﬁq - g\/ﬁCng
—ZC2C3)€£+"' .

Similarly, we have
(k) 1 1 V15 2 2 2 V15C2 2 V15 3
W = ECZ =+ g 15C2 ek -+ — C2 + C3 — g 15C2 + g 15C3 ek
3 5,5 3 3. 3 7
+{5C+ G+ g\/Ecz + g\/ﬁc - g\/Eczcg,

7
—2C2C3)€%+~~~ .

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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The expression P’ (H ©) 47 (k)) can be written as follows:

2 4

P'(H® 4]0y =14 (C% - 5\/Ec§>e§ + (zcg - ECZ\/EQ +2C,C3
+ V1503 Jef + (5C3 + §¢ﬁc2c3 - §C2\/EC4 (29)
- %cﬁg +3CoCy — gx/ﬁc§>ei 4
and

2 4

P'(H® + W) =1+ (c% — 5\/T5c§>e§ + (— 2C3 + gCZ\/ﬁcs +2C2Cs

4 11 6
— 5\/Bc§)e2 + <5c§l - g\/ﬁC%Cg + gCZ\/BQ (30)

89

— %C%C:g +3C,Cy + g\/ﬁcﬁ)eé e

Furthermore, we have

2
P'(HW) = I+ C3e2 + ( —2C3 + 2c2c3>e£ + (5c§ — fcgcg + 3c2c4)e,%

(31)
- ( —12C5 4 21C3C3 — 10C3Cy — 3C,C3 + 4c2c5>e,§ e
From (29)—(31), we have
5 5 -
[4P’(H<k)) + EP’(H(") + W) 4 §P’(H(k) + ]("))]
1 2
= 3G+ <3c§
2 2 7 5 10 2
— GG e+ | —SC+ 2CC — CoCy et + [ — 2C3Cs + - C3Cy
3 3 4 3 3
1 4
- gc2c32 - 3c2c5)e2 SEP
From (18)-(32), we obtain
ei1 = 3C3e8 + (— 38C5 +78C3C3 + —32C3Cy — 28C3C3 )

+8C5Cs + 12C2C3Cy)ef + - - -
From (33), we conclude that the proposed method yields convergence of order 6. [

4. Numerical Results

In this section, we consider some problems to show the performance and efficiency of
the newly developed method. We compare Newton’s method (NM) (see [6]) and methods
(4), (5), (23), (25) and (27) in [15] with Algorithm 1. The stopping criterion is

Error = ||S*+D — 5|, <1075,

and k denotes the number of iterations. The computational order of convergence g (see [16])
is approximated by
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In(]|S% Y — s®|/]|s® — st1]j)

~ . 34
7% 1n (5 — &1 /[|SE1 - SE2)] o
Consider the following systems of nonlinear equations (see [16]).
y2
Problem 1. —x? + 3 +y—17 =0,
xX2—y—19=0,
Problem 2. x>+ 4> +2z2—1=0,
224+ y* -4z =0,
3x2 —4y? + 22 =0.
Problem 3. ¢** + 8x sin(y) =0,
x+2y—1=0.
Problem 4. cos(x) —sin(y) =0,
zZ*+1/y=0,
X — 22 =0.
Problem 5. x> + 1% +2z2>—9 =0,
xyz =1,
x+y—z*=0.
Problem 6. xy +xz+yz—1=0,
yz+w(y+2) =0,
xz+w(x+2z) =0,
xy+w(x+y)=0.
Numerical results are given in Table 1 below.
Table 1. Numerical results for the Problems 1 to 6.
Method Initial Guess k Approximate Solution q
Problem 1
NM 6 (5.0000000000000, 6.0000000000000) T 2.0
4) 4 (5.0000000000000, 6.0000000000000) T 2.9
(5) (55,6 8)T 4 (5.0000000000000,6.0000000000000)T 2.9
(23) T 4 (5.0000000000000, 6.0000000000000) " 3.9
(25) 4 (5.0000000000000, 6.0000000000000) " 3.9
(27) 4 (5.0000000000000, 6.0000000000000) T 3.9
Algorithm 1 3 (5.0000000000000, 6.0000000000000)T 5.9
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Table 1. Cont.

Method Initial Guess k Approximate Solution q

Problem 2

NM 6 (0.698288610, 0.628524230,0.342564189) T 2.0

4) 4 (0.698288610, 0.628524230, 0.342564189) T 3.0

(5) (0.5,0.5,0.5)7 4 (0.698288610, 0.628524230, 0.342564189) T 3.0

(23) R 4 (0.698288610, 0.628524230, 0.342564189) T 4.0

(25) 4 (0.698288610, 0.628524230, 0.342564189) T 4.0

(27) 4 (0.698288610, 0.628524230, 0.342564189) T 4.0

Algorithm 1 3 (0.698288610, 0.628524230,0.342564189) T 5.9
Problem 3

NM 7 (—0.22850805121143, 0.61425402560572) T 2.0

(4) 4 (—0.22850805121143, 0.61425402560572) T 3.0

(5) (0.5,1.0)7 4 (—0.22850805121143, 0.61425402560572) T 3.0

(23) o 4 (—0.22850805121143, 0.61425402560572) T 3.8

(25) 4 (—0.22850805121143, 0.61425402560572) T 4.2

(27) 4 (—0.22850805121143, 0.61425402560572) T 4.2

Algorithm 1 3 (—0.22850805121143, 0.61425402560572) T 6.1
Problem 4

NM 7 (0.90956949, 0.66122683, 1.57583414) T 2.0

4) 5 (0.90956949, 0.66122683, 1.57583414) T 3.0

(5) (1.0,0.5,1.5)" 5 (0.90956949, 0.66122683,1.57583414) T 3.0

(23) e 4 (0.90956949, 0.66122683,1.57583414) T 4.7

(25) 4 (0.90956949, 0.66122683, 1.57583414) T 4.1

(27) 4 (0.90956949, 0.66122683, 1.57583414) T 4.1

Algorithm 1 3 (0.90956949, 0.66122683, 1.57583414) T 6.3
Problem 5

NM 7 (2.49137571,0.2427458788,1.653517941) T 2.0

4) 5 (2.49137571,0.2427458788,1.653517941) T 3.0

(5) (25,0.5,1.5)T 5 (2.49137571,0.2427458788,1.653517941) T 3.0

(23) R 4 (249137571, 0.2427458788,1.653517941) 45

(25) 4 (2.49137571,0.2427458788,1.653517941) T 4.5

(27) 4 (2.49137571,0.2427458788,1.653517941) T 4.5

Algorithm 1 3 (2.49137571,0.2427458788,1.653517941) T 6.1
Problem 6

NM 5 (0.577350,0.577350, 0.577350,-0.288680) T 2.1

4) 4 (0.577350,0.577350, 0.577350,-0.288680) T 3.3

(5) (0.6,0.6,0.6,—0.2)7 4 (0.577350,0.577350, 0.577350,-0.288680) 3.3

(23) e 3 (0.577350,0.577359, 0.577350,-0.288680) 5.5

(25) 3 (0.577350,0.577350, 0.577350,-0.288680) 55

(27) 3 (0.577350,0.577350, 0.577350,-0.288680) T 55

Algorithm 1 3 (0.577350,0.577350, 0.577350,-0.288680) T 6.0

Problem 7 ([15]). Consider a nonlinear boundary-value problem of the following form:

Y +yh =0 (te

0,1); b > 0)
y(0)=0,y(1) = 1.

(35)

Here we have discretized the above nonlinear ODE (35) by using the finite difference method.
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By taking b = 2.5 and n = 10, we obtain the following system of nonlinear equations.

100y, — 200y, + y3° =0,
100y3 — 200y, + 100y; + y3° = 0,
100y4 — 200y3 + 100y, + y3° = 0,
100ys — 200y, + 100y3 + y3° = 0,
100y — 200y5 + 100y4 + y2° = 0, (36)
100y7 — 200y, + 100ys + y2° = 0,
100ys — 200y7 + 100ys + y3° = 0,
100y9 — 200ys + 100y7 + y3° = 0,
—200y9 + 100ys + 100 + 13> = 0,

where y(o) =(1,1,1,1,1,1,1,1, 1)T is the initial guess. We obtain the approximate solution
as follows:

y* = (0.1039574502033 - - - ,0.2079117381290 - - - ,0.3118302489670 - - - ,
0.4156008747144 - - - ,0.5189667289214 - - - ,0.6214486996519 - - - , (37)

0.7222575415768 - - - ,0.8201966396108 - - - ,0.9135562704267 - - - ).
We compare Algorithm 1 with the Newton-Simpson method (NS-M) and the Open
Newton method (ON-M) (see [9]), the four-point method (KH-M) (see [13]), the New-

ton—Gauss method (NG-M), and the fifth-order scheme (M 14) (see [15]). The numerical
results are shown in Table 2 below.

Table 2. Numerical results for Problem 7.

Method k 1 2 3 4 5
Skt — Skll2 1.61121 47021 x 1072 5.7614 x 1077 1.2500 x 10~21 1.3253 x 1079°
NS-M q 3.20022 2.98531 2.99899 2.99999 3.00000
[|F(Sk)!2 4.3531 x 103 5.6034 x 10~8 1.2677 x 10~ 2 1.3581 x 1079 1.6345 x 10198
|[Sk+1 — Skll2 1.61111 46671 x 1072 5.6464 x 1077 117711 x 10721 1.10665 x 10~
ON-M q 3.19700 2.98555 2.99891 2.99999 3.00000
[|F(Sk)!2 43121 x 1073 5.4934 x 10~8 1.1944 x 10~ 2 1.13333 x 107%  9.4989 x 101
||Sks1 — Skll2 1.61111 4.6911 x 102 5.7277 x 107 1.2288 x 10~2! 1.2577 x 10765
KH-M q 3.19921 2.98555 2.99800 2.99999 3.00000
[[F(Si)ll2 4.3411 x 103 5.5731 x 108 1.2455 x 10722 1.2888 x 106 1.3951 x 10~ 198
|[Sks1 = Skll2 6.44555 1.8681 x 10! 2.2633 x 107° 47391 x 10~2 4.5099 x 10
NG-M q 3.19711 2.98555 2.99899 2.99999 3.00000
[1E(Sl]2 43175 x 1073 5.5051 x 10~8 1.2011 x 10~ 1.1544 x 1079 1.0044 x 107198
|[Sk41 — Skll2 1.64888 2.0166 x 1073 2.8188 x 10718 1.6500 x 10~%2 1.1465 x 10463
M(14) q 5.10032 4.99732 4.99999 5.00000 5.00000
[IF(Sll2 1.9300 x 1074 2.8741 x 10717 1.6941 x 10~ 1.1788 x 10746%  1.9077 x 10~2320
Skt — Skll2 0.1622 x 10748 0 - - -
Alg. 1 q 6.10040 6 - - -
[[F(S)]|2 0.7544 x 1047 0 - - -

From Table 2, we see that the proposed method converges to the solution in just two
iterations. To illustrate the performance of the new method, we plot the approximate
solution against the Maple solution in Figure 1.
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Figure 1. Comparison between the exact solution ( Maple solution) and the approximate solution

In the next problem, we compare Algorithm 1 with M6 [17] of order 6.

Problem 8. Consider the following integral equation:

v = 1= M) [kt = o @)

Solving (38), we have the following system of nonlinear equations:

1 & wp;
Yi + 8]/1]; ui+uj

yji=12.8. (39)

For more detail see [17]. We compare Algorithm 1 with M6 [17] in Table 3.

Table 3. Numerical results and comparison for Problem 8.

Method Number of Iterations Error
Newton 5 3.1408 x 1016
M6 3 2.2204 x 10716
Algorithm 1 3 1.0000 x 10~

From the last column of Table 3, we conclude that the new method is more accurate
than M6 [17].

5. Conclusions

In this article, we have implemented a new three-step Newton method for solving a
system of nonlinear equations. The order of convergence of the proposed method is six.
To show the effectiveness of the new method, we have provided some numerical tests.
The graphical illustration shows the accuracy of the proposed method. Numerical results
confirmed that the suggested method converges to the solution in fewer iterations with
high accuracy, which justifies the advantage of this method.
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