
symmetryS S

Article

An Efficient Shortest Path Algorithm: Multi-Destinations in an
Indoor Environment

Mina Asaduzzaman 1 , Tan Kim Geok 2,*, Ferdous Hossain 2,* , Shohel Sayeed 1, Azlan Abdaziz 2,
Hin-Yong Wong 3, C. P. Tso 2, Sharif Ahmed 2 and Md Ahsanul Bari 1

����������
�������

Citation: Asaduzzaman, M.; Geok,

T.K.; Hossain, F.; Sayeed, S.; Abdaziz,

A.; Wong, H.-Y.; Tso, C.P.; Ahmed, S.;

Bari, M.A. An Efficient Shortest Path

Algorithm: Multi-Destinations in an

Indoor Environment. Symmetry 2021,

13, 421. https://doi.org/10.3390/

sym13030421

Academic Editor: Peng-Yeng Yin

Received: 28 December 2020

Accepted: 31 January 2021

Published: 5 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Information Science and Technology, Multimedia University, Melaka 75450, Malaysia;
1181402835@student.mmu.edu.my (M.A.); shohel.sayeed@mmu.edu.my (S.S.);
1141123630@student.mmu.edu.my (M.A.B.)

2 Faculty of Engineering and Technology, Multimedia University, Melaka 75450, Malaysia;
azlan.abdaziz@mmu.edu.my (A.A.); cptso2014@gmail.com (C.P.T.); 1171402467@student.mmu.edu (S.A.)

3 Faculty of Engineering, Multimedia University, Cyberjaya 63100, Malaysia; hywong@mmu.edu.my
* Correspondence: kgtan@mmu.edu.my (T.K.G.); ferdous.mbstu.cse@gmail.com (F.H.);

Tel.: +60-013-613-6138 (T.K.G.); +60-112-108-6919 (F.H.)

Abstract: The shortest path-searching with the minimal weight for multiple destinations is a crucial
need in an indoor applications, especially in supermarkets, warehouses, libraries, etc. However,
when it is used for multiple item searches, its weight becomes higher as it searches only the shortest
path between the single sources to each destination item separately. If the conventional Dijkstra
algorithm is modified to multi-destination mode then the weight is decreased, but the output
path is not considered as the real shortest path among multiple destinations items. Our proposed
algorithm is more efficient for finding the shortest path among multiple destination items with
minimum weight, compared to the single source single destination and modified multi-destinations
of Dijkstra’s algorithm. In this research, our proposed method has been validated by real-world
data as well as by simulated random solutions. Our advancement is more applicable in indoor
environment applications based on multiple items or destinations searching.

Keywords: graph; multi-destination; road network; shortest path; indoor

1. Introduction

In computer science, finding the shortest path in the complex indoor environment is a
fundamental issue [1]. The solution to this issue is to use a bi-directional graph or road
network to find the path with the minimal summation of edge weights among all reachable
paths from start to end nodes [2]. The bi-directional graph considered in this paper is either
directed or undirected, finite, simple, as well as connected [3]. The definition of a single
pair shortest path is a path that contains only one destination. In conventional problems,
the distances among the nodes are ascertained. The goal of the conventional single-source
SPP is to get the minimal cost path from the source node to the destination node. However,
the fuzzy number technique can be utilized instead in precarious environments [4]. The
problem arises when the graph contains more than one destination node [5]. The set of
destination nodes is a subset of all network nodes and it becomes a multi-destination
shortest path problem [6], which has many real-life applications, such as finding the
shortest path among multi-destination items in supermarkets, warehouses, libraries, road
networks [7], robotics industries [8], service compositions [9,10], and multicast routes [11].
The different techniques found in the literature are calculating either a multi-destination or
single-pair shortest path to solve these issues [12]. A* is an ordinary BFS algorithm that
depends on a heuristic function to demonstrate the search towards finding the shortest
path from a source node to a destination node in a grid [13]. As of now, Dijkstra’s is a
renowned path searching algorithm that is mainly used for searching the shortest path from

Symmetry 2021, 13, 421. https://doi.org/10.3390/sym13030421 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6378-5931
https://orcid.org/0000-0003-0444-7320
https://doi.org/10.3390/sym13030421
https://doi.org/10.3390/sym13030421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13030421
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/3/421?type=check_update&version=1

Symmetry 2021, 13, 421 2 of 29

a single source to a single destination introduced by Edsger W. Dijkstra in 1956. A typical
single-source single-destination, Dijkstra’s algorithm, is used for single-pair shortest path
problems [14]. It keeps up a set S of unraveled nodes, consisting of those hubs or nodes
whose ultimate shortest path between the starting node verses has ascertained as well as
labels t(i), conserving the upward bound of the smallest pathway distance among vs and
vi [15]. The node vm ∈ V/S with the minimal t(i) is continually chosen by the algorithm,
adding vm to S, as well as updating t(i) as the node vm [16]:

In the first step. Set t(vs) = 0 and t(vj) = wsj.
For other nodes S = {vs}, L = V/S
In the second step.
Chose a hub vm from L, t(vm) = minvj∈Lt

(
vj
)
,

if t(vm) = 1, then stop, else move to third step.
In the third step set.

S = S U{vm}, L = L\{vm}

if L = ø, then stop, else move to forth step.
In the fourth step.
For each vj ∈ L, update

t(vj) = min{t(vj),t(vm) + wmj (1)

Move to first step.
In the above steps, V = {v1, v1, . . . , vn} is the set of nodes, S is the set of the source

nodes, L is a list, and W = wij is the weight matrix. The above steps demonstrate the
shortest path calculation following the steps of Dijkstra’s algorithm and the final output is
expressed in Equation (1).

The Modified Dijkstra’s Multi-Source Multi-Destination (MDMSMD) algorithm is
applied for the multi-destination shortest path problem [17]. For the single-source multi-
destination problem, the conventional Dijkstra’s single-source single-destination (CDSSSD)
algorithm can be used. Although, in this network, the starting point is one node and
destinations are a set of multiple nodes as a source node (s) and multiple destination nodes
(w, x, y, z) as shown in Figure 1. As a result, it is necessary to calculate the shortest path
between s to w, s to x, s to y, and s to z.

Symmetry 2021, 13, x FOR PEER REVIEW 2 of 30

renowned path searching algorithm that is mainly used for searching the shortest path
from a single source to a single destination introduced by Edsger W. Dijkstra in 1956. A
typical single-source single-destination, Dijkstra’s algorithm, is used for single-pair short-
est path problems [14]. It keeps up a set S of unraveled nodes, consisting of those hubs or
nodes whose ultimate shortest path between the starting node verses has ascertained as
well as labels t(i), conserving the upward bound of the smallest pathway distance among
vs and vi [15]. The node vm ∈ V/S with the minimal t(i) is continually chosen by the algo-
rithm, adding vm to S, as well as updating t(i) as the node vm [16]:

In the first step. Set t(vs) = 0 and t(vj) = wsj.
For other nodes S = {vs}, L = V/S
In the second step.
Chose a hub vm from L, t(vm) = 𝑚𝑖𝑛 ∈ 𝑡(𝑣),
if t(vm) = 1, then stop, else move to third step.
In the third step set.

S = S U{vm}, L = L\{vm}

if L = ø, then stop, else move to forth step.
In the fourth step.
For each vj ∈ L, update

t(vj) = min{t(vj),t(vm) + wmj (1)

Move to first step.
In the above steps, V = {v1, v1, …, vn} is the set of nodes, S is the set of the source nodes,

L is a list, and W = wij is the weight matrix. The above steps demonstrate the shortest path
calculation following the steps of Dijkstra’s algorithm and the final output is expressed in
Equation (1).

The Modified Dijkstra’s Multi-Source Multi-Destination (MDMSMD) algorithm is
applied for the multi-destination shortest path problem [17]. For the single-source multi-
destination problem, the conventional Dijkstra’s single-source single-destination
(CDSSSD) algorithm can be used. Although, in this network, the starting point is one node
and destinations are a set of multiple nodes as a source node (s) and multiple destination
nodes (w, x, y, z) as shown in Figure 1. As a result, it is necessary to calculate the shortest
path between s to w, s to x, s to y, and s to z.

Figure 1. Bi-directional road network.

Figure 1. Bi-directional road network.

From the sample road network Figure 1, the steps of CDSSSD in Figure 2 is displayed.
Figure 2a is the first step that calculates the shortest path between s and w from all
accessible paths. Figure 2b is the second step that calculates the shortest path between
s and x. Figure 2c shows the third step that calculates the shortest path between s and y,
Figure 2d also shows the shortest path between x and z. In Figure 2e, all the calculated
shortest paths among s and the destination nodes w, x, y, and z [18]. Here, the possible
number of shortest paths is four. However, the number of paths can be converted to a single

Symmetry 2021, 13, 421 3 of 29

path from a source to the last destination node of a set of destination nodes by applying
the MDMSMD. For example, a source node is s and the destination nodes are w, x, y, and
z as per Figure 1. Hence, the shortest paths are between s and w, s and x, s and y, and s
and z. The path of MDMSMD is s→ w→ x→ y→ z and has been expressed in Figure 3.
In Figure 3a–e are respectively shown the shortest path between s→ w is 10, w→ x is 9,
x→ y is 11, y→ z is 8 and s→ w→ x→ y→ z is 38. The minimum summation of edge
weights of MDMSMD is less than CDSSSD. The MDMSMD solved the multi-destination
path problem, with some limitations [19]. The MDMSMD calculates the shortest path from
each source to each destination node, the previous destination node is the next source node,
and calculates the shortest path from the next source to the next destination node until
the last destination node. This algorithm can only calculate the shortest path between one
pair at a time [20], it cannot calculate the shortest path between a source node and a set of
destination nodes at the same time.

Symmetry 2021, 13, x FOR PEER REVIEW 3 of 30

From the sample road network Figure 1, the steps of CDSSSD in Figure 2 is displayed.
Figure 2a is the first step that calculates the shortest path between s and w from all acces-
sible paths. Figure 2b is the second step that calculates the shortest path between s and x.
Figure 2c shows the third step that calculates the shortest path between s and y, Figure 2d
also shows the shortest path between x and z. In Figure 2e, all the calculated shortest paths
among s and the destination nodes w, x, y, and z [18]. Here, the possible number of short-
est paths is four. However, the number of paths can be converted to a single path from a
source to the last destination node of a set of destination nodes by applying the
MDMSMD. For example, a source node is s and the destination nodes are w, x, y, and z
as per Figure 1. Hence, the shortest paths are between s and w, s and x, s and y, and s and
z. The path of MDMSMD is s → w → x → y → z and has been expressed in Figure 3. In
Figure 3a–e are respectively shown the shortest path between s → w is 10, w → x is 9, x →
y is 11, y → z is 8 and s → w → x → y → z is 38. The minimum summation of edge weights
of MDMSMD is less than CDSSSD. The MDMSMD solved the multi-destination path
problem, with some limitations [19]. The MDMSMD calculates the shortest path from each
source to each destination node, the previous destination node is the next source node,
and calculates the shortest path from the next source to the next destination node until the
last destination node. This algorithm can only calculate the shortest path between one pair
at a time [20], it cannot calculate the shortest path between a source node and a set of
destination nodes at the same time.

Figure 2. CDSSSD.

Figure 3. MDMSMD.

The objective of this research is to develop an efficient algorithm for searching the
smallest path between a given source and the multi-destination nodes. The name of this
proposed algorithm is the efficient algorithm for multi-destination shortest path problem
(EAMDSP)—it accentuates the searching area and enhances the algorithm performance.
The new concept is based on considering the outcome of the edge weights of the input
graph on searching speed to acquire the goal. Using this concept, the EAMDSP finds the
nearest destination node among the multiple destination nodes from the source node. Af-
ter getting the first nearest destination node, it becomes the next source node and again
calculates the next nearest destination node among the remaining multiple destination
nodes until the last or rest destination node. Finally, the shortest path between a source
node and the last destination node that decreases the summation of weights is achieved,
which enhances the speed of searching for the desired shortest path. The proposed algo-
rithm acquires the benefits of simplicity as well as the effectiveness of the computations.
The outcomes of this algorithm using a real dataset and the simulated random solution
will show that the proposed algorithm is better than the existing algorithm.

Figure 2. CDSSSD.

Symmetry 2021, 13, x FOR PEER REVIEW 3 of 30

From the sample road network Figure 1, the steps of CDSSSD in Figure 2 is displayed.
Figure 2a is the first step that calculates the shortest path between s and w from all acces-
sible paths. Figure 2b is the second step that calculates the shortest path between s and x.
Figure 2c shows the third step that calculates the shortest path between s and y, Figure 2d
also shows the shortest path between x and z. In Figure 2e, all the calculated shortest paths
among s and the destination nodes w, x, y, and z [18]. Here, the possible number of short-
est paths is four. However, the number of paths can be converted to a single path from a
source to the last destination node of a set of destination nodes by applying the
MDMSMD. For example, a source node is s and the destination nodes are w, x, y, and z
as per Figure 1. Hence, the shortest paths are between s and w, s and x, s and y, and s and
z. The path of MDMSMD is s → w → x → y → z and has been expressed in Figure 3. In
Figure 3a–e are respectively shown the shortest path between s → w is 10, w → x is 9, x →
y is 11, y → z is 8 and s → w → x → y → z is 38. The minimum summation of edge weights
of MDMSMD is less than CDSSSD. The MDMSMD solved the multi-destination path
problem, with some limitations [19]. The MDMSMD calculates the shortest path from each
source to each destination node, the previous destination node is the next source node,
and calculates the shortest path from the next source to the next destination node until the
last destination node. This algorithm can only calculate the shortest path between one pair
at a time [20], it cannot calculate the shortest path between a source node and a set of
destination nodes at the same time.

Figure 2. CDSSSD.

Figure 3. MDMSMD.

The objective of this research is to develop an efficient algorithm for searching the
smallest path between a given source and the multi-destination nodes. The name of this
proposed algorithm is the efficient algorithm for multi-destination shortest path problem
(EAMDSP)—it accentuates the searching area and enhances the algorithm performance.
The new concept is based on considering the outcome of the edge weights of the input
graph on searching speed to acquire the goal. Using this concept, the EAMDSP finds the
nearest destination node among the multiple destination nodes from the source node. Af-
ter getting the first nearest destination node, it becomes the next source node and again
calculates the next nearest destination node among the remaining multiple destination
nodes until the last or rest destination node. Finally, the shortest path between a source
node and the last destination node that decreases the summation of weights is achieved,
which enhances the speed of searching for the desired shortest path. The proposed algo-
rithm acquires the benefits of simplicity as well as the effectiveness of the computations.
The outcomes of this algorithm using a real dataset and the simulated random solution
will show that the proposed algorithm is better than the existing algorithm.

Figure 3. MDMSMD.

The objective of this research is to develop an efficient algorithm for searching the
smallest path between a given source and the multi-destination nodes. The name of this
proposed algorithm is the efficient algorithm for multi-destination shortest path problem
(EAMDSP)—it accentuates the searching area and enhances the algorithm performance.
The new concept is based on considering the outcome of the edge weights of the input graph
on searching speed to acquire the goal. Using this concept, the EAMDSP finds the nearest
destination node among the multiple destination nodes from the source node. After getting
the first nearest destination node, it becomes the next source node and again calculates the
next nearest destination node among the remaining multiple destination nodes until the
last or rest destination node. Finally, the shortest path between a source node and the last
destination node that decreases the summation of weights is achieved, which enhances
the speed of searching for the desired shortest path. The proposed algorithm acquires the
benefits of simplicity as well as the effectiveness of the computations. The outcomes of
this algorithm using a real dataset and the simulated random solution will show that the
proposed algorithm is better than the existing algorithm.

In this article, the following aims are discussed: Section 2, for the multi-destination
shortest path problem, the existing method and solution have been reviewed as well as
discussed. We propose an algorithm for searching the multi-destination shortest path in
indoor environments in Section 3. In Section 4, the performance of the proposed algorithm
is compared to the existing method and the conclusion is in Section 5.

Symmetry 2021, 13, 421 4 of 29

2. Related Work

Nowadays, many researchers are working on graphical solutions and pathfinding to
resolve crucial application issues [21–27]. Dijkstra’s algorithm is used for finding the solu-
tion to the shortest path problem in multi-destination nodes [28]. The Fibonacci heap [29,30]
has been utilized in the multi-destination Dijkstra’s algorithm and is considered an inno-
vative improvement. Searching the shortest paths by the node combination method is
introduced by Lu et al. [31] by continually integrating with the source node’s contiguous
neighbors. However, multi-destination Dijkstra’s algorithm is faster than their method. A
quicker strategy with a small number of positive integer weights is introduced by Orlin
et al. [32]. Thorup [33,34] invents an effective algorithm to solve the limitation of the Orlin
et al. method which is an integral edge weight in every direction, as well as an undirected
graph. In reality, no method has been utilized as an input of both undirected and directed
graphs [35]. The breadth-first search, as well as the Bellman-Ford algorithm, are proposed
respectively in the literature, while the graph contains all equal edge positive/negative
weights. Searching the shortest path via a topological sequence [16] in linear time is feasible
for a directed graph. An algorithm is introduced by Xu et al. [36] to effectively give a
solution to the issue, particularly for infrequent networks.

In an article by [37], calculating the path as a usual job, so for every application [38,39]
accelerate procedures perform based on the kind of data. A multi-destination feature of
Dijkstra’s algorithm is becoming compatible with recent applications [40,41]. By utilizing
an amended version of multiple destinations, Dijkstra’s algorithm is able to solve the
bi-objective multi-destination shortest path problem in the pathway network which is
introduced by Ticha et al. [7]. Their searching technique at each repetition of a process is to
choose some parts of the path for a non-dominated path to arrive at one of the destination
nodes. In the field of time schedule networks, Jin et al. [42] modified the multi-destination
method for searching for the shortest path. First, they developed a path calculation method,
then added it to the modified algorithm. Mainly, the shortest path calculation depends on
the network constraints on its edges. By considering both node weights and edge weights,
the multi-destination Dijkstra’s method enhancement is proposed by Ananta et al. [43]. For
the software-defined networks, this method transmits data packets to all destination nodes.
The limitations of multi-destination Dijkstra’s algorithm have been discussed in Section
1. This section also discussed the related algorithms, but they have some limitations such
as one is designed only for a directed graph or only works on positive edge weight and
another contains both positive and negative edge weight. The proposed algorithm has
been designed for removing their short-comings and can perform on a bi-directional graph
or road network, as well as finding the shortest path from the starting node to the multiple
destination nodes, as is required in indoor environments.

3. Algorithms

Algorithm 1 (CDSSSD) and Algorithm 2 (MDMSMD) are used as reference algo-
rithms to compare the performance of our proposed Algorithm 3. The steps of CDSSSD,
MDMSMD, and EAMDSP are provided in this section to demonstrate a clear overview.

Symmetry 2021, 13, 421 5 of 29

3.1. Algorithm: CDSSSD

Algorithm 1 Input: Graph: G (V, E, W), source node: S, set of multiple destination nodes: T
Output: Paths from source to destination nodes

1. Declare: L
2. For (i = 0; I < T.Length; i++)
3. Declare: nodes_path
4. n: = G.GetLength(0);
5. distance: = new int[n];
6. For (int k = 0; k < n; i++)
7. distance[i]: = int.MaxValue;
8. End For
9. distance[S]: = 0;
10. used: = new bool[n];
11. Previous: = new int?[n];
12. While (true)
13. minDistance: = int.MaxValue;
14. minNode: = 0;
15. For (int m = 0; m < n; m++)
16. If (!used[m] && minDistance > distance[m])
17. minDistance: = distance[m];
18. minNode: = m;
19. End If
20. End For
21. If (minDistance == int.MaxValue)
22. break;
23. End If
24. used[minNode]: = true;
25. For (int l = 0; l < n; l++)
26. If (G[minNode, l] > 0)
27. shortestToMinNode: = distance[minNode];
28. distanceToNextNode: = G[minNode, l];
29. totalDistance: = shortestToMinNode + distanceToNextNode;
30. If (totalDistance < distance[l])
31. distance[l]: = totalDistance;
32. previous[l]: = minNode;
33. End If
34. End If
35. End For
36. End While
37. If (distance[T[i]] :== int.MaxValue)
38. return null;
39. End If
40. currentNode: = T[i];
41. While (currentNode ! = null)
42. Add nodes_path->col: = currentNode.Value;
43. currentNode: = previous[currentNode.Value];
44. End While
45. col1: = S;
46. For(j = 0;j < nodes_path.Length;j++)
47. Add L->col: = nodes_path[j]
48. col1: = nodes_path[j];
49. End For
50. End For
51. Return L;

Symmetry 2021, 13, 421 6 of 29

3.2. Algorithm: MDMSMD

Algorithm 2 Input: Graph: G (V, E, W), source node: S, set of multiple destination nodes: T
Output: A path from source to destination nodes and shortest path among destination nodes

1. Declare: L
2. For (i = 0;I < T.Length;i++)
3. Declare: nodes_path
4. n: = G.GetLength(0);
5. distance: = new int[n];
6. For (int k = 0; k < n; i++)
7. distance[i]: = int.MaxValue;
8. End For
9. distance[S]: = 0;
10. used: = new bool[n];
11. Previous: = new int?[n];
12. While (true)
13. minDistance: = int.MaxValue;
14. minNode: = 0;
15. For (int m = 0; m < n; m++)
16. If (!used[m] && minDistance > distance[m])
17. minDistance: = distance[m];
18. minNode: = m;
19. End If
20. End For
21. If (minDistance == int.MaxValue)
22. break;
23. End If
24. used[minNode]: = true;
25. For (int l = 0; l < n; l++)
26. If (G[minNode, l] > 0)
27. shortestToMinNode: = distance[minNode];
28. distanceToNextNode: = G[minNode, l];
29. totalDistance: = shortestToMinNode + distanceToNextNode;
30. If (totalDistance < distance[l])
31. distance[l]: = totalDistance;
32. previous[l]: = minNode;
33. End If
34. End If
35. End For
36. End While
37. If (distance[T[i]] :== int.MaxValue)
38. return null;
39. End If
40. currentNode: = T[i];
41. While (currentNode ! = null)
42. Add nodes_path->col: = currentNode.Value;
43. currentNode: = previous[currentNode.Value];
44. End While
45. col1: = S;
46. For(j = 0;j < nodes_path.Length;j++)
47. Add L->col: = nodes_path[j]
48. col1: = nodes_path[j];
49. End For
50. S: = T[i];
51. End For
52. Return L;

Symmetry 2021, 13, 421 7 of 29

3.3. The Proposed EAMDSP

In algorithm 3, we consider that G = (V, E, W) is a graph containing N nodes (vertices),
a set of edges, and a set of weights. The vertex set V has n = |V| collection of nodes, E
contains m = |E| and is the collection of edges, as well as W, the collection of weights.

Let We ∈W be the weight of edge e = (u, v) ∈ E as u→ v for some u, v ∈ V.
The objective is to find a collection of shortest paths among vertices s ∈ V as an

assigned origin node to the collection of multi-destination nodes di ∈ D ⊆ V, i ∈ I = {1,
2,..., |D|}. For instance, wpath(s, di)

= ∑
|path(s, di)|
j wej where the path(s, di) is the weight of

path and pdi (i ∈ I) is the shortest path containing the minimal weight of wpath(s, di)
among

all accessible paths from s to di. Here, if there is no path from s to di then δpdi = ∞ else
δpdi = δpath(s,di) = min{wpath(s,di)}. Figure 1 explains the details of this scenario.

The proposed algorithm, EAMDSP, provides the shortest path from source node s ∈ V to
all destination nodes or multi-destination nodes di ∈ T ⊆ V, i ∈ I in the graph G = (V, E, W).

Firstly, find the nearest destination node from the set of destination nodes by cal-
culating the shortest path among all possible paths using Dijkstra’s single source-single
destination algorithm.

Secondly, the nearest destination node from the source node is identified by minimum
visited nodes and a minimum sum of weights between the source and each destination node.

Thirdly, after getting the first nearest destination node, it is considered as the next
source node and starts the calculation of the nearest destination node from the rest of the
destination nodes. This procedure is repeated until the last rest destination node. Getting
the visited nodes from the source to the first nearest node combines the visited nodes, and
goes for the next sources and continues until the last shortest path. The minimum sum
of weights also adds as the above-visited nodes. Finally, the path that is found from the
source to the last destination is the shortest path between the source to multi-destination
nodes with minimum visited nodes and the minimal sum of weights.

For instance, in Figure 1, the source node is s and destination nodes are sequentially
w, x, y, and z. In Figure 4, the steps of EAMDSP have been demonstrated in Figure 1, with
a sample bi-directional road network with weights and nodes. In step (a) of Figure 4, the
sum of weights calculated from s to w is 10, s to x is 9, s to y is 15, and s to z is 12, and are
found after calculating the shortest path among possible accessible paths.

Symmetry 2021, 13, x FOR PEER REVIEW 8 of 30

Figure 4. Graphical representation of EAMDSP.

First, each shortest path is s → x then x becomes the source node in the next step (b)
of Figure 4. Similarly, the rest (w, y, z) are destination nodes, and again calculation on the
sum of the weights from x to w is 9, x to y is 11, and x to z is 7. Secondly, the shortest path
is x → z and combined with the minimum visited nodes between x → z. Furthermore, the
previous minimum visited nodes between s > x are combined with the minimum sum of
weights from s → x to x → z.

Now in step (c) of Figure 4, z is the source and w and y are destination nodes. Again,
the calculation is done on the shortest path between z → y and z → w. The minimum sum
of weights between z → y is eight and z → w is nine. the shortest path is z → y and com-
bined with the minimum visited nodes between z > y. The previous minimum visited
nodes between z > y are combined with the minimum sum of weights from s > x > z to z >
y.

In step (d) of Figure 4, calculate the shortest path between y to w and get the sum of
the weight values. Finally, the shortest path is s → x → z → y → w, and the total sum of
weights is 33.

The MDMSMD working has been discussed in Section 1. The EAMDSP calculates the
nearest destination node from the set of destination nodes that is the main difference from
the MDMSMD. In the above example, the MDMSMD path will be s → w → x-y-z and the
total sum of weight is 38. The CDSSSD total sum of weights is 46 from the above example.
The number of total visited nodes and the sum of minimum weights of EAMDSP is less
than the MDMSMD and the CDSSSD. As a result, EAMDSP is more efficient than
MDMSMD and CDSSSD.

Algorithm 3. Raised algorithm: EAMDSP
 Input: Graph: G (V, E, W), source node: S, set of multiple destination nodes: T
 Output: A path from source to destination nodes and shortest path among destination
nodes
1. Declare: L1, L2, L3
2. While(T.Length>0)
3. For (I = 0;I < T.Length;i++)
4. nodes_path: = singleSourceSingleDestinationAlgorithm(G,S,T[i])
5. For(j = 0;j < nodes_path.Length;j++)
6. length_path: = length_path + G[nodes_path [j], nodes_path[j + 1]]
7. Add L2->col1: = nodes_path[j], L2->col2: = T[i]
8. End For
9. Add L1->col1: = T[i], L1->col2: = length_path
10. End For
11. L1 sorting according to length_path
12. e_Dest_Node: = L1->col1
13. For (m = 0; m < L2.Length; m++)
14. IF L2[m]->col2== e_Dest_Node
15. Add L3->col: = L2[m]->col1
16. End IF

Figure 4. Graphical representation of EAMDSP.

First, each shortest path is s→ x then x becomes the source node in the next step (b)
of Figure 4. Similarly, the rest (w, y, z) are destination nodes, and again calculation on the
sum of the weights from x to w is 9, x to y is 11, and x to z is 7. Secondly, the shortest path
is x→ z and combined with the minimum visited nodes between x→ z. Furthermore, the
previous minimum visited nodes between s > x are combined with the minimum sum of
weights from s→ x to x→ z.

Now in step (c) of Figure 4, z is the source and w and y are destination nodes. Again,
the calculation is done on the shortest path between z → y and z → w. The minimum
sum of weights between z→ y is eight and z→ w is nine. the shortest path is z→ y and
combined with the minimum visited nodes between z > y. The previous minimum visited
nodes between z > y are combined with the minimum sum of weights from s > x > z to
z > y.

Symmetry 2021, 13, 421 8 of 29

In step (d) of Figure 4, calculate the shortest path between y to w and get the sum of
the weight values. Finally, the shortest path is s→ x→ z→ y→ w, and the total sum of
weights is 33.

The MDMSMD working has been discussed in Section 1. The EAMDSP calculates
the nearest destination node from the set of destination nodes that is the main difference
from the MDMSMD. In the above example, the MDMSMD path will be s→ w→ x-y-z
and the total sum of weight is 38. The CDSSSD total sum of weights is 46 from the above
example. The number of total visited nodes and the sum of minimum weights of EAMDSP
is less than the MDMSMD and the CDSSSD. As a result, EAMDSP is more efficient than
MDMSMD and CDSSSD.

Algorithm 3. Raised algorithm: EAMDSP

Input: Graph: G (V, E, W), source node: S, set of multiple destination nodes: T
Output: A path from source to destination nodes and shortest path among destination nodes

1. Declare: L1, L2, L3
2. While(T.Length>0)
3. For (I = 0;I < T.Length;i++)
4. nodes_path: = singleSourceSingleDestinationAlgorithm(G,S,T[i])
5. For(j = 0;j < nodes_path.Length;j++)
6. length_path: = length_path + G[nodes_path [j], nodes_path[j + 1]]
7. Add L2->col1: = nodes_path[j], L2->col2: = T[i]
8. End For
9. Add L1->col1: = T[i], L1->col2: = length_path
10. End For
11. L1 sorting according to length_path
12. e_Dest_Node: = L1->col1
13. For (m = 0; m < L2.Length; m++)
14. IF L2[m]->col2== e_Dest_Node
15. Add L3->col: = L2[m]->col1
16. End IF
17. End For
18. S: = e_Dest_Node
19. Remove the e_Dest_Node value from T
20. L1: = new initialize
21. L2: = new initialize
22. End While
23. Return L3;

In the above algorithm, the variables L1 and L2 are declared as a two-dimensional
array and L3 is a one-dimensional array for data storage. The first “while” loop runs until
the last destination nodes come. The first “for” loop runs until the number of destination
nodes are exhausted. The single-source single-destination algorithm is called to find the
shortest path for visiting nodes among the source nodes to each destination node. The
second “for” loop runs until the total number of shortest paths finding is completed for
visiting nodes. Then the total path length or weight is calculated among the shortest path
of visited nodes. Store each visited node into col1 of L2 and each destination node into
col2 of L2. After that, store each destination node into col1 of L1 and path length or weight
from a source to each destination node into col2 of L1. Sorting L1 according to path length
or weight (smallest to biggest). Top each destination node from L1→ col1 first index (the
smallest distance). Another new “for” loop is started for looping until L2 length or several
destination nodes are covered. IF condition L2 [m]—>col2 == e_Dest_Node, then store
the visiting nodes from a source to a destination in L3. S: = e_Dest_Node, replace current
destination node value to source node value like the previous destination node is the next
source node. Remove each destination node value from D. Then, L1: = new initialize or

Symmetry 2021, 13, 421 9 of 29

empty and L2: = new initialize or empty. Finally return L3, where L3 contains the source to
all destination visiting nodes with the shortest path.

In Figure 5, phu is the shortest path and p′hu is an alternative path s→ u via hubs i
and j. S is a set (shady zone) of all hubs whose ultimate smallest pathway from the source s
has been ascertained.

Symmetry 2021, 13, x FOR PEER REVIEW 9 of 30

17. End For
18. S: = e_Dest_Node
19. Remove the e_Dest_Node value from T
20. L1: = new initialize
21. L2: = new initialize
22. End While
23. Return L3;

In the above algorithm, the variables L1 and L2 are declared as a two-dimensional
array and L3 is a one-dimensional array for data storage. The first “while” loop runs until
the last destination nodes come. The first “for” loop runs until the number of destination
nodes are exhausted. The single-source single-destination algorithm is called to find the
shortest path for visiting nodes among the source nodes to each destination node. The
second “for” loop runs until the total number of shortest paths finding is completed for
visiting nodes. Then the total path length or weight is calculated among the shortest path
of visited nodes. Store each visited node into col1 of L2 and each destination node into
col2 of L2. After that, store each destination node into col1 of L1 and path length or weight
from a source to each destination node into col2 of L1. Sorting L1 according to path length
or weight (smallest to biggest). Top each destination node from L1 → col1 first index (the
smallest distance). Another new “for” loop is started for looping until L2 length or several
destination nodes are covered. IF condition L2 [m]—>col2 == e_Dest_Node, then store the
visiting nodes from a source to a destination in L3. S: = e_Dest_Node, replace current des-
tination node value to source node value like the previous destination node is the next
source node. Remove each destination node value from D. Then, L1: = new initialize or
empty and L2: = new initialize or empty. Finally return L3, where L3 contains the source
to all destination visiting nodes with the shortest path.

In Figure 5, 𝑝ℎ is the shortest path and 𝑝′ℎ is an alternative path s → u via hubs i
and j. S is a set (shady zone) of all hubs whose ultimate smallest pathway from the source
s has been ascertained.

Figure 5. Source and destination shortest pathfinding in graphical representation.

Theorem. (Exactness) The ultimate smallest path among destination nodes di ∈ D is con-
stantly provided by EAMDSP, for example, di.t = δpath (s, sdi), i ∈ I. The penultimate set
Ti contains several nodes, which are linked to the destination node di.

Proof. For each u ∈ V and t ∈ T assuming the algorithm found the label u.t, as well as the
smallest path’s weight, is δpath(s,u) for s → u. It aims to prove u.t = δpath(s,u) where each
vertex u returned at the end of the EAMDSP. □

Initial case, s.t = δpath(s,s) = 0, when S = {s} for every v ∈ S which considers v.t shows
the real smallest path’s weight among s and v,

v.t = δpath(s,v) (2)

In this algorithm, −1 is used for u as a subsequent vertex to set S via path 𝑝ℎ , there-
fore, u.t = 𝛿𝑝ℎ . It will prove this path to be the minimum distance,

Figure 5. Source and destination shortest pathfinding in graphical representation.

Theorem 1. (Exactness) The ultimate smallest path among destination nodes di ∈ D is constantly
provided by EAMDSP, for example, di.t = δpath (s, sdi), i ∈ I. The penultimate set Ti contains
several nodes, which are linked to the destination node di.

Proof. For each u ∈ V and t ∈ T assuming the algorithm found the label u.t, as well as the
smallest path’s weight, is δpath(s,u) for s→ u. It aims to prove u.t = δpath(s,u) where each
vertex u returned at the end of the EAMDSP. �

Initial case, s.t = δpath(s,s) = 0, when S = {s} for every v ∈ S which considers v.t shows
the real smallest path’s weight among s and v,

v.t = δpath(s,v) (2)

In this algorithm, −1 is used for u as a subsequent vertex to set S via path phu,
therefore, u.t = δphu. It will prove this path to be the minimum distance,

u.t = δpath(s,u) (3)

Assume the minimum distance s→ u is the alternate path p′hu instead of the path
phu. The cost of the path phu is more than the cost of the path p′hu

phu > p′hu = u.t (4)

Equation (4) is explained in Figure 2, the path p′hu, begins in S as well as at a few
points omits S to arrive at the node u that is as of now not in S. Assume (m, n) is the 1st edge
toward p′hu that departs from S. Evidently, wpath(s,m) + wpath(m,n) < δp′hu . While m ∈ S, m.t
is the cost of the minimum distance s→ m path by the inductive hypothesis, m.t = δpath(s,m)

≤ wpath(s,m), which implies m.t + w(m,n) ≤ δp′hu . The algorithm must update n.t while n is
adjacent to m, which means n.t ≤ m.t + w(m,n). The u must have the shortest value due to
the algorithm picked u, in other words, u.t ≤ n.t. To sum up these disparities, we present
the outcomes in Section 4.

4. Results and Discussion

In this section, the detailed simulation results of EAMDSP, CDSSSD, and MDMSMD
will be presented. To evaluate the proposed EAMDSP simulation performance CDSSSD
and MDMSMD simulation results on the same layout were used. The performance was
evaluated concerning the number of nodes visited and the weight or cost. Two different
scenarios, one was the car spare parts shop and another was the supermarket used for
getting the comprehensive results. In the car spare parts shop scenario, the simulations were
run in six unique phases as in four, six, eight, ten, twelve, and fifteen items searching layout.
Three shortest path algorithms named CDSSSD, MDMSMD, and EAMDSP were used on

Symmetry 2021, 13, 421 10 of 29

both scenarios in different phases for getting a different result. The results comparisons are
showed in the layout simulation, the summary table, and the graph.

Figure 6 shows the layout of a spare parts shop containing shelves (nodes) and road
networks. The road network also consists of nodes. Every node has a unique number with
longitude and latitude. The road network’s one node is connected to the neighbor node
with edge and weight value. The product/item is placed on the shelve node. The shelf
node is connected to the road network’s node with an edge and the edge has a weight
value. When searching for a product, the product’s shelf node number is considered to be
the destination node. The shortest path was calculated between the source point (starting
point) and the destination node, using the minimum the total nodes visited and their
minimum weight or cost.

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 30

u.t = δpath(s,u) (3)

Assume the minimum distance s → u is the alternate path 𝑝′ℎ instead of the path 𝑝ℎ . The cost of the path 𝑝ℎ is more than the cost of the path 𝑝′ℎ 𝑝ℎ > 𝑝′ℎ = u.t (4)

Equation (4) is explained in Figure 2. , the path 𝑝′ℎ , begins in S as well as at a few
points omits S to arrive at the node u that is as of now not in S. Assume (m, n) is the 1st
edge toward 𝑝′ℎ that departs from S. Evidently, 𝑤 (,) + 𝑤 (,) < δ . While
m ∈ S, m.t is the cost of the minimum distance s → m path by the inductive hypothesis,
m.t = δ (,) ≤ 𝑤 (,), which implies m.t + 𝑤(,) ≤ δ . The algorithm must up-
date n.t while n is adjacent to m, which means n.t ≤ m.t + 𝑤(,). The u must have the
shortest value due to the algorithm picked u, in other words, u.t ≤ n.t. To sum up these
disparities, we present the outcomes in Section 4.

4. Results and Discussion
In this section, the detailed simulation results of EAMDSP, CDSSSD, and MDMSMD

will be presented. To evaluate the proposed EAMDSP simulation performance CDSSSD
and MDMSMD simulation results on the same layout were used. The performance was
evaluated concerning the number of nodes visited and the weight or cost. Two different
scenarios, one was the car spare parts shop and another was the supermarket used for
getting the comprehensive results. In the car spare parts shop scenario, the simulations
were run in six unique phases as in four, six, eight, ten, twelve, and fifteen items searching
layout. Three shortest path algorithms named CDSSSD, MDMSMD, and EAMDSP were
used on both scenarios in different phases for getting a different result. The results com-
parisons are showed in the layout simulation, the summary table, and the graph.

Figure 6 shows the layout of a spare parts shop containing shelves (nodes) and road
networks. The road network also consists of nodes. Every node has a unique number with
longitude and latitude. The road network’s one node is connected to the neighbor node
with edge and weight value. The product/item is placed on the shelve node. The shelf
node is connected to the road network’s node with an edge and the edge has a weight
value. When searching for a product, the product’s shelf node number is considered to be
the destination node. The shortest path was calculated between the source point (starting
point) and the destination node, using the minimum the total nodes visited and their min-
imum weight or cost.

Figure 6. Drawing layout in a car spare part shop with nodes. Figure 6. Drawing layout in a car spare part shop with nodes.

Table 1 represents the input which is the randomly selected four items. These input
items were used for the same simulation layout of three algorithms such as CDSSSD,
MDMSMD, and proposed EAMDSP.

Table 1. Selected four items and categories (input).

Item Category

Antenna cable Audio/video devices
Bumper Body components, including trim

Adjusting mechanism Braking system
Bucket seat Car seat

Figure 7a–c are car spare parts shop simulation result of EAMDSP, CDSSSD and
MDMSMD respectively, which show the shortest path among four items. Table 2 shows
the output summary data for the four-item search. EAMDSP for the shortest path between
the above four items visited 93 nodes and had a total weight of 95. However, using
CDSSSD and MDMSMD for the same items, the visited nodes were 124 and 120 and the
total cost was 136 and 125, respectively. Therefore, the proposed EAMDSP is efficient for
visited nodes and total weight. Finally, total visited nodes or total cost can be expressed
as EAMDSP < MDMSMD < CDSSSD. The detailed data for the four items are shown in
Appendix A.

Symmetry 2021, 13, 421 11 of 29

Symmetry 2021, 13, x FOR PEER REVIEW 11 of 30

Table 1 represents the input which is the randomly selected four items. These input
items were used for the same simulation layout of three algorithms such as CDSSSD,
MDMSMD, and proposed EAMDSP.

Table 1. Selected four items and categories (input).

Item Category
Antenna cable Audio/video devices

Bumper Body components, including trim
Adjusting mechanism Braking system

Bucket seat Car seat

Figure 7a–c are car spare parts shop simulation result of EAMDSP, CDSSSD and
MDMSMD respectively, which show the shortest path among four items. Table 2 shows
the output summary data for the four-item search. EAMDSP for the shortest path between
the above four items visited 93 nodes and had a total weight of 95. However, using
CDSSSD and MDMSMD for the same items, the visited nodes were 124 and 120 and the
total cost was 136 and 125, respectively. Therefore, the proposed EAMDSP is efficient for
visited nodes and total weight. Finally, total visited nodes or total cost can be expressed
as EAMDSP < MDMSMD < CDSSSD. The detailed data for the four items are shown in
Appendix A.

(a) EAMDSP (b) CDSSSD (c) MDMSMD

Figure 7. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for a four-item search
(output scenario).

Table 2. Summary data of EAMDSP, CDSSSD, and MDMSMD for a four-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost
1 EAMDSP 93 95
2 CDSSSD 124 136
3 MDMSMD 120 125

Table 3 represents the input value, which is six items randomly selected. These input
items were used on the same simulation layout as the three algorithms CDSSSD,
MDMSMD, and EAMDSP.

Table 3. (Input) Selecting six items and category.

Item Category
Antenna assembly Audio/video devices

ABS steel pin Braking system
Back seat Car seat

Door switch Electrical switches
Distributor cap Engine components and parts

Oil gasket Engine oil systems

Figure 7. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for a four-item search
(output scenario).

Table 2. Summary data of EAMDSP, CDSSSD, and MDMSMD for a four-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost

1 EAMDSP 93 95
2 CDSSSD 124 136
3 MDMSMD 120 125

Table 3 represents the input value, which is six items randomly selected. These input
items were used on the same simulation layout as the three algorithms CDSSSD, MDMSMD,
and EAMDSP.

Table 3. (Input) Selecting six items and category.

Item Category

Antenna assembly Audio/video devices
ABS steel pin Braking system

Back seat Car seat
Door switch Electrical switches

Distributor cap Engine components and parts
Oil gasket Engine oil systems

Figure 8a–c are car spare parts shop simulation result of EAMDSP, CDSSSD and
MDMSMD, respectively which show the shortest path among six items. Table 4 shows the
output summary data for the six-item search. EAMDSP for the shortest path between the
six items visited 129 nodes and the total weight was 131. However, when using CDSSSD
and MDMSMD for the same items, the visited nodes were 220 and 175 and the total cost was
242 and 179, respectively. Therefore, EAMDSP is efficient in terms of visited nodes and total
weight. Finally, total visited nodes, or total cost can be expressed as EAMDSP < MDMSMD
< CDSSSD.

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 30

Figure 8a–c are car spare parts shop simulation result of EAMDSP, CDSSSD and
MDMSMD, respectively which show the shortest path among six items. Table 4 shows the
output summary data for the six-item search. EAMDSP for the shortest path between the
six items visited 129 nodes and the total weight was 131. However, when using CDSSSD
and MDMSMD for the same items, the visited nodes were 220 and 175 and the total cost
was 242 and 179, respectively. Therefore, EAMDSP is efficient in terms of visited nodes
and total weight. Finally, total visited nodes, or total cost can be expressed as EAMDSP <
MDMSMD < CDSSSD.

(a) EAMDSP (b) CDSSSD (c) MDMSMD

Figure 8. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for a six-item search
(output scenario).

Table 4. Summary data of EAMDSP, CDSSSD, and MDMSMD for a six-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost
1 EAMDSP 129 131
2 CDSSSD 220 242
3 MDMSMD 175 179

Table 5 represents the input values of the eight items. These input items were used
for the same simulation layout using three algorithms CDSSSD, MDMSMD, and
EAMDSP.

Table 5. (Input) Selecting eight items and category.

Item Category
Radio and media player Audio/video devices

Cowl screen Body components, including trim
Adjusting mechanism (adjuster star wheel) Braking system

Dashcam Cameras
Bench seat Car seat

Central locking Doors
Fan ditch Electrical switches

Engine compartment harness Wiring harnesses

Figure 9a–c are car spare parts shop simulation result of respectively EAMDSP,
CDSSSD and MDMSMD which show the shortest path among eight items. Table 6 shows
the output summary data for the eight items searched. When using EAMDSP for the short-
est path between the above eight items, 119 nodes were visited, and the total weight or
cost was 121. However, when using CDSSSD and MDMSMD for the same items, the vis-
ited nodes were 271 and 227 and the total cost was 297 and 239, respectively. So, EAMDSP

Figure 8. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for a six-item search
(output scenario).

Symmetry 2021, 13, 421 12 of 29

Table 4. Summary data of EAMDSP, CDSSSD, and MDMSMD for a six-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost

1 EAMDSP 129 131
2 CDSSSD 220 242
3 MDMSMD 175 179

Table 5 represents the input values of the eight items. These input items were used for
the same simulation layout using three algorithms CDSSSD, MDMSMD, and EAMDSP.

Table 5. (Input) Selecting eight items and category.

Item Category

Radio and media player Audio/video devices
Cowl screen Body components, including trim

Adjusting mechanism (adjuster star wheel) Braking system
Dashcam Cameras

Bench seat Car seat
Central locking Doors

Fan ditch Electrical switches
Engine compartment harness Wiring harnesses

Figure 9a–c are car spare parts shop simulation result of respectively EAMDSP,
CDSSSD and MDMSMD which show the shortest path among eight items. Table 6 shows
the output summary data for the eight items searched. When using EAMDSP for the
shortest path between the above eight items, 119 nodes were visited, and the total weight or
cost was 121. However, when using CDSSSD and MDMSMD for the same items, the visited
nodes were 271 and 227 and the total cost was 297 and 239, respectively. So, EAMDSP is
efficient for visited nodes and the total weight or cost. Finally, total visited nodes, or total
cost can be expressed as EAMDSP < MDMSMD < CDSSSD.

Symmetry 2021, 13, x FOR PEER REVIEW 13 of 30

is efficient for visited nodes and the total weight or cost. Finally, total visited nodes, or
total cost can be expressed as EAMDSP < MDMSMD < CDSSSD.

(a) EAMDSP (b) CDSSSD (c) MDMSMD

Figure 9. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for an eight-item search
(output scenario).

Table 6. Summary data of EAMDSP, CDSSSD, and MDMSMD for an eight-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost
1 EAMDSP 119 121
2 CDSSSD 271 297
3 MDMSMD 227 239

Table 7 represents the input value of ten items. These input items were used for the
same simulation layout of three algorithms CDSSSD, MDMSMD, and EAMDSP.

Table 7. (Input) Selecting ten items and category.

Item Category
Radiator core support Body components

Brake pad Braking system
Fan ditch Electrical switches

Camshaft follower Engine components and parts
PCV valve Engine components and parts

Oil suction filter Engine oil systems
Battery box Low voltage electrical supply system

Alarm and siren Miscellaneous
Wiring connector Miscellaneous

Glowplug Starting system

Figure 10a–c are car spare parts shop simulation result of EAMDSP, CDSSSD and
MDMSMD respectively, which show the shortest path among ten items. Table 8 shows
the output summary data for the ten-item search. When using EAMDSP for the shortest
path between the above 10 items, 164 nodes were visited and the total weight or cost was
170. However, when using CDSSSD and MDMSMD for the same items, the visited nodes
were 377 and 227, and the total cost was 414 and 236, respectively. Therefore, EAMDSP is
efficient for visited nodes and total weight or cost. Finally, total visited nodes, or total cost
can be expressed as EAMDSP < MDMSMD < CDSSSD.

Figure 9. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for an eight-item search
(output scenario).

Table 6. Summary data of EAMDSP, CDSSSD, and MDMSMD for an eight-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost

1 EAMDSP 119 121
2 CDSSSD 271 297
3 MDMSMD 227 239

Table 7 represents the input value of ten items. These input items were used for the
same simulation layout of three algorithms CDSSSD, MDMSMD, and EAMDSP.

Symmetry 2021, 13, 421 13 of 29

Table 7. (Input) Selecting ten items and category.

Item Category

Radiator core support Body components
Brake pad Braking system
Fan ditch Electrical switches

Camshaft follower Engine components and parts
PCV valve Engine components and parts

Oil suction filter Engine oil systems
Battery box Low voltage electrical supply system

Alarm and siren Miscellaneous
Wiring connector Miscellaneous

Glowplug Starting system

Figure 10a–c are car spare parts shop simulation result of EAMDSP, CDSSSD and
MDMSMD respectively, which show the shortest path among ten items. Table 8 shows
the output summary data for the ten-item search. When using EAMDSP for the shortest
path between the above 10 items, 164 nodes were visited and the total weight or cost was
170. However, when using CDSSSD and MDMSMD for the same items, the visited nodes
were 377 and 227, and the total cost was 414 and 236, respectively. Therefore, EAMDSP is
efficient for visited nodes and total weight or cost. Finally, total visited nodes, or total cost
can be expressed as EAMDSP < MDMSMD < CDSSSD.

Symmetry 2021, 13, x FOR PEER REVIEW 14 of 30

(a) EAMDSP (b) CDSSSD (c) MDMSMD

Figure 10. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for a ten-item search
(output scenario).

Table 8. Summary data of EAMDSP, CDSSSD, and MDMSMD for a ten-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost
1 EAMDSP 164 170
2 CDSSSD 377 414
3 MDMSMD 227 236

Table 9 represents the input value of twelve items. These input items were used for
the same simulation layout of three algorithms CDSSSD, MDMSMD, and EAMDSP.

Table 9. (Input) Selecting twelve items and category.

Item Category
Tuner Audio/video devices

Fascia rear and support Body components
Brake backing plate Braking system

Front seat Car seat
Front Right Outer door handle Doors

Ignition switch Electrical switches
Fuel gauge Gauges and meters

Ignition magneto Ignition system
Side lighting Lighting and signaling system

Coolant temperature sensor Sensors
Sunroof glass Windows

Air conditioning harness Wiring harnesses

Figure 11a–c are car spare parts shop simulation result of EAMDSP, CDSSSD and
MDMSMD respectively, which show the shortest path among twelve items. Table 10
shows the output summary data for the twelve items searched. When using EAMDSP for
the shortest path between the above twelve items, 213 nodes were visited and the total
weight or cost was 220. However, when using CDSSSD and MDMSMD for the same items,
the visited nodes were 378 and 315 and the total cost was 408 and 327, respectively. There-
fore, EAMDSP is efficient for visited nodes and total weight or cost. Finally, total visited
nodes, or total cost can be expressed as EAMDSP < MDMSMD < CDSSSD.

Figure 10. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for a ten-item search
(output scenario).

Table 8. Summary data of EAMDSP, CDSSSD, and MDMSMD for a ten-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost

1 EAMDSP 164 170
2 CDSSSD 377 414
3 MDMSMD 227 236

Table 9 represents the input value of twelve items. These input items were used for
the same simulation layout of three algorithms CDSSSD, MDMSMD, and EAMDSP.

Figure 11a–c are car spare parts shop simulation result of EAMDSP, CDSSSD and
MDMSMD respectively, which show the shortest path among twelve items. Table 10 shows
the output summary data for the twelve items searched. When using EAMDSP for the
shortest path between the above twelve items, 213 nodes were visited and the total weight
or cost was 220. However, when using CDSSSD and MDMSMD for the same items, the
visited nodes were 378 and 315 and the total cost was 408 and 327, respectively. Therefore,
EAMDSP is efficient for visited nodes and total weight or cost. Finally, total visited nodes,
or total cost can be expressed as EAMDSP < MDMSMD < CDSSSD.

Symmetry 2021, 13, 421 14 of 29

Table 9. (Input) Selecting twelve items and category.

Item Category

Tuner Audio/video devices
Fascia rear and support Body components

Brake backing plate Braking system
Front seat Car seat

Front Right Outer door handle Doors
Ignition switch Electrical switches

Fuel gauge Gauges and meters
Ignition magneto Ignition system

Side lighting Lighting and signaling system
Coolant temperature sensor Sensors

Sunroof glass Windows
Air conditioning harness Wiring harnessesSymmetry 2021, 13, x FOR PEER REVIEW 15 of 30

(a) EAMDSP (b) CDSSSD (c) MDMSMD

Figure 11. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for a twelve-item search
(output scenario).

Table 10. Summary data of EAMDSP, CDSSSD, and MDMSMD for a twelve-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost
1 EAMDSP 213 220
2 CDSSSD 378 408
3 MDMSMD 315 327

Table 11 represents the input values of the selected fifteen items. These input items
were used for the same simulation layout of three algorithms CDSSSD, MDMSMD, and
EAMDSP.

Table 11. (Input) Selecting fifteen items and categories.

Item Category
Front fascia and header panel Body components

Brake disc Braking system
Brake booster hose Braking system

Backup camera Cameras
Headrest Car seat

Rear left side outer door handle Doors
Switch cover Electrical switches

Odometer Gauges and meters
Distributor Ignition system

Engine bay lighting Lighting and signaling system
Shift improver Miscellaneous
Knock sensor Sensors
Starter drive Starting system

Front left side door glass Windows
Floor harness Wiring harnesses

Figure 12a–c are car spare parts shop simulation result of EAMDSP, CDSSSD and
MDMSMD respectively, which show the shortest path among fifteen items. Table 12
shows the output summary data for the fifteen-item search. When using EAMDSP for the
shortest path among the above fifteen items, 225 nodes were visited and the total weight
or cost was 233. However, when using CDSSSD and MDMSMD for the same items, the
visited nodes were 487 and 393 and the total cost was 525 and 409, respectively. Therefore,
our proposed shortest path algorithm EAMDSP is efficient for visited nodes and total
weight or cost. Finally, total visited nodes, or total cost can be expressed as EAMDSP <
MDMSMD < CDSSSD.

Figure 11. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for a twelve-item search
(output scenario).

Table 10. Summary data of EAMDSP, CDSSSD, and MDMSMD for a twelve-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost

1 EAMDSP 213 220
2 CDSSSD 378 408
3 MDMSMD 315 327

Table 11 represents the input values of the selected fifteen items. These input items were
used for the same simulation layout of three algorithms CDSSSD, MDMSMD, and EAMDSP.

Table 11. (Input) Selecting fifteen items and categories.

Item Category

Front fascia and header panel Body components
Brake disc Braking system

Brake booster hose Braking system
Backup camera Cameras

Headrest Car seat
Rear left side outer door handle Doors

Switch cover Electrical switches
Odometer Gauges and meters
Distributor Ignition system

Engine bay lighting Lighting and signaling system
Shift improver Miscellaneous
Knock sensor Sensors
Starter drive Starting system

Front left side door glass Windows
Floor harness Wiring harnesses

Symmetry 2021, 13, 421 15 of 29

Figure 12a–c are car spare parts shop simulation result of EAMDSP, CDSSSD and
MDMSMD respectively, which show the shortest path among fifteen items. Table 12 shows
the output summary data for the fifteen-item search. When using EAMDSP for the shortest
path among the above fifteen items, 225 nodes were visited and the total weight or cost
was 233. However, when using CDSSSD and MDMSMD for the same items, the visited
nodes were 487 and 393 and the total cost was 525 and 409, respectively. Therefore, our
proposed shortest path algorithm EAMDSP is efficient for visited nodes and total weight
or cost. Finally, total visited nodes, or total cost can be expressed as EAMDSP < MDMSMD
< CDSSSD.

Symmetry 2021, 13, x FOR PEER REVIEW 16 of 30

(a) EAMDSP (b) CDSSSD (c) MDMSMD

Figure 12. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for a fifteen-item search
(output scenario).

Table 12. Summary data of EAMDSP, CDSSSD, and MDMSMD for a fifteen-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost
1 EAMDSP 225 233
2 CDSSSD 487 525
3 MDMSMD 393 409

Figure 13 shows the cost-wise comparison among EAMDSP, CDSSSD and
MDMSMD as per Table 13.

Table 13. Total cost-wise comparison among EAMDSP, CDSSSD, and MDMSMD.

SL No. Algorithm
Name

Items (4) Items (6) Items (8) Items (10) Items (12) Items (15)

1 EAMDSP 95 131 121 170 220 233
2 CDSSSD 136 242 297 414 408 525
3 MDMSMD 125 179 239 236 327 409

Figure 13. Cost-wise comparison among EAMDSP, CDSSSD, and MDMSMD.

Figure 14 shows the visited-wise comparison among EAMDSP, CDSSSD and
MDMSMD as per Table 14.

95 131 121
170

220 233
136

242
297

414 408

525

125 179
239 236

327
393

0

100

200

300

400

500

600

Items (4) Items (6) Items (8) Items (10) Items (12) Items (15)

To
ta

l C
os

t

No. of Items

Cost Wise Comparison

ESPAMD CDSSSD MDMSMD

Figure 12. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for a fifteen-item search
(output scenario).

Table 12. Summary data of EAMDSP, CDSSSD, and MDMSMD for a fifteen-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost

1 EAMDSP 225 233
2 CDSSSD 487 525
3 MDMSMD 393 409

Figure 13 shows the cost-wise comparison among EAMDSP, CDSSSD and MDMSMD
as per Table 13.

Symmetry 2021, 13, x FOR PEER REVIEW 16 of 30

(a) EAMDSP (b) CDSSSD (c) MDMSMD

Figure 12. Simulation on a car spare parts shop scenario using EAMDSP, CDSSSD, and MDMSMD for a fifteen-item search
(output scenario).

Table 12. Summary data of EAMDSP, CDSSSD, and MDMSMD for a fifteen-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost
1 EAMDSP 225 233
2 CDSSSD 487 525
3 MDMSMD 393 409

Figure 13 shows the cost-wise comparison among EAMDSP, CDSSSD and
MDMSMD as per Table 13.

Table 13. Total cost-wise comparison among EAMDSP, CDSSSD, and MDMSMD.

SL No. Algorithm
Name

Items (4) Items (6) Items (8) Items (10) Items (12) Items (15)

1 EAMDSP 95 131 121 170 220 233
2 CDSSSD 136 242 297 414 408 525
3 MDMSMD 125 179 239 236 327 409

Figure 13. Cost-wise comparison among EAMDSP, CDSSSD, and MDMSMD.

Figure 14 shows the visited-wise comparison among EAMDSP, CDSSSD and
MDMSMD as per Table 14.

95 131 121
170

220 233
136

242
297

414 408

525

125 179
239 236

327
393

0

100

200

300

400

500

600

Items (4) Items (6) Items (8) Items (10) Items (12) Items (15)

To
ta

l C
os

t

No. of Items

Cost Wise Comparison

ESPAMD CDSSSD MDMSMD

Figure 13. Cost-wise comparison among EAMDSP, CDSSSD, and MDMSMD.

Symmetry 2021, 13, 421 16 of 29

Table 13. Total cost-wise comparison among EAMDSP, CDSSSD, and MDMSMD.

SL No. Algorithm
Name Items (4) Items (6) Items (8) Items

(10)
Items
(12)

Items
(15)

1 EAMDSP 95 131 121 170 220 233
2 CDSSSD 136 242 297 414 408 525
3 MDMSMD 125 179 239 236 327 409

Figure 14 shows the visited-wise comparison among EAMDSP, CDSSSD and MDMSMD
as per Table 14.

Symmetry 2021, 13, x FOR PEER REVIEW 17 of 30

Table 14. Total visited node-wise comparison among EAMDSP, CDSSSD, and MDMSMD.

SL No.
Algorithm

Name Items (4) Items (6) Items (8) Items (10) Items (12) Items (15)

1 EAMDSP 93 129 119 164 213 225
2 CDSSSD 124 220 271 377 378 487
3 MDMSMD 120 175 227 227 315 393

Figure 14. Visited nodes-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

In Figure 15, we present another scenario similar to a supermarket simulation sce-
nario, the simulations were run in three unique phases as a five, eight, and eleven-item
searching layout. Three shortest path algorithms CDSSSD, MDMSMD, and our proposed
EAMDSP were used in this scenario’s different phases for getting the different results and
comparing results shown in the layout simulation. Summary data is presented in tables
and graphs.

Figure 15. Drawing layout in the supermarket with nodes.

93
129 119

164
213 225

124

220

271

377 378

487

120 175

227 227

315

393

0

100

200

300

400

500

600

Items (4) Items (6) Items (8) Items (10) Items (12) Items (15)

To
ta

l V
isi

te
d

No
de

s

No. of Items

Visited Nodes Wise Comparison

ESPAMD CDSSSD MDMSMD

Figure 14. Visited nodes-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

Table 14. Total visited node-wise comparison among EAMDSP, CDSSSD, and MDMSMD.

SL No. Algorithm
Name Items (4) Items (6) Items (8) Items

(10)
Items
(12)

Items
(15)

1 EAMDSP 93 129 119 164 213 225
2 CDSSSD 124 220 271 377 378 487
3 MDMSMD 120 175 227 227 315 393

In Figure 15, we present another scenario similar to a supermarket simulation scenario,
the simulations were run in three unique phases as a five, eight, and eleven-item searching
layout. Three shortest path algorithms CDSSSD, MDMSMD, and our proposed EAMDSP
were used in this scenario’s different phases for getting the different results and comparing
results shown in the layout simulation. Summary data is presented in tables and graphs.

Symmetry 2021, 13, 421 17 of 29

Symmetry 2021, 13, x FOR PEER REVIEW 17 of 30

Table 14. Total visited node-wise comparison among EAMDSP, CDSSSD, and MDMSMD.

SL No.
Algorithm

Name Items (4) Items (6) Items (8) Items (10) Items (12) Items (15)

1 EAMDSP 93 129 119 164 213 225
2 CDSSSD 124 220 271 377 378 487
3 MDMSMD 120 175 227 227 315 393

Figure 14. Visited nodes-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

In Figure 15, we present another scenario similar to a supermarket simulation sce-
nario, the simulations were run in three unique phases as a five, eight, and eleven-item
searching layout. Three shortest path algorithms CDSSSD, MDMSMD, and our proposed
EAMDSP were used in this scenario’s different phases for getting the different results and
comparing results shown in the layout simulation. Summary data is presented in tables
and graphs.

Figure 15. Drawing layout in the supermarket with nodes.

93
129 119

164
213 225

124

220

271

377 378

487

120 175

227 227

315

393

0

100

200

300

400

500

600

Items (4) Items (6) Items (8) Items (10) Items (12) Items (15)

To
ta

l V
isi

te
d

No
de

s

No. of Items

Visited Nodes Wise Comparison

ESPAMD CDSSSD MDMSMD

Figure 15. Drawing layout in the supermarket with nodes.

Table 15 represents the input value, which was randomly selected for five items.
These input items were used for the same simulation layout of three algorithms CDSSSD,
MDMSMD, and EAMDSP.

Table 15. (Input) Selecting five items and categories.

Item Category

Coffee Beverages
Dinner rolls Bread/Bakery
Vegetables Canned/Jarred goods

Laundry detergent Cleaners
Yogurt Dairy

Figure 16a–c are supermarket simulation result of respectively EAMDSP, CDSSSD
and MDMSMD which show the shortest path among five items. Table 16 shows the output
summary data for the five-item search. When using EAMDSP for the shortest path between
the above the five items, 45 nodes were visited and the total weight was 54. However,
when using CDSSSD and MDMSMD for the same items, the visited nodes were 60 and
52 and the total cost was 84 and 69, respectively. Therefore, our proposed shortest path
algorithm EAMDSP is efficient for visited nodes and total cost. Finally, total visited nodes,
or total cost can be expressed as EAMDSP < MDMSMD < CDSSSD.

Symmetry 2021, 13, x FOR PEER REVIEW 18 of 30

Table 15 represents the input value, which was randomly selected for five items.
These input items were used for the same simulation layout of three algorithms CDSSSD,
MDMSMD, and EAMDSP.

Table 15. (Input) Selecting five items and categories.

Item Category
Coffee Beverages

Dinner rolls Bread/Bakery
Vegetables Canned/Jarred goods

Laundry detergent Cleaners
Yogurt Dairy

Figure 16a–c are supermarket simulation result of respectively EAMDSP, CDSSSD
and MDMSMD which show the shortest path among five items. Table 16 shows the out-
put summary data for the five-item search. When using EAMDSP for the shortest path
between the above the five items, 45 nodes were visited and the total weight was 54. How-
ever, when using CDSSSD and MDMSMD for the same items, the visited nodes were 60
and 52 and the total cost was 84 and 69, respectively. Therefore, our proposed shortest
path algorithm EAMDSP is efficient for visited nodes and total cost. Finally, total visited
nodes, or total cost can be expressed as EAMDSP < MDMSMD < CDSSSD.

(a) EAMDSP (b) CDSSSD (c) MDMSMD

Figure 16. Simulation on supermarket scenario using EAMDSP, CDSSSD, and MDMSMD for a five-item search (output
scenario).

Table 16. The output summary data of EAMDSP, CDSSSD, and MDMSMD for a five-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost
1 EAMDSP 45 54
2 CDSSSD 60 84
3 MDMSMD 52 69

Table 17 represents the input values of the selected eight items. These input items
were used for the same simulation layout of three algorithms CDSSSD, MDMSMD, and
EAMDSP.

Table 17. (Input) Selecting eight items and categories.

Item Category
Soda Beverages

Sandwich loaves Bread/Bakery
Vegetables Canned/Jarred goods

Dishwashing liquid Cleaners
Eggs Dairy

Mixes Dry/Baking goods

Figure 16. Simulation on supermarket scenario using EAMDSP, CDSSSD, and MDMSMD for a five-item search (output scenario).

Symmetry 2021, 13, 421 18 of 29

Table 16. The output summary data of EAMDSP, CDSSSD, and MDMSMD for a five-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost

1 EAMDSP 45 54
2 CDSSSD 60 84
3 MDMSMD 52 69

Table 17 represents the input values of the selected eight items. These input items were
used for the same simulation layout of three algorithms CDSSSD, MDMSMD, and EAMDSP.

Table 17. (Input) Selecting eight items and categories.

Item Category

Soda Beverages
Sandwich loaves Bread/Bakery

Vegetables Canned/Jarred goods
Dishwashing liquid Cleaners

Eggs Dairy
Mixes Dry/Baking goods

Vegetables Frozen foods
Pork Meat

Figure 17a–c are supermarket simulation result of respectively EAMDSP, CDSSSD
and MDMSMD which show the shortest path among eight items. Table 18 shows the
output summary data for the eight-item search. When using EAMDSP for the shortest
path between the above eight items, 58 nodes were visited and the total weight was 67.
However, when using CDSSSD and MDMSMD for the same items, visited nodes were 104
and 72 and the total cost was 150 and 95, respectively. Therefore, EAMDSP is efficient for
visited nodes and total weight. Finally, total visited nodes, or total cost can be expressed as
EAMDSP < MDMSMD < CDSSSD.

Symmetry 2021, 13, x FOR PEER REVIEW 19 of 30

Vegetables Frozen foods
Pork Meat

Figure 17a–c are supermarket simulation result of respectively EAMDSP, CDSSSD
and MDMSMD which show the shortest path among eight items. Table 18 shows the out-
put summary data for the eight-item search. When using EAMDSP for the shortest path
between the above eight items, 58 nodes were visited and the total weight was 67. How-
ever, when using CDSSSD and MDMSMD for the same items, visited nodes were 104 and
72 and the total cost was 150 and 95, respectively. Therefore, EAMDSP is efficient for vis-
ited nodes and total weight. Finally, total visited nodes, or total cost can be expressed as
EAMDSP < MDMSMD < CDSSSD.

(a) EAMDSP (b) CDSSSD (c) MDMSMD

Figure 17. Simulation on supermarket scenario using EAMDSP, CDSSSD, and MDMSMD for an eight-item search (output
scenario).

Table 18. The output summary data of EAMDSP, CDSSSD, and MDMSMD for an eight-item
search.

SL No. Algorithm Name Total Visited Nodes Total Cost
1 EAMDSP 58 67
2 CDSSSD 104 150
3 MDMSMD 72 95

Table 19 represents the input values of the selected eleven items. These input items
were used for the same simulation layout of three algorithms CDSSSD, MDMSMD, and
EAMDSP.

Table 19. (Input) Selecting eleven items and categories.

Item Category
Juice Beverages

Dinner rolls Bread/Bakery
Spaghetti sauce Canned/Jarred goods

Dishwashing detergent Cleaners
Cheeses Dairy

Flour Dry/Baking goods
Individual meals Frozen foods

Lunch meat Meat
Batteries Others

Paper towels Paper goods
Shampoo Personal cares

Figure 18a–c are supermarket simulation result of respectively EAMDSP, CDSSSD
and MDMSMD which show the shortest path among eleven items. Table 20 shows the
output summary data for an eleven-item search. When using EAMDSP for the shortest
path between the above eleven items, 78 nodes were visited and the total weight was 88.

Figure 17. Simulation on supermarket scenario using EAMDSP, CDSSSD, and MDMSMD for an eight-item search
(output scenario).

Table 18. The output summary data of EAMDSP, CDSSSD, and MDMSMD for an eight-item search.

SL No. Algorithm Name Total Visited Nodes Total Cost

1 EAMDSP 58 67
2 CDSSSD 104 150
3 MDMSMD 72 95

Table 19 represents the input values of the selected eleven items. These input items were
used for the same simulation layout of three algorithms CDSSSD, MDMSMD, and EAMDSP.

Symmetry 2021, 13, 421 19 of 29

Table 19. (Input) Selecting eleven items and categories.

Item Category

Juice Beverages
Dinner rolls Bread/Bakery

Spaghetti sauce Canned/Jarred goods
Dishwashing detergent Cleaners

Cheeses Dairy
Flour Dry/Baking goods

Individual meals Frozen foods
Lunch meat Meat

Batteries Others
Paper towels Paper goods

Shampoo Personal cares

Figure 18a–c are supermarket simulation result of respectively EAMDSP, CDSSSD
and MDMSMD which show the shortest path among eleven items. Table 20 shows the
output summary data for an eleven-item search. When using EAMDSP for the shortest
path between the above eleven items, 78 nodes were visited and the total weight was 88.
However, when using CDSSSD and MDMSMD for the same items the visited nodes were
124 and 101 and the total cost was 165 and 132 respectively. Therefore, EAMDSP is efficient
for visited nodes and total weight. Finally, total visited nodes, or total cost can be expressed
as EAMDSP < MDMSMD < CDSSSD.

Symmetry 2021, 13, x FOR PEER REVIEW 20 of 30

However, when using CDSSSD and MDMSMD for the same items the visited nodes were
124 and 101 and the total cost was 165 and 132 respectively. Therefore, EAMDSP is effi-
cient for visited nodes and total weight. Finally, total visited nodes, or total cost can be
expressed as EAMDSP < MDMSMD < CDSSSD.

(a) EAMDSP (b) CDSSSD (c) MDMSMD

Figure 18. Simulation on supermarket scenario using EAMDSP, CDSSSD, and MDMSMD for an eleven-item search (out-
put scenario).

Table 20. Summary data of EAMDSP, CDSSSD, and MDMSMD for eleven items search.

SL No. Algorithm Name Total Nodes Total Cost
1 EAMDSP 78 88
2 CDSSSD 124 165
3 MDMSMD 101 132

Figure 19 shows the cost-wise comparison among EAMDSP, CDSSSD and
MDMSMD as per Table 21.

Table 21. Total cost-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

SL No. Algorithm Name Items (5) Items (8) Items (11)
1 EAMDSP 54 67 88
2 CDSSSD 84 150 165
3 MDMSMD 69 95 132

Figure 19. Cost-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

54
67

8884

150
165

69

95

132

0
20
40
60
80

100
120
140
160
180

Items (5) Items (8) Items (11)

To
ta

l C
os

t

No. of Items

Cost Wise Comparison

ESPAMD CDSSSD MDMSMD

Figure 18. Simulation on supermarket scenario using EAMDSP, CDSSSD, and MDMSMD for an eleven-item search
(output scenario).

Table 20. Summary data of EAMDSP, CDSSSD, and MDMSMD for eleven items search.

SL No. Algorithm Name Total Nodes Total Cost

1 EAMDSP 78 88
2 CDSSSD 124 165
3 MDMSMD 101 132

Figure 19 shows the cost-wise comparison among EAMDSP, CDSSSD and MDMSMD
as per Table 21.

Table 21. Total cost-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

SL No. Algorithm Name Items (5) Items (8) Items (11)

1 EAMDSP 54 67 88
2 CDSSSD 84 150 165
3 MDMSMD 69 95 132

Symmetry 2021, 13, 421 20 of 29

Symmetry 2021, 13, x FOR PEER REVIEW 20 of 30

However, when using CDSSSD and MDMSMD for the same items the visited nodes were
124 and 101 and the total cost was 165 and 132 respectively. Therefore, EAMDSP is effi-
cient for visited nodes and total weight. Finally, total visited nodes, or total cost can be
expressed as EAMDSP < MDMSMD < CDSSSD.

(a) EAMDSP (b) CDSSSD (c) MDMSMD

Figure 18. Simulation on supermarket scenario using EAMDSP, CDSSSD, and MDMSMD for an eleven-item search (out-
put scenario).

Table 20. Summary data of EAMDSP, CDSSSD, and MDMSMD for eleven items search.

SL No. Algorithm Name Total Nodes Total Cost
1 EAMDSP 78 88
2 CDSSSD 124 165
3 MDMSMD 101 132

Figure 19 shows the cost-wise comparison among EAMDSP, CDSSSD and
MDMSMD as per Table 21.

Table 21. Total cost-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

SL No. Algorithm Name Items (5) Items (8) Items (11)
1 EAMDSP 54 67 88
2 CDSSSD 84 150 165
3 MDMSMD 69 95 132

Figure 19. Cost-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

54
67

8884

150
165

69

95

132

0
20
40
60
80

100
120
140
160
180

Items (5) Items (8) Items (11)

To
ta

l C
os

t

No. of Items

Cost Wise Comparison

ESPAMD CDSSSD MDMSMD

Figure 19. Cost-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

Figure 20 shows the visited-wise comparison among EAMDSP, CDSSSD and MDMSMD
as per Table 22.

Symmetry 2021, 13, x FOR PEER REVIEW 21 of 30

Figure 20 shows the visited-wise comparison among EAMDSP, CDSSSD and
MDMSMD as per Table 22.

Table 22. Total visited node-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

SL No. Algorithm Name Items (5) Items (8) Items (11)
1 EAMDSP 45 58 88
2 CDSSSD 60 104 124
3 MDMSMD 52 78 101

Figure 20. Visited node-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

Finally, based on Figures 13, 14, 19, and 20, and Tables 13, 14, 21, and 22 it is reported
that the proposed EAMDSP demonstrates the outstanding performance on cost and num-
ber of visited nodes compared to CDSSSD and MDMSMD.

5. Conclusions
The proposed EAMDSP algorithm was developed and implemented in indoor appli-

cations and found to be more efficient for a multi-destination search. It can be used on any
type of road network with multi-destinations for shortest path searching. In this paper,
we evaluated the EAMDSP by comparing it with CDSSSD and MDMSMD using two dif-
ferent simulations of several items of searching. For a search with a large number of prod-
ucts, EAMDSP demonstrated an outstanding performance compared to CDSSSD and
MDMSMD, based on the total visited nodes and weights. The output of these simulations
based on visited nodes and the minimum sum of weights is presented in tables and
graphs. This research can be a useful guide for indoor shortest-path researchers. In future
work, we might extend the application of EAMDSP from an indoor to an outdoor envi-
ronment.

Author Contributions: Conceptualization, M.A., F.H. and T.K.G.; methodology, M.A., F.H. and
T.K.G.; validation, F.H. and T.K.G.; formal analysis, M.A. and F.H.; writing—original draft prepa-
ration, M.A. and F.H.; writing—review and editing, F.H., C.P.T. and S.S.; visualization, M.A.B. and
S.A.; supervision, T.K.G. and S.S.; project administration, F.H.; funding acquisition, T.K.G., A.A. and
H.-Y.W. All authors have read and agreed to the published version of the manuscript.

45
58

88

60

104

124

52

78

101

0

20

40

60

80

100

120

140

Items (5) Items (8) Items (11)

To
ta

l V
is

ite
d

N
od

es

No. of Items

Visited Nodes Wise Comparison

ESPAMD CDSSSD MDMSMD

Figure 20. Visited node-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

Table 22. Total visited node-wise comparison between EAMDSP, CDSSSD, and MDMSMD.

SL No. Algorithm Name Items (5) Items (8) Items (11)

1 EAMDSP 45 58 88
2 CDSSSD 60 104 124
3 MDMSMD 52 78 101

Symmetry 2021, 13, 421 21 of 29

Finally, based on Figures 13, 14, 19 and 20, and Tables 13, 14, 21 and 22 it is reported
that the proposed EAMDSP demonstrates the outstanding performance on cost and number
of visited nodes compared to CDSSSD and MDMSMD.

5. Conclusions

The proposed EAMDSP algorithm was developed and implemented in indoor ap-
plications and found to be more efficient for a multi-destination search. It can be used
on any type of road network with multi-destinations for shortest path searching. In this
paper, we evaluated the EAMDSP by comparing it with CDSSSD and MDMSMD using
two different simulations of several items of searching. For a search with a large number of
products, EAMDSP demonstrated an outstanding performance compared to CDSSSD and
MDMSMD, based on the total visited nodes and weights. The output of these simulations
based on visited nodes and the minimum sum of weights is presented in tables and graphs.
This research can be a useful guide for indoor shortest-path researchers. In future work,
we might extend the application of EAMDSP from an indoor to an outdoor environment.

Author Contributions: Conceptualization, M.A., F.H. and T.K.G.; methodology, M.A., F.H. and
T.K.G.; validation, F.H. and T.K.G.; formal analysis, M.A. and F.H.; writing—original draft prepa-
ration, M.A. and F.H.; writing—review and editing, F.H., C.P.T. and S.S.; visualization, M.A.B. and
S.A.; supervision, T.K.G. and S.S.; project administration, F.H.; funding acquisition, T.K.G., A.A. and
H.-Y.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research is also funded by the “Indoor Internet of Things (IOT) Tracking Algorithm
Development based on Radio Signal Characterization” and “Mobile IOT: Location Aware” project
bearing grant no. [FRGS/1/2018/TK08/MMU/02/1] and [MMUE/180025].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Special thanks to MMU RMC for providing comprehensive financial assistance
to this research.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role
in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the
manuscript, or in the decision to publish the results.

Appendix A. Result Detail Data Tables

Table A1. Simulation detail data for car spare parts scenario using EAMDSP for four items search.

SL No. Visited
Node Longitude Latitude Source

Node
Destination

Node Weight Item Name

1 342 102.27257 2.2528471 342 384 0 1st source
2 208 102.27257 2.252859 342 384 2
3 209 102.27257 2.2528595 342 384 1
4 210 102.27257 2.2528599 342 384 1
5 211 102.27256 2.2528603 342 384 1
6 212 102.27256 2.2528607 342 384 1
7 213 102.27256 2.2528615 342 384 1
8 214 102.27256 2.2528757 342 384 2
9 215 102.27256 2.2528774 342 384 1
10 232 102.27256 2.2528798 342 384 1

11 384 102.27256 2.2528801 342 384 1 Bumper 1st
destination

12 232 102.27256 2.2528798 384 472 1
13 233 102.27256 2.2528833 384 472 1
14 234 102.27256 2.2528868 384 472 1
15 235 102.27256 2.2528903 384 472 1

Symmetry 2021, 13, 421 22 of 29

Table A1. Cont.

SL No. Visited
Node Longitude Latitude Source

Node
Destination

Node Weight Item Name

16 236 102.27256 2.2528911 384 472 1
17 253 102.27256 2.2528938 384 472 1
18 254 102.27256 2.2528971 384 472 1
19 255 102.27256 2.2529008 384 472 1
20 256 102.27256 2.2529042 384 472 1
21 257 102.27256 2.2529051 384 472 1
22 274 102.27256 2.2529077 384 472 1
23 275 102.27256 2.2529111 384 472 1
24 276 102.27256 2.2529148 384 472 1
25 277 102.27257 2.2529182 384 472 1
26 278 102.27257 2.2529192 384 472 1
27 295 102.27257 2.2529217 384 472 1
28 296 102.27257 2.2529252 384 472 1
29 297 102.27257 2.2529287 384 472 1
30 298 102.27257 2.2529323 384 472 1
31 299 102.27257 2.2529332 384 472 1
32 300 102.27257 2.2529328 384 472 1
33 301 102.27258 2.2529326 384 472 1

34 472 102.27258 2.252928 384 472 1 Antenna
cable

2nd
destination

35 301 102.27258 2.2529326 472 683 1
36 302 102.27258 2.2529323 472 683 1
37 303 102.27258 2.252932 472 683 1
38 304 102.27259 2.2529318 472 683 1
39 305 102.27259 2.2529315 472 683 1
40 306 102.27259 2.2529314 472 683 1
41 307 102.2726 2.2529311 472 683 1
42 308 102.2726 2.2529308 472 683 1
43 309 102.2726 2.2529306 472 683 1
44 310 102.2726 2.2529303 472 683 1
45 311 102.27261 2.2529301 472 683 1
46 312 102.27261 2.2529298 472 683 1
47 313 102.27261 2.2529295 472 683 1
48 314 102.27262 2.2529293 472 683 1
49 315 102.27262 2.2529291 472 683 1
50 186 102.27262 2.2529285 472 683 1
51 185 102.27262 2.252931 472 683 1
52 184 102.27263 2.2529348 472 683 1
53 183 102.27263 2.2529386 472 683 1
54 182 102.27263 2.2529423 472 683 1
55 181 102.27263 2.2529435 472 683 1
56 180 102.27263 2.252946 472 683 1
57 179 102.27263 2.2529495 472 683 1
58 178 102.27263 2.2529534 472 683 1
59 22 102.27263 2.2529585 472 683 1
60 23 102.27265 2.2529578 472 683 1
61 24 102.27266 2.2529569 472 683 2
62 25 102.27266 2.2529567 472 683 1
63 26 102.27267 2.2529567 472 683 1
64 27 102.27267 2.2529564 472 683 1
65 28 102.27267 2.2529563 472 683 1
66 29 102.27268 2.2529562 472 683 1
67 30 102.27268 2.2529559 472 683 1
68 31 102.27268 2.2529558 472 683 1
69 32 102.27269 2.2529557 472 683 1
70 33 102.27269 2.2529554 472 683 1

71 683 102.27269 2.2529501 472 683 1 Bucket seat 3rd
destination

Symmetry 2021, 13, 421 23 of 29

Table A1. Cont.

SL No. Visited
Node Longitude Latitude Source

Node
Destination

Node Weight Item Name

72 33 102.27269 2.2529554 683 713 1
73 32 102.27269 2.2529557 683 713 1
74 31 102.27268 2.2529558 683 713 1
75 30 102.27268 2.2529559 683 713 1
76 29 102.27268 2.2529562 683 713 1
77 28 102.27267 2.2529563 683 713 1
78 27 102.27267 2.2529564 683 713 1
79 26 102.27267 2.2529567 683 713 1
80 25 102.27266 2.2529567 683 713 1
81 24 102.27266 2.2529569 683 713 1
82 164 102.27266 2.2529515 683 713 1
83 163 102.27266 2.2529477 683 713 1
84 162 102.27266 2.252944 683 713 1
85 145 102.27266 2.2529414 683 713 1
86 146 102.27266 2.2529411 683 713 1
87 147 102.27267 2.2529409 683 713 1
88 148 102.27267 2.2529407 683 713 1
89 149 102.27267 2.2529405 683 713 1
90 150 102.27267 2.2529404 683 713 1
91 151 102.27268 2.2529402 683 713 1
92 152 102.27268 2.25294 683 713 1

93 713 102.27268 2.2529351 683 713 1

Adjusting
mechanism

(adjuster
star wheel)

4th
destination

Total visited nodes = 93, total cost = 95.

Table A2. Simulation detail data for car spare parts Scenario using CDSSSD for four items search.

SL No. Visited
Node Longitude Latitude Source Node Destination

Node Weight Item Name

1 342 102.27257 2.2528471 342 472 0
2 208 102.27257 2.252859 342 472 2
3 209 102.27257 2.2528595 342 472 1
4 210 102.27257 2.2528599 342 472 1
5 211 102.27256 2.2528603 342 472 1
6 212 102.27256 2.2528607 342 472 1
7 213 102.27256 2.2528615 342 472 1
8 214 102.27256 2.2528757 342 472 2
9 215 102.27256 2.2528774 342 472 1
10 232 102.27256 2.2528798 342 472 1
11 233 102.27256 2.2528833 342 472 1
12 234 102.27256 2.2528868 342 472 1
13 235 102.27256 2.2528903 342 472 1
14 236 102.27256 2.2528911 342 472 1
15 253 102.27256 2.2528938 342 472 1
16 254 102.27256 2.2528971 342 472 1
17 255 102.27256 2.2529008 342 472 1
18 256 102.27256 2.2529042 342 472 1
19 257 102.27256 2.2529051 342 472 1
20 274 102.27256 2.2529077 342 472 1
21 275 102.27256 2.2529111 342 472 1
22 276 102.27256 2.2529148 342 472 1
23 277 102.27257 2.2529182 342 472 1
24 278 102.27257 2.2529192 342 472 1

Symmetry 2021, 13, 421 24 of 29

Table A2. Cont.

SL No. Visited
Node Longitude Latitude Source Node Destination

Node Weight Item Name

25 295 102.27257 2.2529217 342 472 1
26 296 102.27257 2.2529252 342 472 1
27 297 102.27257 2.2529287 342 472 1
28 298 102.27257 2.2529323 342 472 1
29 299 102.27257 2.2529332 342 472 1
30 300 102.27257 2.2529328 342 472 1
31 301 102.27258 2.2529326 342 472 1

32 472 102.27258 2.252928 342 472 1 Antenna
cable

33 342 102.27257 2.2528471 342 384 0
34 208 102.27257 2.252859 342 384 2
35 209 102.27257 2.2528595 342 384 1
36 210 102.27257 2.2528599 342 384 1
37 211 102.27256 2.2528603 342 384 1
38 212 102.27256 2.2528607 342 384 1
39 213 102.27256 2.2528615 342 384 1
40 214 102.27256 2.2528757 342 384 2
41 215 102.27256 2.2528774 342 384 1
42 232 102.27256 2.2528798 342 384 1
43 384 102.27256 2.2528801 342 384 1 Bumper
44 342 102.27257 2.2528471 342 713 0
45 208 102.27257 2.252859 342 713 2
46 207 102.27258 2.2528588 342 713 1
47 206 102.27258 2.2528583 342 713 1
48 205 102.27258 2.252858 342 713 1
49 204 102.27259 2.2528575 342 713 1
50 203 102.27259 2.2528572 342 713 1
51 202 102.27259 2.2528567 342 713 1
52 201 102.27259 2.2528565 342 713 1
53 200 102.2726 2.252856 342 713 1
54 199 102.2726 2.2528555 342 713 1
55 198 102.2726 2.2528553 342 713 1
56 197 102.27261 2.2528548 342 713 1
57 196 102.27261 2.2528543 342 713 1
58 195 102.27261 2.2528706 342 713 2
59 194 102.27262 2.2528847 342 713 2
60 193 102.27262 2.2528996 342 713 2
61 192 102.27262 2.2529086 342 713 1
62 166 102.27264 2.2529071 342 713 2
63 165 102.27265 2.2529057 342 713 2
64 119 102.27265 2.2529111 342 713 1
65 120 102.27265 2.2529138 342 713 1
66 121 102.27265 2.2529178 342 713 1
67 122 102.27265 2.2529216 342 713 1
68 123 102.27266 2.2529251 342 713 1
69 124 102.27266 2.2529265 342 713 1
70 141 102.27266 2.2529289 342 713 1
71 142 102.27266 2.2529325 342 713 1
72 143 102.27266 2.2529367 342 713 1
73 144 102.27266 2.25294 342 713 1
74 145 102.27266 2.2529414 342 713 1
75 146 102.27266 2.2529411 342 713 1
76 147 102.27267 2.2529409 342 713 1
77 148 102.27267 2.2529407 342 713 1
78 149 102.27267 2.2529405 342 713 1
79 150 102.27267 2.2529404 342 713 1
80 151 102.27268 2.2529402 342 713 1
81 152 102.27268 2.25294 342 713 1

Symmetry 2021, 13, 421 25 of 29

Table A2. Cont.

SL No. Visited
Node Longitude Latitude Source Node Destination

Node Weight Item Name

82 713 102.27268 2.2529351 342 713 1

Adjusting
mechanism

(adjuster star
wheel)

83 342 102.27257 2.2528471 342 683 0
84 208 102.27257 2.252859 342 683 2
85 207 102.27258 2.2528588 342 683 1
86 206 102.27258 2.2528583 342 683 1
87 205 102.27258 2.252858 342 683 1
88 204 102.27259 2.2528575 342 683 1
89 203 102.27259 2.2528572 342 683 1
90 202 102.27259 2.2528567 342 683 1
91 201 102.27259 2.2528565 342 683 1
92 200 102.2726 2.252856 342 683 1
93 199 102.2726 2.2528555 342 683 1
94 198 102.2726 2.2528553 342 683 1
95 197 102.27261 2.2528548 342 683 1
96 196 102.27261 2.2528543 342 683 1
97 195 102.27261 2.2528706 342 683 2
98 194 102.27262 2.2528847 342 683 2
99 193 102.27262 2.2528996 342 683 2

100 192 102.27262 2.2529086 342 683 1
101 166 102.27264 2.2529071 342 683 2
102 167 102.27264 2.2529153 342 683 1
103 168 102.27264 2.252919 342 683 1
104 169 102.27264 2.2529226 342 683 1
105 170 102.27264 2.2529264 342 683 1
106 171 102.27264 2.2529298 342 683 1
107 172 102.27264 2.2529338 342 683 1
108 173 102.27264 2.2529376 342 683 1
109 174 102.27264 2.2529413 342 683 1
110 175 102.27264 2.2529451 342 683 1
111 176 102.27264 2.2529486 342 683 1
112 177 102.27264 2.2529524 342 683 1
113 23 102.27265 2.2529578 342 683 1
114 24 102.27266 2.2529569 342 683 2
115 25 102.27266 2.2529567 342 683 1
116 26 102.27267 2.2529567 342 683 1
117 27 102.27267 2.2529564 342 683 1
118 28 102.27267 2.2529563 342 683 1
119 29 102.27268 2.2529562 342 683 1
120 30 102.27268 2.2529559 342 683 1
121 31 102.27268 2.2529558 342 683 1
122 32 102.27269 2.2529557 342 683 1
123 33 102.27269 2.2529554 342 683 1
124 683 102.27269 2.2529501 342 683 1 Bucket seat

Total visited nodes = 124, total cost = 136.

Table A3. Simulation detail data for car spare parts scenario using MDMSMD for four items search.

SL No. Visited
Node Longitude Latitude Source

Node
Destination

Node Weight Item Name

1 342 102.27257 2.2528471 342 472 0 1st source
2 208 102.27257 2.252859 342 472 2
3 209 102.27257 2.2528595 342 472 1
4 210 102.27257 2.2528599 342 472 1
5 211 102.27256 2.2528603 342 472 1

Symmetry 2021, 13, 421 26 of 29

Table A3. Cont.

SL No. Visited
Node Longitude Latitude Source

Node
Destination

Node Weight Item Name

6 212 102.27256 2.2528607 342 472 1
7 213 102.27256 2.2528615 342 472 1
8 214 102.27256 2.2528757 342 472 2
9 215 102.27256 2.2528774 342 472 1
10 232 102.27256 2.2528798 342 472 1
11 233 102.27256 2.2528833 342 472 1
12 234 102.27256 2.2528868 342 472 1
13 235 102.27256 2.2528903 342 472 1
14 236 102.27256 2.2528911 342 472 1
15 253 102.27256 2.2528938 342 472 1
16 254 102.27256 2.2528971 342 472 1
17 255 102.27256 2.2529008 342 472 1
18 256 102.27256 2.2529042 342 472 1
19 257 102.27256 2.2529051 342 472 1
20 274 102.27256 2.2529077 342 472 1
21 275 102.27256 2.2529111 342 472 1
22 276 102.27256 2.2529148 342 472 1
23 277 102.27257 2.2529182 342 472 1
24 278 102.27257 2.2529192 342 472 1
25 295 102.27257 2.2529217 342 472 1
26 296 102.27257 2.2529252 342 472 1
27 297 102.27257 2.2529287 342 472 1
28 298 102.27257 2.2529323 342 472 1
29 299 102.27257 2.2529332 342 472 1
30 300 102.27257 2.2529328 342 472 1
31 301 102.27258 2.2529326 342 472 1

32 472 102.27258 2.252928 342 472 1 Antenna
cable

1st
destination

33 301 102.27258 2.2529326 472 384 1
34 300 102.27257 2.2529328 472 384 1
35 299 102.27257 2.2529332 472 384 1
36 298 102.27257 2.2529323 472 384 1
37 297 102.27257 2.2529287 472 384 1
38 296 102.27257 2.2529252 472 384 1
39 295 102.27257 2.2529217 472 384 1
40 278 102.27257 2.2529192 472 384 1
41 277 102.27257 2.2529182 472 384 1
42 276 102.27256 2.2529148 472 384 1
43 275 102.27256 2.2529111 472 384 1
44 274 102.27256 2.2529077 472 384 1
45 257 102.27256 2.2529051 472 384 1
46 256 102.27256 2.2529042 472 384 1
47 255 102.27256 2.2529008 472 384 1
48 254 102.27256 2.2528971 472 384 1
49 253 102.27256 2.2528938 472 384 1
50 236 102.27256 2.2528911 472 384 1
51 235 102.27256 2.2528903 472 384 1
52 234 102.27256 2.2528868 472 384 1
53 233 102.27256 2.2528833 472 384 1
54 232 102.27256 2.2528798 472 384 1

55 384 102.27256 2.2528801 472 384 1 Bumper 2nd
destination

56 232 102.27256 2.2528798 384 713 1
57 215 102.27256 2.2528774 384 713 1
58 216 102.27256 2.2528767 384 713 1
59 217 102.27257 2.2528764 384 713 1
60 218 102.27257 2.2528761 384 713 1

Symmetry 2021, 13, 421 27 of 29

Table A3. Cont.

SL No. Visited
Node Longitude Latitude Source

Node
Destination

Node Weight Item Name

61 219 102.27257 2.2528755 384 713 1
62 220 102.27258 2.2528752 384 713 1
63 221 102.27258 2.2528749 384 713 1
64 222 102.27258 2.2528744 384 713 1
65 223 102.27259 2.2528741 384 713 1
66 224 102.27259 2.2528738 384 713 1
67 225 102.27259 2.2528735 384 713 1
68 226 102.27259 2.252873 384 713 1
69 227 102.2726 2.2528727 384 713 1
70 228 102.2726 2.2528722 384 713 1
71 229 102.2726 2.2528718 384 713 1
72 230 102.27261 2.2528715 384 713 1
73 231 102.27261 2.2528712 384 713 1
74 195 102.27261 2.2528706 384 713 1
75 194 102.27262 2.2528847 384 713 2
76 193 102.27262 2.2528996 384 713 2
77 192 102.27262 2.2529086 384 713 1
78 166 102.27264 2.2529071 384 713 2
79 165 102.27265 2.2529057 384 713 2
80 119 102.27265 2.2529111 384 713 1
81 120 102.27265 2.2529138 384 713 1
82 121 102.27265 2.2529178 384 713 1
83 122 102.27265 2.2529216 384 713 1
84 123 102.27266 2.2529251 384 713 1
85 124 102.27266 2.2529265 384 713 1
86 141 102.27266 2.2529289 384 713 1
87 142 102.27266 2.2529325 384 713 1
88 143 102.27266 2.2529367 384 713 1
89 144 102.27266 2.25294 384 713 1
90 145 102.27266 2.2529414 384 713 1
91 146 102.27266 2.2529411 384 713 1
92 147 102.27267 2.2529409 384 713 1
93 148 102.27267 2.2529407 384 713 1
94 149 102.27267 2.2529405 384 713 1
95 150 102.27267 2.2529404 384 713 1
96 151 102.27268 2.2529402 384 713 1
97 152 102.27268 2.25294 384 713 1

98 713 102.27268 2.2529351 384 713 1

Adjusting
mechanism

(adjuster
star wheel)

3rd
destination

99 152 102.27268 2.25294 713 683 1
100 151 102.27268 2.2529402 713 683 1
101 150 102.27267 2.2529404 713 683 1
102 149 102.27267 2.2529405 713 683 1
103 148 102.27267 2.2529407 713 683 1
104 147 102.27267 2.2529409 713 683 1
105 146 102.27266 2.2529411 713 683 1
106 145 102.27266 2.2529414 713 683 1
107 162 102.27266 2.252944 713 683 1
108 163 102.27266 2.2529477 713 683 1
109 164 102.27266 2.2529515 713 683 1
110 24 102.27266 2.2529569 713 683 1
111 25 102.27266 2.2529567 713 683 1
112 26 102.27267 2.2529567 713 683 1
113 27 102.27267 2.2529564 713 683 1
114 28 102.27267 2.2529563 713 683 1

Symmetry 2021, 13, 421 28 of 29

Table A3. Cont.

SL No. Visited
Node Longitude Latitude Source

Node
Destination

Node Weight Item Name

115 29 102.27268 2.2529562 713 683 1
116 30 102.27268 2.2529559 713 683 1
117 31 102.27268 2.2529558 713 683 1
118 32 102.27269 2.2529557 713 683 1
119 33 102.27269 2.2529554 713 683 1

120 683 102.27269 2.2529501 713 683 1 Bucket seat 4th
destination

Total visited nodes = 120, total cost = 125.

References
1. Adamatzky, A. Shortest Path Solvers. From Software to Wetware; Springer: Berlin/Heidelberg, Germany, 2018; Volume 32.
2. Papadopoulos, S.; Kompatsiaris, Y.; Vakali, A.; Spyridonos, P. Community detection in social media, performance and application

considerations. J. Data Min. Knowl. Discov. 2012, 24, 515–554. [CrossRef]
3. Kwon, Y.S.; Sohn, M.Y. Classification of Efficient Total Domination Sets of Circulant Graphs of Degree 5. Symmetry 2020, 12,

1944. [CrossRef]
4. Yang, L.; Li, D.; Tan, R. Shortest Path Solution of Trapezoidal Fuzzy Neutrosophic Graph Based on Circle-Breaking Algorithm.

Symmetry 2020, 12, 1360. [CrossRef]
5. Kalaitzakis, A. Comparative Study of Community Detection Algorithms in Social Networks. Ph.D. Thesis, Technological

Educational Institute of Crete, Heraklion, Greece, 1939.
6. Bharath-Kumar, K.; Jaffe, J.M. Routing to Multiple Destinations in Computer Networks. IEEE Trans. Commun. 1983, 31,

343–351. [CrossRef]
7. Ben Ticha, H.; Absi, N. A Solution Method for the Multi-Destination Bi-Objectives Shortest Path Problem; Elsevier: Amsterdam, The

Netherlands, 2017. [CrossRef]
8. Dong, Y.F.; Xia, H.M.; Zhou, Y.C. Disordered and Multiple Destinations Path Planning Methods for Mobile Robot in Dynamic

Environment. J. Electr. Comput. Eng. 2016, 2016, 3620895. [CrossRef]
9. Sepehrifar, M.K.; Zamanifar, K.; Sepehrifar, M.B. An Algorithm to Select the Optimal Composition of the Services. J. Theor. Appl.

Inf. Technol. 2009, 8, 154–161.
10. Wang, W.; Uehara, M.; Ozaki, H. Evaluation of navigation based on system optimal traffic assignment for connected cars. Int. J.

Grid Util. Comput. 2020, 11, 525–532. [CrossRef]
11. Burgaña, J.L. Design and evaluation of a link-state routing protocol for Internet-Wide Geocasting. Master’s Thesis, University of

Twente, Enschede, The Netherlands, 2017.
12. Sepehrifar, M.K.; Fanian, A.; Sepehrifar, B. Shortest Path Computation in a Network with Multiple Destinations. Arab. J. Sci. Eng.

2020, 45, 3223–3231. [CrossRef]
13. Jubair, F.; Hawa, M. Exploiting Obstacle Geometry to Reduce Search Time in Grid-Based Pathfinding. Symmetry 2020, 12,

1186. [CrossRef]
14. Rahman, M.S.; Ahmed, S. A survey on pairwise compatibility graphs. AKCE Int. J. Graphs Comb. 2020, 17, 788–795. [CrossRef]
15. Easttom, W.; Adda, M. An enhanced view of incidence functions for applying graph theory to modeling network intrusions.

WSEAS Trans. Inf. Sci. Appl. 2020, 15, 102–109.
16. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2009.
17. Arman, N.; Khamayseh, F. A Path-Compression Approach for Improving Shortest-Path Algorithms. Int. J. Electr. Comput. Eng.

2015, 5, 772–781. [CrossRef]
18. Hakeem, A.; Gehani, N.; Ding, X.; Curtmola, R.; Borcea, C. Multi-destination vehicular route planning with parking and traffic

constraints. In Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services, Houston, TX, USA, 12–14 November 2019; pp. 298–307.

19. Hu, W.-C.; Wu, H.-T.; Cho, H.-H.; Tseng, F.-H. Optimal Route Planning System for Logistics Vehicles Based on Artificial
Intelligence. J. Internet Technol. 2020, 21, 757–764.

20. Li, X.; Yin, H. Optimal Mobile Relays Positions and Resource Allocation for Multi-Relay Multi-Destination Wireless Networks.
IEEE Access 2020, 8, 47993–48004. [CrossRef]

21. And̄elić, M.; Živković, D. Efficient Algorithm for Generating Maximal L-Reflexive Trees. Symmetry 2020, 12, 809. [CrossRef]
22. Zhang, H.; Zhang, Z. AOA-Based Three-Dimensional Positioning and Tracking Using the Factor Graph Technique. Symmetry

2020, 12, 1400. [CrossRef]
23. Panić, B.; Kontrec, N.; Vujošević, M.; Panić, S. A Novel Approach for Determination of Reliability of Covering a Node from K

Nodes. Symmetry 2020, 12, 1461. [CrossRef]
24. Slamin, S.; Adiwijaya, N.O.; Hasan, M.A.; Dafik, D.; Wijaya, K. Local Super Antimagic Total Labeling for Vertex Coloring of

Graphs. Symmetry 2020, 12, 1843. [CrossRef]

http://doi.org/10.1007/s10618-011-0224-z
http://doi.org/10.3390/sym12121944
http://doi.org/10.3390/sym12081360
http://doi.org/10.1109/TCOM.1983.1095818
http://doi.org/10.13140/RG.2.2.32492.05768
http://doi.org/10.1155/2016/3620895
http://doi.org/10.1504/IJGUC.2020.108456
http://doi.org/10.1007/s13369-020-04340-w
http://doi.org/10.3390/sym12071186
http://doi.org/10.1016/j.akcej.2019.12.011
http://doi.org/10.11591/ijece.v5i4.pp772-781
http://doi.org/10.1109/ACCESS.2020.2979687
http://doi.org/10.3390/sym12050809
http://doi.org/10.3390/sym12091400
http://doi.org/10.3390/sym12091461
http://doi.org/10.3390/sym12111843

Symmetry 2021, 13, 421 29 of 29

25. Martínez, A.C.; García, S.C.; García, A.C.; Del Rio, A.M.G. On the Outer-Independent Roman Domination in Graphs. Symmetry
2020, 12, 1846. [CrossRef]

26. Martínez, A.C.; Estrada-Moreno, A.; Rodríguez-Velázquez, J.A. Secure w-Domination in Graphs. Symmetry 2020, 12,
1948. [CrossRef]

27. Lv, Y.; Liu, M.; Xiang, Y. Fast Searching Density Peak Clustering Algorithm Based on Shared Nearest Neighbor and Adaptive
Clustering Center. Symmetry 2020, 12, 2014. [CrossRef]

28. Balakrishnan, A.; Banciu, M.; Glowacka, K.; Mirchandani, P. Hierarchical approach for survivable network design. Eur. J. Oper.
Res. 2013, 225, 223–235. [CrossRef]

29. Fredman, M.L.; Tarjan, R.E. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 1987, 34,
596–615. [CrossRef]

30. Qu, T.; Cai, Z. A Fast Isomap Algorithm Based on Fibonacci Heap. In International Conference in Swarm Intelligence; Springer:
Cham, Switzerland, 2015; pp. 225–231.

31. Lu, X.; Camitz, M. Finding the shortest paths by node combination. Appl. Math. Comput. 2011, 217, 6401–6408. [CrossRef]
32. Orlin, J.B.; Madduri, K.; Subramani, K.; Williamson, M. A faster algorithm for the single source shortest path problem with few

distinct positive lengths. J. Discret. Algorithms 2010, 8, 189–198. [CrossRef]
33. Thorup, M. Undirected single-source shortest paths with positive integer weights in linear time. J. ACM 1999, 46,

362–394. [CrossRef]
34. Thorup, M. On RAM Priority Queues. SIAM J. Comput. 2000, 30, 86–109. [CrossRef]
35. MacCormick, J. What Can Be Computed? A Practical Guide to the Theory of Computation; Princeton University Press: Princeton, NJ,

USA, 2018.
36. Xu, M.; Liu, Y.; Huang, Q.; Zhang, Y.; Luan, G. An improved Dijkstra’s shortest path algorithm for sparse network. Appl. Math.

Comput. 2007, 185, 247–254. [CrossRef]
37. Holzer, M.; Schulz, F.; Wagner, D.; Willhalm, T. Combining speed-up techniques for shortest-path computations. ACM J. Exp.

Algorithmics 2005, 10, 2–5. [CrossRef]
38. Chen, Y.-Z.; Shen, S.-F.; Chen, T.; Yang, R. Path Optimization Study for Vehicles Evacuation based on Dijkstra Algorithm. Procedia

Eng. 2014, 71, 159–165. [CrossRef]
39. Madkour, A.; Aref, W.G.; Rehman, F.U.; Rahman, M.A.; Basalamah, S. A survey of shortest-path algorithms. arXiv 2017,

arXiv:1705.02044.
40. Okengwu, U.A.; Nwachukwu, E.O.; Osegi, E.N. Modified Dijkstra algorithm with invention hierarchies applied to a conic graph.

arXiv 2015, arXiv:1503.02517.
41. Hong, Y.; Li, D.; Wu, Q.; Xu, H. Priority-Oriented Route Network Planning for Evacuation in Constrained Space Scenarios. J.

Optim. Theory Appl. 2019, 181, 279–297. [CrossRef]
42. Jin, W.; Chen, S.; Jiang, H. Finding the K shortest paths in a time-schedule network with constraints on arcs. Comput. Oper. Res.

2013, 40, 2975–2982. [CrossRef]
43. Ananta, M.T.; Jiang, J.-R.; Muslim, M.A. Multicasting with the extended Dijkstra’s shortest path algorithm for software defined

networking. Int. J. Appl. Eng. Res. 2014, 9, 21017–21030.

http://doi.org/10.3390/sym12111846
http://doi.org/10.3390/sym12121948
http://doi.org/10.3390/sym12122014
http://doi.org/10.1016/j.ejor.2012.09.045
http://doi.org/10.1145/28869.28874
http://doi.org/10.1016/j.amc.2011.01.019
http://doi.org/10.1016/j.jda.2009.03.001
http://doi.org/10.1145/316542.316548
http://doi.org/10.1137/S0097539795288246
http://doi.org/10.1016/j.amc.2006.06.094
http://doi.org/10.1145/1064546.1180616
http://doi.org/10.1016/j.proeng.2014.04.023
http://doi.org/10.1007/s10957-018-1386-2
http://doi.org/10.1016/j.cor.2013.07.005

	Introduction
	Related Work
	Algorithms
	Algorithm: CDSSSD
	Algorithm: MDMSMD
	The Proposed EAMDSP

	Results and Discussion
	Conclusions
	Result Detail Data Tables
	References

