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Abstract: In this article, we begin by introducing two classes of lacunary fractional spline functions
by using the Liouville-Caputo fractional Taylor expansion. We then introduce a new higher-order
lacunary fractional spline method. We not only derive the existence and uniqueness of the method,
but we also provide the error bounds for approximating the unique positive solution. As applications
of our fundamental findings, we offer some Liouville-Caputo fractional differential equations (FDEs)
to illustrate the practicability and effectiveness of the proposed method. Several recent developments
on the the theory and applications of FDEs in (for example) real-life situations are also indicated.

Keywords: FDEs; lacunary fractional spline; Riemann-Liouville fractional derivative; Liouville—
Caputo fractional derivative; fractional Taylor’s expansion; error bounds

1. Introduction

In recent years, the subject of fractional calculus (that is, the calculus of integrals and
derivatives of any arbitrary real or complex order) has gained considerable popularity
and importance due mainly to its demonstrated applications in the mathematical mod-
elling of numerous seemingly diverse and widespread real-life problems in the fields of
mathematical, physical, engineering and statistical sciences. Such operators of fractional-
order derivatives as (for example) the Riemann-Liouville fractional derivative and the
Liouville-Caputo fractional derivative are found to be potentially useful in the mathemati-
cal modelling of many of these problems (see, for example, [1-7]).

Motivated essentially by some recent developments (see, for example, [8]; see also [9,10]
as well as the references to the related earlier works cited therein), we introduce and
investigate here two classes of higher-order lacunary fractional spline functions based upon
the Liouville-Caputo fractional derivative. For this purpose, we make use of a (presumably
new) lacunary fractional spline method in order to investigate the above-mentioned classes
of higher-order lacunary fractional spline functions by applying the Liouville-Caputo
fractional Taylor expansion. We not only prove the existence and uniqueness of the method
on each of the classes, but we also find the error bounds of the method via the modulus of
continuity. Furthermore, with a view to illustrating our theoretical results, we successfully
solve several Liouville-Caputo fractional differential eauations (FDEs) by using the method
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which we have introduced in this paper. Furthermore, finally, we graphically illustrate the
numerical solutions which are presented here.

2. Definitions and Preliminaries

In this section, we revisit and recall all of the needed concepts and results involv-
ing fractional calculus and integral equations. We choose to divide this section into the
following subsections.

2.1. Fractional Calculus

There are many definitions of fractional integrals and fractional derivatives, so it is
always necessary to specify which definition is being used by us. In this article, we need
the left Riemann-Liouville (L-RL) fractional integral and fractional derivative, as well as
the left Liouville-Caputo (L-LC) derivative, which are defined as follows.

Definition 1 ([11-13]). For any L! function Y defined on [by, by], the vth L-RL fractional integral
of Y(1) is defined for R(v) > 0 as follows:
1 [ _
RLIZwY(U) = m/ (n—2)’ 1Y(§) d¢ (7 € [b1,b2)). 1)

by

For any C" function Y defined on [by, by, the vth L-RL and L-LC fractional derivatives of
Y () are defined forn —1 < R(v) <n (n € N) as follows:

n

v d n—v
RLDb1+Y(17) = dny” RLIb1+Y(77) (77 € [by, b2]) 2)
and
LC RL d”
DZ]‘FY(U) = IZ;:/ di’]”Y(U) (77 € [bl/bZD/ (3)

respectively, N being the set of positive integers.

Lemma 1 (see [11-14]). Let p > —1,5 > by and R(v) > 0. Then the L-RL fractional integral of
the power function satisfies the following result:

1 F +1 v
RLTy (g — by = LD = b

F(p+1+v

Moreover, the L-RL and L-LC fractional derivatives of a constant € are given by

I'(p+1) _
RLpy ¢=¢ ﬁ(q —b)Y (0<v<1)
and
Kpp,e=0  (0<vZ1),
respectively.

Definition 2 (see [15,16]). Let Q) C R denote an interval with by € Q and by < 1 forall y € Q.
Furthermore, let 6 € R™. We then define the sets p, Lo and , Dy of functions as follows:

b L5 = {Y :Y(n) € C(Q) and RLI§1+Y(;7) exists and is finite in Q}
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and

p,Ds = {Y :Y(n) € C(Q) and LCDi1+Y(17) exists and is finite in Q}.

Theorem 1 (see [15,16]). Let 6 € (0,1] and ¢ € N. Furthermore, let Y(n) be a continuous
function on [by, by| satisfying the following conditions:
(1) MDY € C([by, ba]) and "Dy Y € | 15([by, bo]) forallm =1,2,- - L.
() LCDl(ff)‘sY(iy) is continuous on [by, by].
Then, for each iy € [by, by],

Yr) = 32 10p () U g0
D= L T P Ty T

where

—b (¢+1)6
Ry(n,b1) = 1%))5_’_1) LCD;(,fil)éY(C) (@asg<).

Definition 3 (see [17]). Let Y : Z C R — R be a continuous function. Then, the modulus of a
continuity of Y is defined by

ws(h) = w(6;Y) = ls?p Y(n+h)—=Y(n)], Vnel
h|<é

2.2. Formulation of the Problem
Giventhemeshpoints: A: 0 =19 <11 < --- < 1, =1, withy; = %, i=01---,n—1,

2 4 "
h = %, and the real numbers {Yi,LCD(l)in, (LCD(1)12> Y; (LCD(ljf) Yi}‘ . associated
1=
with the knots, our problem is to find s in a suitable class such that
m m

<LCD(1)f) saln;) = (LCD(l)f) Y,  (i=0,1--,m; m=0,1,24). @)

3. The First Class of Lacunary Fractional Spline
This section is being divided into the following subsections.

3.1. Existence and Uniqueness

Here, in this subsection, we define the class 52% of lacunary fractional spline functions
as detailed below.

Definition 4. We say that s, in Sﬁ‘; if the following conditions are fulfilled:

Lepgrs, e ¢([0,1)) <m —0,1; 6= ;) 5)
and ]
L ai(y — ;)2 (7 € il Vi=0,1,---,n=2)
SA = (6)

7 .
L aili] - mi)"? (17 € [1n—1,1n))-
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We construct s, in order that it is a solution of (4) for functions (D)*"'S, € C([0,1])
form=20,1,---,6and 6 = % For this purpose, we set

{ si(1) i<y <niy; Vi=0,1,---,n—2)
SA —

Sn—1(17) (-1 =1 = 7).

Owing to (4) and (6), we can write

2
1
mgor 2 1 (11 —m:) ( 0+> (11— 1)

3\/
4 6
LCfDl/Z Y1+
U ’71)( 0+) mZ:“ST(%anl)

i3
,2

1
(i —ni)"ajm, (7)

N\»—\

2 1 m
- _ o )am Lepl/2 "
sn-1(17) ngof(émﬂ%)(” )2 ( ) Yua 3\F('7 Mn-1)>?a, 4

3
’2

N\»—\

Ay_qm. (8)

1 7
+§(77_77n—1)2(LCD(1)f) n-1+ Z (17 —1n—1)2" R

2m+1)

Then the coefficients are determined by

VTT(4158] + 12882 — 5432)

i3 4(6077 + 287) ’

. 222 (B} — B1)m + 2408} + 24087 — 12867

i3 V7T (607 + 287) ’

4(415B} + 128B2 — 5438?3)
607t + 287 ’

a5 = 687 — 56! +

2776 5612 2796
3485ﬁ” 1 697ﬁ” 17 3485 3485ﬁ" v

20648 | —90B2 | +496083 | —2806p% ),

3
nfl,z

ha

697 o7~
32

697/
3168BL_; —10582_, — 7224p> | +4858B% ),

5
n—l,j

3
hian—1,3 =

(=3B 1+ 1085 1 — 9B _1 +4858B; 1),

ha

697 597"

7
nfl,j

where
nipl = 6<Yi+1 Y; — 7LCD1/2Y ,h(LCpl/Z) Y, — 7h2<LCD1/2> Z),

NE
15 2 4
hﬁz f(chl/zY LCD(l)izYi_hl/Zi(LCD(lJﬂ) Y - h3/2<LCD(1)iz> Yi>,

NG ﬁ
nig — 2<<LCD(1)12>2Yi+1 B <LCD(1)12)2Y1 fhm <LCD1/2> 1)/
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2 4
hgﬁLl = 105y (Yn Y1 — hl/zi (LCD(%G) Yu1— 1712 (LCD(lJf) Yn1>,

16 NG 2
2 2
hg:_ =6 (LCD(lJ_/EYn _ LCDéizYn_l _ hl/zﬁ (LCD(l)f) Y, |
_ 4 sp(tep12)\t
3\/Eh ( D0+) Yl’lfl 7
19 157 ( f1emi1/2)2 LCy1/2)2 2 i (1ep12\t
hZ h_1= 3 ( D0+) Yn—< D0+) Yn_l_ﬁh ( D0+) Yn—l ’
and

37,1 4 4

4 LC1/2 LC1/2
1= (( Doi) Y, — ( Doi) Ynl).
Hence, clearly, we have proved Theorem 2 below.

Theorem 2. For a uniform partition A of the interval I = |0, 1], there exists a unique fractional
spline function sy € S, which is a solution of the problem involving (4).

3.2. Error Bounds

In this subsection, we first give the following main lemmas to work on our error
bound theorem.

Lemma 2. Assume that Y satisfies the hypothesis of Theorem 1 for m = j = 3,5,6. For each
i=0,1,---,n— 2,1t is asserted that

— (epy2) Yt

a.
i}

_I .
S B rws(h)  (j=3,5),

6 607 + 694
ai3 — (LCD}){E) Y ()| = 6(607{4—287)6065(11) (i =n=nig1),
where
- 543/
L3 4(607 + 287)
and
2257t + 960

‘i3 T 2 /m(60m +287)

6
Proof. Suppose that (LCD(l)f> Y € C(I). Then, by using Theorem 1, we have

B = (1opl2)’y, + 2O (1epi2)y, 12 (10i2) e,

tm 51
15\/7 3, 15y/7h 5 °
B2 = : (LCD(l)fFZ) Y, + v (chtl)f) Y, + 132 (chéf) Y(1:),

and

B = = (MDY Yok S (1902) v 2 (<02) Yion,
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where #; < ¢i,1;,0; < 4i41 fori =0,1,--- ,n — 2. We thus find that

3 N 3
_(1cp12) v | — 1 2 3] _ (Lcp1/2) vy,
%3 ( D0+) Yi ’4(607‘[—1—287) [415/31 12867 543/31} ( D0+) Yi
_ el 3/2 Lcy1/2\° LCpy1/2)°
- 4(607T+287)h ‘415 ( DO+> Y(&) _< D0+> Y(6:)
6 6 543\/70
LC1/2 . LCpn1/2 . 3/2
0,5~ (DY) Y| = |28, (<y2) v(8) — (“Dy?) v()
i2 ) "t /m(60m +287)| 2 0+ ! 0+ !

+240{<LCD(1)42)6Y(§Z-) - (LCD})f)éY(ei)] +24o[(LCD(§f>6Y(m) - (chgf)éy(ei)] ‘

257960 1)
2,/ (607 + 287)

A

wes (M),

and, finally, we get

6
a5 — (LCD(l)f) Y;

687 —5B; +

4(4158] + 12867 —54343) (LCD1/2)6y.
6077 1 287 o)

< 5|(1Dl2) (0 - (DY) ¥(@)

512
607 + 287

1660 (LCD(1)12>6Y(§,-) B (ché/ﬁ)w((%)

+ 607 + 287
6 6 607 + 694

LC1/2 N (1Cpl/2 N ]

( D0+> Y(6;) ( D0+> Y(ni)| = (607T+287> wes (h),

+

The proof of Lemma 2 is completed. O

Lemma 3. Assume that Y satisfies the hypothesis of Theorem 1 for m = 0,1, - ,6. The following
estimates are valid:

j i .
0, 0p— (CP2) YO S e, P sl (1=3,5),
6 1072
1~ (DY) YO0 £ (g ) wsll) Oy Sy )
142177\ 1/
Ap1,7| = <1394>h wes(h),
where
631357
“-13 T 11820
and
46501/
“-13 7 Te97

cn1/2\"
Proof. Let (L Dy ) Y € C(I) form = 0,1,---,6. Then, by applying Theorem 1, we
obtain

35 3 7 5 105/t 6
‘Bifl _ Z(chcl)f) Ynf1+§h(LCD(1)f> Yn,1+%h3/z<LcDéf) Y(E1),

3 5 16 6
2 _ LC1/2 LC1/2 3/2 (LCH1/2
B2 = 6("DY2) Y1 +3n("DY2) Yo + s/ (““DE2) Y (1),
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15 3 5 5 15/ 6
3 _ LCH1/2 LCpnl/2 3/2(LCn1/2
1 = (P0E) Yoo+ 3 (DR) Yoo+ (DY) Y (0,-0),

and

3 5 37 6
5ﬁ—1 _ Eh(LCD(l)iz) Y, 1+ Th3/2 (LCD(l)iz) Y(An_1),

where 7,1 < Cy—1,n-1,01-1, An—1 < §n. We thus find that

3
LCp1/2
anfl,% - ( DOJr) Y1

1
255 | 2776B )1 + 408y — 56125, + 2796,

_ (LCDéiszn_l

< \/E h3/2
= (3485)(12)

36435 [(chgf)éY(énl) - (LCD(l)f)éY(enl)]
1 1536 |:<LC'D(1)_/|_2)6Y(77;11) -~ (LCD512)6Y(9,11)}

< BIBVT

6 6
+25164[(LCD312) Y1) — (“D32) Y(9n—1)} 41820 .

5 W2\ 6
LCHl1/2 _ LCHl/2
n-13 _( D0+> Yn-1] = ﬁ?‘ _36120( D0+) (1)

6 6
—4608(LCD5£) Y(i_1) + 74400(LCD}Jf) Y(6,1)

6 46504/ 71
—33672("DY?) Y(A,1)| < T;Fh” 2 wes(h),

32
697/t {*3/3;71 +1085 1 —9B5 1 + 25;1171}

B (chéiz)éYn,1
< 5‘105 [(chgffY(nnl) - (LCDgf)6Y(Cnl)]
1276 {(LC'Déf)éY(ﬂn—l) - (LCDgf)éY(Gn_ﬂ]
+673 [(LCD312)6Y(17,1_1) = (LCD(l)_/f)éY(Wn—l)}

6 6 1072
+24{(LCD3)§) Y(A, 1) - (Dy?) YWH)] = o7 o),

6
1/2
Ap-13 — (choi ) Y1

and, finally, we get

h—2 14217/7, _
@‘3168/3}1,1 — 10582, — 722483, +48585§,1‘ < e " V2 es ().

a 7
n—1,5

This completes the proof of Lemma 3. [

We now state and proof our result on the error bound.
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Theorem 3 (Error bound). Let sy € sz‘fé be the solution of the problem involving (4). Then, for any

(LCD8+>MYEC([O,1]) (m—O,l,'--; (5—;)

the following error bound holds true:

‘ (chg+)m5i - (LCD€)+)MY('7)‘ < ciomh® Mwes(h) (=01, ,n—1), (9

6
where wegs(h) is the modulus of continuity of (LCDS +) Y(17) and the constants c; 5,,, are given in
Table 1.

Proof. Let us first assume that ; < n < ;.1 fori = 0,1,---,n — 2. Then, from
Equation (7) and by using Theorem 1, we have

=)~ 7 LC 1/2 U/ LCn1/2)\%y

(7% al%— D} ]—1—[(11.’;—( Do+)yl}

4+ ;71 . { chl/2> Yz] (m=0,1,---,3);
(—n)°" % Lc 1/2 =) 2 [ (Lep1/2)oy. 4.
“Te-7) [ﬂlg ("D ] R v [az,s - ( Dy ) Y1:| (m =4,5);
aj3 — (LCD(l)f) Y; (m = 6).

Now, by making use of the estimates asserted by Lemma 2, we can obtain the result
fori =0,1,---,n — 2. In addition, by making use of Lemma 3, we can similarly obtain the
rest of the results for 77,1 < 7 < #7,. This completes the proof of Theorem 3. [

Table 1. The constants c; 5.

Ci0 Ci,% Cia C,-,% Ci2 Ci,g Ci3

<< 3909 707 1549 8776 1997 4378 3775
0siz=n-2 19T 704 145 880 163 323 339

i—n—1 716 2211 2308 8861 19,850 22,051 15,289
= 97 v 107 934 697 697 697

4. The Second Class of Lacunary Fractional Spline

Here, in this connection, we consider the class of the lacunary fractional spline func-

tions Sff;s’g ) and we denote this class of functions by Ga(#7) such that

OF"Gaecor)  (m=0126=73), (10)
7 .
Ga=Y aitn—u)"* (€] Vi=0,12--,n-1), (11)
i=0
4
(““DY2) Galni+0) = Galyi =0)  (i=0,1,-- ,n—1). (12)

We construct G, such that it is a solution of the problem involving (4) for
(“oy?)yec(1)  (m=01,,7)
0+ 7 s 7 .
For this purpose, we set

Ga = Gi(n) (i=0,1,---,n—1).
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Owing to (4) and (11), we can write

2 1 1,
Gi(n) = = (g—p)" chl/Z Y+ ——(n—n;)%?b,
i) n;or(%mH)(U )" ( )" 3f(17 1) b, 5

1 LCy1/2
+ 5 (=)D} )Y+2 % FT )y (3)

The constants can be determined, after using the conditions (10) to (12), as follows:

1
b3 = 3555 (2776 Bl +40 g% — 5612 B2 + 2796 ),
1
by s = (-~ 2064 B! — 90 B7 + 4960 7 — 2806 B),
3 32
by = o7 S (3L 1087~ 9p] + 4858 ),
h2bi,% = 697 — (3168 B} — 105 7 — 7224 B3 + 4858 B?),
where
105f 2 1 -
1 1/2 LCp1/2 2 (LCpnl/2
hipl = (Ym Y, —h1/2 2 ( D} ) Eh( D0+) Y,),

2 2
np? = 6(LCD(1Jin+1 ~ DY, -2 (DY) Y, - o (D) Yl),

3ﬁ
hipd = % ((LCD(l)iz)ZYiH _ (LCD(1)f>2YZ fhl/z (LCDl/Z) Y1>/

ﬁ? _ 3\1@1% <(LCD(1)/+2>4Yi+1 _ (ch(ljiz) Yi)-

One can now observe that G, is a unigue element of S( $) which is the solution of the
interpolation problem (4). Then, by following the same techmque which we used for the
previous class, we are easily led the following theorem.

Theorem 4 (Error bound). Letsp € ng’g ) be the solution of the interpolation problem involving
(4). Then, for any

. 1
(LCD3+>mY€ C0,1)), m=0,1,++,7, 6= 5, and i =01, ,n—1,

we have n n
’(LCDng) Si — (LCDng) Y(’?)’ < Ciom 77" wes (h), (14)
7
where wys(h) is the modulus of continuity of (LCDg +) Y(#7), and the constants c; s, are given in

Table 2.

Table 2. The constants c; 5.

Ci,0 Ci1 Ci1 C;3 Ci2 C; 5 Ci3 C; 7

) 72 72 ’2

: 213 2894 5719 7565 5951 5277 808 8026
0sisn-—1 49 403 530 514 350 278 61 697

5. Applications

In what follows, we provide some numerical examples to verify the validity of the
proposed method.
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Example 1. Consider the following FDE [§]:

L3

LCD%+Y<17>+2LCD8+Y(17>+Y<17):2n+r(44_5)n35+3n (0<o=1), (15)

subject to the initial condition given by
Y(0) =Y'(0) =0.
It is easily verified that the exact solution of this problem is

_13

The maximal absolute errors and their fractional derivatives, which are obtained for0 < n <1,
are shown in Table 3. We note that

m

e )| = | (D8, ) i) — (D8, ) "Y(n)

7

where .
m=20,1,---,4, i=0,1,--- ,n—1, and (5:2.

Figure 1a shows the exact and approximation solutions for h = 0.05. Also, the absolute error
is shown in Figure 1b for h = 0.05.

Table 3. The observed maximum absolute errors for Example 1.

Methods h le(n)] le? ()| % ()| e ()| e (1) |
0.1 4865 x 1072 9856 x 10! 1211 x 109 1145 x 10° 2100 x 10°
Our method 0.01 1001 x 10~ 9987 x 10~° 6413 x 1074 1120 x 102 8997 x 102
0.001 3544 x 10~ 8770 x 108 9948 x 10~° 5189 x 10~° 1102 x 1073
0.1 4211 x 1071 1139 x 109 3832 x 10° 1560 x 10° 2546 x 100
Method in [8] 0.01 4211 x 10~* 3603 x 1073 3832 x 102 4936 x 102 2546 x 1071
0.001 1331 x 10~° 1139 x 10~° 3832 x 104 1560 x 103 2546 x 1072

Example 2. Consider the following FDE [8]:
1 24 3
LC o 4 3 3-0 4—0
D Y(n)=n*-= — - -Y 1 1

With the initial condition Y(0) = 0. The exact solution is given by

s 1

Y(y) =yt — =53
() 51
Together with
m m
e )| = | (*p3. ) "sitn) - (“D5,) "Y(m)],
where ,
m=20,1,---,4, i=0,1,--- ,n—1 and 5:5,

we have derived the maximal absolute errors and their fractional derivatives. These results
are shown in Table 4.

Figure 2a shows the exact and approximation solutions for & = 0.05. Also, the absolute
error is shown in Figure 2b for & = 0.05.
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All of the tables, which we have presented in this paper, show that our method is
more accurate than the existing fractional spline methods.

Table 4. The observed maximum absolute errors for Example 2.

Methods h le(n)| e (1) E O] 13 ()| % (1)
0.1 9929 x 102 5186 x 107! 2464 x 10° 1063 x 10* 3883 x 10!
Our method 0.01 9929 x 10~° 1640 x 104 2464 x 1073 3361 x 1072 3883 x 10!
0.001 9929 x 1010 5186 x 108 2464 x 107° 1063 x 104 3883 x 1073
0.1 7412 x 10° 1487 x 10° 3659 x 10° 8398 x 10! 2700 x 10!
Method in [8] 0.01 7412 x 1073 4702 x 102 3659 x 10! 2655 x 10° 2700 x 10°
0.001 7412 x 107 1487 x 104 3659 x 1073 8398 x 102 2700 x 1071
035 —#— Exact solution 3 10°
= = The proposed method solution
0.3 [ 107
g 025t 4 &
5 10 e o e’ Re
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Figure 1. Plot illustrations for Example 1.
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Figure 2. Plot illustrations for Example 2.

6. Conclusions

The content of this article can be summarized as follows:

1. Two classes of higher-order lacunary fractional spline functions are introduced.

2. Anew lacunary fractional spline method is obtained for the above-mentioned classes
by using the Liouville-Caputo fractional Taylor expansion.

3.  The existence and uniqueness of the method on each of the classes is proved.
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4. The error bounds of the method is shown via the modulus of continuity.

5. Some Liouville-Caputo FDEs are solved by using the new method in order to illustrate
our theoretical results.

6.  The numerical solutions are also illustrated graphically.

In conclusion, we remark that we have chosen to include some recent works (see,

for example, [9,10,18-21] which will attract researchers and motivate them for further
developments along these lines.
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