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Abstract: In this paper we have proposed a method of solving the computer graphic problem of
creating a Triangulated Irregular Network (TIN) surface in large clouds in order to create view-
sheds. The method is based on radial TIN surface and viewshed visualization task subdivision
using multiple computing machines, which is intended to accelerate the process of generating the
complete viewshed.
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1. Introduction

Engineers who perform analytical and design tasks utilise software tools that often
run on advanced workstations. Sophisticated tool systems have a very broad range of
functionality, but sometimes lack sufficient effectiveness to compute new data types, such as
3D point clouds. Often, specific types of data can be entered into engineering tool systems,
but their amount makes further work ineffective. This can be solved by subdivision,
applied both to the functional and spatial scope. Partial calculations can be performed on
multiple computers and thus accelerated. In this paper, we propose a solution that can be
successfully applied using different equipment configurations and tasks in which there
is a need to process large datasets. The case presented here is the problem of generating
terrain models in representations of Triangulated Irregular Network (TIN) surfaces [1] on
an extensive 3D point cloud, whose size does not allow for single-process calculation.

A point cloud is a set of points in three-dimensional space. Each point is determined
by X, Y, Z, coordinates, and may contain colour information in the form of an RGB value.
There are many methods dedicated to the acquisition of point cloud data. For small-size
point clouds, one can use 3D scanners. In the case of large clouds, photogrammetry and
LIDAR scanning are preferable [2–4]. The cloud examined and processed in this study
was obtained by means of LIDAR scanning, as a part of the ISOK project (IT System of the
Country Protection). As much as 98% of Poland’s territory was scanned during this project,
with a density between 6–12 points/m2.

The point cloud is available in the form of LAS files, in which each point is represented
by X, Y, Z, coordinates, RGB colour and assigned to one of four classes: ground, building,
water and vegetation [5]. Viewsheds are generated based on TIN surfaces [6]. The viewshed
is a way to determine areas in a certain space from which a given point is visible and,
simultaneously, the areas that are visible from the given point. In its simplest form, the
viewshed is generated from a singular, specific viewpoint. Visibility maps are an extension
of viewsheds and are generated from numerous points, which can be in the range of
hundreds of thousands when creating a visibility map for large objects like a mountain
range. A viewshed is generated for each point, and the resulting map is a composition
of multiple viewsheds; it contains combined information about visibility. Viewsheds and
visibility maps are used in road design, urban design, spatial and strategic planning,
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nature conservation, monument preservation and military science. This data is in the
form of rasters, which allows it to be easily compiled with other data layers in CAD and
GIS applications.

2. Software Performance Enhancement Methods

To ensure proper and effective software operation, the team of programmers that
write it must use dedicated code writing principles and adhere to the latest solutions so
that software can meet user expectations. Key principles include maintaining legible code
structure, the application of proper variable types, applying indicators, programming
patterns, etc. The art of software creation is perfected along with the emergence of new
programming concepts and technologies [7].

When all available source code optimization methods are used and performance
remains unsatisfactory, it can be parallelised, i.e., subdivided into subtasks that can be
distributed across different processor threads [8] or cores. There are numerous technologies
distinguished here, including OpenMP [9,10], MPI [11] or CUDA [12]. Each have their
advantages and disadvantages and are dedicated to solving different task types. Not
all tasks can be parallelised. Typically, this can be done only with tasks whose subtasks
can be performed independently, i.e., the computing outputs of some are not required to
begin others.

In cases when all performance enhancement methods have been applied, the code is
optimal, parallelised and all computer resources are engaged, subtask distribution can be
extended to other computers. In this case, processes that fully utilize multi-core architecture
can be distributed. The proposed method allows for the distribution of tasks performed
by well-known engineering software applications. However, many of these applications
perform each task on individual cores. In this case, the same, or slightly modified, subtask
distribution procedures used to distribute them to multiple computers can be applied to
distribute them to available processors or processor cores.

3. Sample Task Overview

In this paper, we have presented a method that allows the processing of large datasets
via an application that is commonly used by engineers in everyday work. In this applica-
tion, it is not possible to process such a large dataset on an individual workstation in an
acceptable timeframe. The method is presented on the example of a task that generates
visibility charts in three-dimensional terrain model environments comprising dense point
clouds. Visibility charts (Figure 1a,b) are graphical representations of space that are either
visible or not visible from a given location. We also distinguish visibility maps, which are
compilations of multiple visibility charts created based on different points.

Viewsheds are used in spatial analyses by, among others, urbanists, landscape archi-
tects and spatial planning professionals [13]. One of the methods used to generate them
is based on the orthogonal rendering of a three-dimensional terrain model with a point
light source placed at the location for which the viewshed is generated. The terrain model
and cover should be represented by objects that obstruct light—preferably using a TIN
representation. Setting a point light source with an indefinite illumination range at the
location for which the viewshed is prepared results in the illumination of objects visible
from said location. When raytracing is used to model light, the precision of the viewshed
becomes proportional to the accuracy of the space’s geometric model and the resolution of
the rendering.

The precision of the geometric model is dependent on the type of spatial data. The
most precise data is provided by point clouds produced by LIDAR scans [14,15]. Point
clouds [16]—are sets of points in three-dimensional space. Every point is defined by co-
ordinates x, y, z in a given coordinate system. Apart from location information, every
point can include additional information, such as RGB colour and class. The LAS [5] speci-
fication distinguishes four main classes: ground—which includes points on the ground;
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building—points that represent buildings; water—which represents water surfaces, and
vegetation—points representing tall greenery.

(a) (b)
Figure 1. (a) A fragment of a city seen in orthogonal projection, with an observation point marked in
red. (b) A Viewshed generated for the observation point.

The point cloud used in the study presented in this paper was obtained as a part of
the ISOK project [17] in standard II, which requires 6–12 pt/m2 of real-world space. This
is highly accurate spatial data. It is in immense demand among specialist designers and
analysts who focus on urban space. However, their use often leads to numerous problems.
Points, as non-dimensional objects, do not reflect traced rays in a visibility function. It is the
result of rays penetrating between points. A closed surface is not created on the vertices, so
the rays are not able to reflect. To produce a visibility chart, one must generate a polygonal
mesh out of the point cloud. Here, the enormous amount of points becomes an obstacle.
Landscape-scale visual analysis requires large areas to be modelled (e.g., 15 km × 20 km),
and whose areas contain billions of individual points. Polygonal meshes should comprise
a similar number of triangles. Computer systems used by these specialists are unable to
generate such extensive meshes in an acceptable timeframe.

4. Dividing Tasks into Subtasks

Generating a viewshed is based on building a 3D geometric model of a space, pro-
ducing a rendering with a single point-based light source at the observation point and
thresholding the render image with a threshold set so that all illuminated places take on a
positive value and all non-illuminated places take on a negative value. Typically, they are
marked in black and white on the charts. In cases where a viewshed cannot be plotted due
to the mesh being too dense, the model can be subdivided into radial sections [18]. The
division of point clouds into radial sections is performed by projecting the cloud onto a
2D surface followed by radial sectioning following an angular radius. There can be any
number of sections, which is dependent on the angular division selected. This number is
entered by the user. A detailed overview of radial division has been presented in the paper.
To accelerate the division, we applied an algorithm using a k-d tree (2D tree) along with a
subtree rejection algorithm that has been presented in [6].

Their angular scope defines the size of the mesh section and the number of sections
(inversely proportional). Viewsheds are compiled into maps which, for instance, display
visibility from a given road. They show sections from which elements of space are visible,
including extensive objects such as mountain chains, and how much of them can be seen.
Numerous points are systematically distributed along the length of a road or on the surface
of extensive objects. Their viewsheds, through matric summation, comprise visibility maps.

There are multiple ways in which these processes can be parallelised. Radial sections
and individual viewsheds that form visibility maps are generated in separate processes. In
cases where they are generated in model environments that consist of dense point clouds
on workstations dedicated to engineering tasks, one must perform very fine divisions. To
address this problem, an algorithm that subdivides the point cloud into radial sections
from the central point was created, with the objective of creating smaller TIN surfaces.
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Fragmentary viewsheds are generated on these surfaces, as is their subsequent combination,
which results in a complete viewshed.

The simplest process of subdividing the point cloud into radial sections, i.e., point by
point, is very time-consuming. To further simplify it, we propose changing the storage
structure of these points into a k-d tree, for which a novel tree rejection algorithm has been
implemented. The algorithm outputs several small clouds, for which TIN surfaces re then
generated. In the case of using a single computer, this can take a very long time, as every
surface and chart creation operation is performed sequentially.

We can distinguish the following subtasks within visibility map and viewshed creation
(Figure 2) :

1. Subdivision of the point cloud into radial sections
2. Generation of a mesh in each radial section
3. Rendering of each radial section
4. Combining viewsheds from renderings of each section
5. Matrix calculation of selected charts into a visibility map

Subdivision of the
point cloud into radial

sections

Generation of a mesh
in each radial section

Rendering of each
radial section

Combining viewsheds
from renderings of

each section

Matric calculations of
selected charts into a

visibility map

YES

NO

all parts completed

Figure 2. A Viewshed creation block diagram.

4.1. Parallelization Method Proposal

In the case presented, we generate a viewshed via dividing point clouds into radial
sections. Each section is then sent to one of multiple computing machines (Figure 3), where
each machine is responsible for creating a three-dimensional TIN surface and generating
a fragment of the viewshed. After this process concludes, the charts are returned to the
main computer as components. During the final stage, all partial charts are combined into
a single main chart, which solves the problem fully.
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Figure 3. The principle of task distribution across numerous computers.

4.2. Program Operation Course

The first step taken by the program is the creation of a k-d tree, the second is the
determination of small radial sections of the point cloud. Afterwards, it sends a header
with information about the cloud and rendering method to each computer, along with
sending N clouds to M computers. The structure of the radial section generation algorithm
subdivides cloud after cloud, so there is no need to wait for all clouds to be created prior
to the start of the transfer process. If a subsequent section is available, it is immediately
processed. After completing every viewshed for every section, they are combined on
the main computer into one viewshed. The entire process will be presented on the block
diagram below (Figure 4).

Start the program

Yes

No

division is
complete?

No

combining the parts
into total views

End the program

create the kd-tree

specify the number of
parts in the division

extracting the radial
part

 sent to the N node
computer 

determining the TIN
surface and viewshed

specify the point
cloud

Figure 4. The program operation block diagram.
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4.3. Header File Description

For the program to properly function, every time it is run, a package is sent to each
computer with a header file, a template (.dwt) with basic drawing environment parameters
and a batch file (.bat) that runs the engineering program on node computers.

• Header file, which contains:

– Coordinates for the point for which the viewshed is generated,
– Rendering quality, scope and resolution parameters,
– File names.

• The batch file that runs the program that awaits tasks and the program for TIN surface
generation, which is Autocad Civil 3D ® [19],

• A script that runs in Autocad Civil 3D ®,
• A library with functions necessary for automatic surface generation, rendering and saving.

4.4. Overview of Tasks Assigned to Specific Computers

MOTHER COMPUTER—overview of processes performed on the main computer.
Input data—point cloud

1. K-d tree execution
2. Section number and angular scope determination
3. Node computer number and access determination
4. Package distribution
5. Generation of N clouds and distribution to node computers
6. Rendering reception
7. Combination of partial viewsheds into a complete viewshed

Output data—complete viewshed
NODE COMPUTERS—overview of processes performed on N available computers.
Input data—partial cloud in a radial section

1. Receipt of the header file with render and central point specification
2. Receipt of point cloud section
3. Viewshed execution
4. Viewshed return with information about task conclusion
5. Standby for another cloud/information about the completion of the entire process.

Output data—viewshed on a radial section

4.5. Technology

To create a program with the best possible performance, we used several technologies
to make it user friendly, comply with software development principles and address the
problem for which it has been created.

1. C++ programming language [20]—the program that creates the k-d tree, divides the
cloud and generates smaller clouds.

2. AutoCad CIVIL 3D ® —for generating TIN surfaces and the viewshed.
3. C# programming language [21]—to automate operations performed in Civil 3D ®

4. Batch program [22]—for the automatic execution of the program on node computers.

5. Comparison of Algorithm Execution Times with the Use of Different
Parallelization Methods

Methods derived from using the algorithm have been presented by conducting exper-
iments with different cases of its execution. Shortening task execution times were observed
while comparing the times obtained while using a single computing machine with limiting
computer core number and with maximum load across all nodes. Times for sequential and
parallel task execution were presented for different processor uses. Afterwards, we tested
the use of different computer numbers. The experiments were performed on computers
with the following parameters: Computer parameters:
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1. Operating system—Windows 10 64 bit
2. Processor— i7-4760HQ 2.10–3.30 GHz
3. RAM—16 GB DDR3L 1333 MHz/1600 MHz
4. Drive—SSD

Available online: (accessed on 15 March 2012) Two tasks were formulated for the experi-
ments.

Task 1, executed in the point cloud, marked with the letter (A), which consists of
82 × 104 points. In this case, we analyzed task execution times for a single computer
with varied processor use. The analysis covered both sequential and parallel algorithm
operation. In the case of task 2, we applied the technology presented in the paper, which
utilizes multiple computers. The algorithm was executed in parallel on multiple computers
that operated sequentially. We used two point clouds. Cloud (B), with a number of points
equal to 76 × 105, and a larger point cloud (C), whose number of points was 27 × 107. In
addition, we investigated different numbers of point cloud sections: a division into 10 and
16 sections. Due to changes in subdivision, we presented the dependency between task
performance time and the amount of parts calculated. We did not test the point cloud from
task 1 in this manner, as the number of points in that cloud was small enough that the
application of multiple computers with this algorithm would only extend calculation time.

5.1. Task 1: Subdivision of Point Cloud (A) into Four Parts

Case 1: The task was performed on a single computer with the use of a varying
number of processor cores. Four point cloud parts were processed sequentially, one after
another (Table 1).

Table 1. Task 1 performance time, performed sequentially on cloud point (A) on a single computer
with the use of different numbers of processor cores.

Core 1 2 4

Time [ms] 1,129,225 612,482 602,478

This case demonstrated that sequential task performance time decreased as the number
of engaged processor cores increased

Case 2: Task 1 was performed on a single computer with the use of different num-
bers of processor cores. The task was performed in parallel, with four clouds processed
simultaneously (Table 2).

Table 2. Task 1 performance time, performed on point cloud (A), on a single computer with the
parallel use of varying number of processor cores.

Core 1 2 4

Time [ms] 792,035 379,278 204,832

This case shows how parallel task performance time decreased along with the number
of processor cores engaged. An observably substantial amount of time was saved here
relative to case 1, wherein every part waited for the previous part to finish processing. In
case 2, all were processed simultaneously. In this case, the size of each section is important.
They were small enough that the computer, while creating TIN surfaces in parallel, had
sufficient leftover operating memory and was able to process them all. Concerning parts
with greater point numbers, there is a risk that parallel processing may not be performed.
In such cases, one has to use the method shown in case 1, which is more time-consuming,
but has the capacity to assign more processing power to a single part.

To better analyze the results presented above (Table 3), we present a comparison of
calculation times for one part of cloud (A) on one core with the time of processing four
parts of cloud (A) on four cores in parallel.
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Table 3. Comparison of the time necessary to process a single part of cloud (A) on one core with the
processing time of four parts of cloud (A) on four cores in parallel.

Cloud Parts/Core 1/1 4/4

Time [ms] 199,275 202,868

The comparison above shows that the processing times are comparable, which points
to a four-fold decrease in the completion time of the entire task.

Below is a presentation of cloud A and its respective viewsheds (Figure 5a,b).

(a) (b)
Figure 5. (a) A point cloud (A). (b) The final viewshed for task 1, point cloud (A).

5.2. Subdivision of Point Cloud (B) into Ten and Sixteen Parts

In this task, we used a point cloud that consisted of 76 × 105 points. Below is a presen-
tation of the results, with a comparison of processing the same viewshed using a different
number of computers and all available cores. The tasks were processed sequentially on all
computers. In this case, the overall time needed to complete the entire task became much
shorter (Table 4, Figure 6).

Table 4. Completion time of task 2, performed on point cloud (B), sequentially, on different numbers
of computers.

PC 1 2 3 4

Time [ms] 641,035 324,583 245,481 178,425

Figure 6. Dependence between the number of computers and completion time.
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5.2.1. Case 1: Subdivision into 10 Parts

The table presented above (Table 4) indicates dependence between the number of
computers and completion time. It shows that with the increase in the number of computers,
time decreases.

5.2.2. Subdivision into Sixteen Parts

Two conclusions can be drawn from the diagrams (Figures 6 and 7) and tables
(Tables 4 and 5) presented above. First, it can be concluded that increasing the number
of computers on which the tasks are actually processed is justified. However, when the
number of subdivisions is too large, this time cannot be effectively shortened. In the case
of ten parts, the completion time was shorter than in the case of sixteen parts. This is
caused by the fact that every time the program is run, the task completion time increases,
which means the more instances of running the program on one computer, the longer the
time required. The number of subdivisions was shown to be an important factor, affecting
task completion time. It should be selected in such a way that the surface produced as a
result of the subdivision has to be as large as possible, but it cannot exceed the computing
capacity of the computer, and the number of divisions should be a multiple of the number
of computers available.

Figure 7. Dependence between the number of PCs and calculation completion time for cloud (B),
divided into 16 parts.

Below is a presentation of cloud B and its respective viewsheds (Figure 8a,b).

(a) (b)
Figure 8. (a) A point cloud (B). (b) The final viewshed for task 2, point cloud (B).
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Table 5. Completion time of task 2, performed on point cloud (B), in parallel, on a different number
of computers.

PC 1 2 3 4

Time [ms] 641,035 333,861 262,800 212,968

5.3. Subdivision of Point Cloud (C) into Ten and Sixteen Parts

In the task presented here, we used a point cloud that consisted of 27 × 107 points.
Below we shall present a table that compares the completion times for the same viewshed
while using a different number of computers assuming the use of all available cores. The
tasks were performed sequentially on each computer. As presented in the table below, the
completion time of the entire task decreased substantially as the number of computers
increased. (Table 6, Figure 9).

Table 6. Performance time of task 2, on point cloud (C), in parallel, on a different number of
computers that operated sequentially.

PC 1 2 3 4

Time [ms] 792,584 394,626 310,788 268,859

Figure 9. Dependence between the number of PCs and time of calculation performed on point cloud
(C), divided into 16 parts.

The table presented above (Table 6) indicates that task (Figure 10). completion time
decreased as the number of computers increased.

Figure 10. The final viewshed point cloud (C).

The division of the point cloud into radial sections is a process that is constant for any
number of computers. It is performed on a single computer, which makes its parallelization
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across multiple machines unachievable. It is a bottleneck for the entire algorithm. In the
stage to follow, we plan to parallelize it on a single computer using multi-threading. A
table that presents division time depending on the number of parts has been presented
below (Figure 11).

Figure 11. Dependence between the number of parts and divide time.

One major reason for the need to divide tasks across multiple machines is the necessity
to load the entire point cloud into random-access memory (RAM). A subdivided point
cloud occupies less space, which allows less powerful machines to process it. At present, it
is impossible to determine the percentage share of points in a given point cloud subsection.
This is a result of the constant angular radius that can cover a varying number of points. In
the future, we plan to create an algorithm that will be able to divide point clouds following
variable angular radii so as to ensure a constant point count per section. At present, RAM
amount is implied by the largest cloud subsection. In addition, the size of the point cloud
determines computer processing power necessary to successfully create a TIN surface.

Below is a graph that represents the dependency between the number of sections and
the required amount of RAM (Figure 12). It is a simplified case in which the number of
points per section is constant

Figure 12. Dependence between the number of parts and RAM (random-access memory).

The graph shown above shows that RAM demand drops as section count increases. In
reference to the data presented, the most optimal division of a 64 GB cloud for a standard
user is into eight sections, which results in a RAM demand of 8 GB. This is an amount
that most currently available computers have at their disposal. We also leave enough free
memory for other system operations to run in the background. Unfortunately, the current
algorithm version cannot be directly referred to the graph above, as the number of points
per section is variable, as already noted.

The time of task transfer between computers is not constant (Figure 13). Both here and
in other aspects, it is a result of the variable number of points in each section. Program run
time is affected only by the transfer time of a number of initial sections, which is associated
with the number of node computers. Only the transfer of the initial point cloud sections is
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performed prior to the algorithm’s execution on node computers. The remaining clouds
are transferred in parallel as the program is executed. Another factor that affects transfer
time is the available bandwidth.

Figure 13. Dependence between the number of parts time transfer.

As shown in the graph above, transfer time shortens depending on computer count.
This is due to the transfer of larger sections prior to the algorithm’s execution on node
computers, which extends the overall processing time. In the case of transferring smaller
sections at the start, the overall time decreases. Subsequent parts are sent during the
processing of sections that have already been sent, which does not extend overall process-
ing time.

The graph below shows the number of points in a section depending on section count
(Figure 14). It can be seen that as the number of sections grows, the number of points
decreases. However, in this case we have also accounted for an even division, in which
each section is of equal size. In the case of the algorithm presented, we can encounter a
situation in which there is a division into four sections and one of them can be even a dozen
or so times larger than the other sections. This depends on the location of the division point
within the cloud.

Figure 14. Dependence between the number of parts and points in part.

Below is a presentation of two divisions of a single cloud with a point count of 15 × 105

into four sections, but from different points (Figure 15a,b).
The maximum point count in the first division is 380,113 while in the second it

is 586,923.
Unfortunately, it is impossible to identify the mode of division, as it primarily depends

on the location of the central division point relative to the entire cloud.
The principle that should be followed in selecting the number of computers and

sections is to ensure a division in which the largest section can fit into a computer’s RAM
and the number of computers is equal to the number of sections. Unfortunately, it is very
rare for this to be the case. When dealing with a substantial number of sections, we should
strive to arrive at a division in which the maximum section size can fit into a computer’s
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memory while keeping the number of sections as low as possible. In this distribution, the
number of points from the cloud allocated to each computer can differ up to several times.
We are of the opinion that we should assume the worst case scenario, in which there is a
single part that is substantially larger. All computers must have the parameters necessary
to process this cloud. Our future research is aimed at creating an algorithm that would
divide point clouds into radial sections while accounting for a variable angular radius so
as to keep the number of points per section constant.

(a) (b)

Figure 15. (a) A fragment of a point cloud divided in four parts. (b) A fragment of a point cloud
divided in four parts.

6. Other Uses of the Algorithm

The method of parallelization of computations presented in this article can be used
in many engineering fields. Even with minor changes, they do not have to be related to
the point cloud. In fact, any more complex task can be broken down into smaller ones and
distributed among multiple computers. An example of such tasks may be calculations
on multidimensional tables, where their respective parts are sent to different computers,
analyses of the strength of building components where another computer is responsible for
each group of elements, or even the simple studies of the impact of variable coefficients
on the environment, where each change is computed by a different computer. There are
many possibilities, but they require adjustments and slight changes to the algorithm and
the entire program.

7. Other Studies

The authors of other studies mostly focused on parallelizing the first operation type,
namely processing the entire point cloud [23,24], for instance with the aim of dividing it.
Here, parallelization is based on dividing points between a processor’s cores and threads
(reference). We have also studied this. In this paper, we have not focused on parallelizing
the point cloud division itself, but on parallelizing the task of creating TIN surfaces on
them and generating viewsheds. Simplifying the triangulation of the entire point cloud via
its division and transfer to multiple computers lowers processing power and RAM demand.
It also shortens processing and in some cases enables this processing altogether. A similar
algorithm has been applied in 3dsMax ® [25], but it is not associated with triangulation,
but with rendering individual animation frames.

Unfortunately, at present there is no algorithm that could solve the task presented.
Comparing the parallelization of a different part of the algorithm with parallelizing task
transfer would bring neither desirable nor comparable outcomes.

8. Validation

The presented results indicate what should be the appropriate procedure for dividing
a task and distributing individual subtasks into computing resources. The calculation
times and hardware conditions quoted here allow to select the appropriate division and
distribution strategy depending on whether the calculation is a single viewshed or a
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visibility map consisting of many graphs. It can be seen that splitting a single viewshed
job and distributing these parts to 2 computers allows you to get the result faster than on
one machine, despite time consuming distribution. The time gain is also noticeable when
distributing tasks to separate processes assigned to single processors on one computer.
Running consecutive parts of the task in parallel on 4 cores resulted in almost three
times faster than calculating these parts one after another on 4 cores. It follows that
performing these calculations in parallel, both on one computer and on several computers,
is always profitable.

9. Discussion

The comparison of calculation times presented in Section 5 clearly indicates that when
a single computer is used, the number of processors engaged in the calculations significantly
affects the algorithm execution time. In the tasks presented, both in the case of executing the
process sequentially and in parallel, the time required decreased significantly. This proves
that poor processor core management can lead to ineffective computer work and to wastage
of computing power at our disposal. In the case of more advanced tasks, distributing them
to node computers also brought the expected results, i.e., a decrease in completion time.
The results point to an important conclusion that the appropriate selection of point cloud
subdivision parts is essential. Should this selection be inappropriate, completion time will
not be effectively decreased. The parts produced via subdivision should be selected in
such a manner as to make maximum use of a computer’s computing power. Their number
should be a multiple of the number of available computers. Only then can we effectively
accelerate the process.

10. Conclusions

The time decreases obtained with different acceleration methods presented here can
be compared. With the use of multiple computers, a single computer, a multi-threaded
processor or the use of the graphics card’s computing power. Every solution that speeds up
the process is good, but users might not necessarily be able to use each one. Not everyone
has a dedicated graphics card, multi-core processor or access to several computers. When
developing software, we need to keep in mind who is going to use it and what possibilities
they will have in terms of running it. The best solution, as in the case presented, is to
develop software dedicated to a specific user. Likewise, we should adapt the acceleration
method to the algorithm in use. Not every program can be parallelized using every type of
technology. The best solution is to use all solutions available on both the programming
and hardware side.

The paper clearly demonstrates a significant acceleration of calculations executed to
solve a specific engineering problem. The method proposed allows engineers to make
good use of well-known software, which allows complete supervision and control of the
process and its output. Another advantage is the possibility of using available hardware
outside of the hours when it is in direct use. This method is an example in which engineers
have the ability to process large datasets in a productive and creative manner, suitable to
their needs.
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