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Abstract: In a previous paper, we have shown that Newton’s third law cannot strictly hold in a
distributed system of which the different parts are at a finite distance from each other. This is due
to the finite speed of signal propagation which cannot exceed the speed of light in vacuum, which
in turn means that when summing the total force in the system the force does not add up to zero.
This was demonstrated in a specific example of two current loops with time dependent currents, the
above analysis led to suggestion of a relativistic engine. Since the system is effected by a total force
for a finite period of time this means that the system acquires mechanical momentum and energy,
the question then arises how can we accommodate the law of momentum and energy conservation.
The subject of momentum conservation was discussed in a pervious paper, while preliminary results
regarding energy conservation where discussed in some additional papers. Here we give a complete
analysis of the exchange of energy between the mechanical part of the relativistic engine and the field
part, the energy radiated from the relativistic engine is also discussed. We show that the relativistic
engine effect on the energy is 4th-order in 1

c and no lower order relativistic engine effect on the
energy exists.

Keywords: Newton’s third law; electromagnetism; relativity

1. Introduction

Special relativity is a theory of the structure of space-time. It dictates that the equa-
tions of any physical theory should be invariant under the Lorentz group of coordinate
transformations. The theory was first introduced in Einstein’s famous 1905 paper: “On
the Electrodynamics of Moving Bodies” [1]. This theory was a consequence of empiric
observations and the laws of electromagnetism which were formulated in the middle of
the nineteenth century by Maxwell in their famous four partial differential equations [2–4]
which owe their current form to Oliver Heaviside [5]. One of the consequences of these
equations is that an electromagnetic signal travels at the speed of light c, which led people to
believe that light is an electromagnetic wave. This was later used by Albert Einstein [1,3,4]
to formulate their special theory of relativity which postulates that the speed of light in
vacuum c is the maximal allowed velocity in nature. According to the theory of relativity
no object, message, signal (even if not electromagnetic) or field can travel faster than the
speed of light in vacuum. Hence retardation, if someone at a distance R from me changes
something I may not know about it for at least a retardation time of R

c . This means that
action and its reaction cannot be generated at the same time because of the signal finite
propagation speed.

Newton’s laws of motion are three physical laws that, together, laid the foundation
for classical mechanics. They describe the relationship between a body and the forces
acting upon it, and its motion in response to those forces. The three laws of motion were
first compiled by Isaac Newton in their Philosophiae Naturalis Principia Mathematica
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(Mathematical Principles of Natural Philosophy), first published in 1687 [6,7]. We will only
be interested in this paper in the third law which states: When one body exerts a force on
a second body, the second body simultaneously exerts a force equal in magnitude and
opposite in direction on the first body.

According to the third law, the total force in a system not affected by external forces is
thus zero. This law has numerous experimental verifications and seems to be one of the
corner stones of physics. However, in light of the previous discussion it is obvious that
action and its reaction cannot be generated at the same time because of the finite speed of
signal propagation, hence the third law is false in an exact sense although it can be true
for most practical application due to the high speed of signal propagation. Thus, the total
force cannot be null at a given time.

Most modern locomotive systems are based on two material parts each obtaining
momentum, which is equal and opposite to the momentum gained by the second part.
A typical example of this type of system is a rocket which sheds exhaust gas to propel itself.
However, the above relativistic considerations suggest’s a new type of motor in which the
system is not composed of two material bodies but of a material body and field. Ignoring
the field a naive observer will see the material body gaining momentum created out of
nothing, however, a knowledgeable observer will understand that the opposite amount of
momentum is obtained by the field as was shown in [8]. Indeed Noether’s theorem dictates
that any system possessing translational symmetry will conserve momentum and the total
physical system containing matter and field is indeed symmetrical under translations, while
every sub-system (either matter or field) is not. This was already noticed by Feynman [4].
Feynman describes two orthogonally moving charges, apparently violating Newton’s third
law as the forces that the charges induce on each other do not cancel (last part of 26-2), this
paradox is resolved in (27-6) in which it is shown that the momentum gained by the two
charge system is balanced by the field momentum.

We will define a relativistic engine as a physical system in which its center of mass
is in motion due to the interaction of its material parts. Those parts may be free to
move with respect to each other or more practically held in a rigid frame. This is of no
consequence as we will only be interested in the motion of the center of mass in this
paper. We stress that a relativistic motor allows 3-axis motion (including vertical), it has
no moving parts, it has zero fuel consumption (and thus zero carbon emission) and needs
only electromagnetic energy as explained in the current paper which may be provided by
solar panels. The relativistic engine is an ideal solution for space travel in which currently
much of the space vehicle mass is devoted to fuel.

It should be noted that there is no Lorentz covariant definition for the relativistic center
of mass, as pointed out by Pryce [9]. Indeed, the center of mass mentioned in our work is
not Lorentz covariant, it is defined with respect to a specific frame of reference in which the
relativistic engine is at rest (the laboratory frame of reference). Even after the engine is set
into motion its velocity is small compared to the speed of light, and thus the Newtonian
definition of the center of mass still holds approximately in that specific frame. One should
not confuse the retardation speed of the electromagnetic field (which is equal to speed of
light in vacuum) with the speed of the engine itself that may be quite modest. The device
is denoted a relativistic engine because it takes advantage of the relativistic retardation
effect not because it can reach relativistic speeds, in fact one can think of reasons why a
macroscopic relativistic engine will not reach relativistic speed due to the high energy
required. However, if one still would like to consider an engine moving at relativistic
speeds then perhaps the center of mass concept should be replaced by something else,
perhaps a relativistic center of momentum, however, this option is beyond the scope of the
current paper.

To be sure, other systems can introduce retardation such as for two objects that are
connected by a long spring, in which conservation of momentum and energy do not apply if
one ignores the momentum and energy of the spring. This case along with other interesting
cases are discussed in an excellent book “Dynamics of Particles and the Electromagnetic
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Field” [10], where more problems, and solutions, were treated than in the current paper,
this includes the problem of initial conditions. This work is not about retardation in long
springs but about retardation caused by the relativistic effect of a finite speed of signal
propagation. Only in this later case, momentum and energy is transferred between field
and material allowing the relativistic engine effect. This is quite different than transfer of
momentum and energy between two material bodies such as two objects and a connecting
long spring. Momentum and energy transfer between material bodies is well known and
the center of mass of the two objects and the connecting long spring viewed as one system
cannot move, if not initially in motion. However, this is rather different from the current
case in which momentum and energy are transferred from the electromagnetic field to
a material body. In the later example momentum and energy are transferred from one
material body (the two objects) to another material body (the long spring) this is well
known and perhaps of less interest than the transfer of momentum and energy from a
material body to a field which is involved in the motion of the center of mass of the material
body. The latter case suggests a new form of motor which is the relativistic engine.

In what follows, we will assume that the magnetization and polarization of the
medium are small and therefore we neglect corrections to the Lorentz force suggested
in [11]. In a paper by Griffiths and Heald [12], it was pointed out that strictly Coulomb’s
law and the Biot-Savart law determine the electric and magnetic fields for static sources
only. Time-dependent generalizations of these two laws introduced by Jefimenko [13] were
used to explore the applicability of Coulomb and Biot-Savart outside the static domain.

In a previous paper, we used Jefimenko’s [3,13] equation to discuss the force between
two current carrying coils [14]. This was later expanded to include the interaction between
a current carrying loop and a permanent magnet [15,16], see Figure 1.

Figure 1. A cylindrical magnet (blue) and a current loop (red) above it. (three different sections).

Since the system is affected by a total force for a finite period of time this means that
the system acquires mechanical momentum and energy, the question then arises if we need
to abandon the law of momentum and energy conservation. The subject of momentum
conversation was discussed in [8]. In [17–19], some preliminary aspects of the exchange of
energy between the mechanical part of the relativistic engine and the electromagnetic field
were discussed. In particular it was shown that the electric energy expenditure is twice the
kinetic energy gained by the relativistic motor. It was also shown how some energy may
be radiated from the relativistic engine device if the coils are not configure properly. In this
paper, we develop a methodology to deal with all aspects of the energy transformation in a
relativistic engine.

The plan of this paper is as follows: First, we introduce the conservation of energy and
momentum in a general electromagnetic system. Then we discuss the particular case of a
simple relativistic engine made of two current loops of arbitrary geometry, in which we shall
consider the mechanical momentum and energy gained by the engine. This will be followed
by a general analysis of the energy transformations between the field and mechanical
components in a relativistic engine. Which will be followed by a specific analysis of
a relativistic engine taking into account the various energy contributions expanded in
powers of 1

c , in which c is the speed of light in vacuum. We show that the relativistic engine



Symmetry 2021, 13, 420 4 of 56

effect on the energy is 4th-order in 1
c and no lower order relativistic engine effect on the

energy exists.

2. Energy and Momentum Conservation

Any system with space-time translational symmetry must conserve momentum and
energy according to Noether’s theorem. In the case of a system with charge and current
densities the energy-momentum conservation law takes the form [3]:∫

(∂αΘαβ + f β)d3x = 0 (1)

xα are space-time coordinates such that α, β ∈ {0, 1, 2, 3}, ∂α is a partial derivative with re-
spect to the four dimensional coordinates and Einstein’s summation convention is assumed,
d3x is a volume element. In the above:

Θαβ =

(
e f ield

1
c~Sp

1
c
~Sp −Tij

)
(2)

and: ∫
f βd3x = (

dEmech
dt

,
d~Pmech

dt
). (3)

The various terms in the matrix appearing in Equation (2) are defined in terms of the
electric field ~E and magnetic flux density ~B as follows. The field energy density e f ield is
defined such that:

E f ield ≡
∫

e f ieldd3x =
ε0

2

∫ (
~E2 + c2~B2

)
d3x (4)

where ε0 is the vacuum permittivity ('8.85 10−12 F m−1). Poynting’s vector is defined as:

~Sp =
1

µ0
~E× ~B (5)

where µ0 = 4π 10−7 is the vacuum magnetic permeability. Tij is the Maxwell stress tensor:

Tij = ε0

[
EiEj + c2BiBj −

1
2
(~E2 + c2~B2)δij

]
(6)

i, j ∈ {1, 2, 3} and δij is Kronecker’s delta. Equation (3) contains the mechanical energy and
momentum Emech, ~Pmech and the temporal derivative d

dt . Next we shall write the matrix
Equation (1) in terms of the spatial and temporal components separately. The spatial
components will yield the equation:

dPmech i
dt

+
dPf ield i

dt
=
∮

S
Tijn̂jda (7)

In the above, Pf ield i is the i component of the field momentum of the system:

~Pf ield = ε0

∫
~E× ~Bd3x (8)

S is a closed surface encapsulating the volume in which the system is located, n̂ is a unit
vector normal to the surface, da is a surface element.

Equation (7) as proved in [3] is a precise statement of momentum conservation in a
relativistic engine and from a pure point of view nothing else is needed, however, for the
sake of concreteness a specific example for the two current loops relativistic engine was
analyses in [8] and will not be repeated here.
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To conclude this section we shall look at the zeroth component of Equation (1), which
yields the energy conservation equation:

dEmech
dt

+
dE f ield

dt
= −

∮
S
~Sp · n̂da. (9)

The derivative of the mechanical energy is the power needed to sustain the system and is
given by [3]:

Power ≡ dEmech
dt

=
∫

d3x~J · ~E (10)

where~J is the current flux density. Hence:

∫
d3x~J · ~E +

dE f ield

dt
= −

∮
S
~Sp · n̂da. (11)

Or: ∫
d3x~J · ~E = −

dE f ield

dt
−
∮

S
~Sp · n̂da. (12)

In the following we will discuss the manifestation of energy conservation as described by
Equation (12) for a relativistic engine.

3. The Case of Two Currents Loops of Arbitrary Geometry

Consider two wires having segments of length d~l1, d~l2 located at ~x1,~x2 , respectively,
and carrying currents I1, I2 (see Figure 2).

Figure 2. Two current loops.

According to [14] (Equation (38)), the force on loop 2 generated by loop 1 takes
the form:

~F21 =
µ0

4π
I2(t)

∞

∑
n=0

I(n)1 (t)
n!

(−1
c
)n(1− n)

∮ ∮
Rn−3

12
~R12(d~l2 · d~l1) (13)

in which ~R12 ≡ ~x1 − ~x2, R12 ≡ |~R12|. I1(t) is written as a Taylor expansion in the time
t and the terms I(n)(t) are the derivatives of order n with respect to the variable t. As
in all expansions the above equation is valid only for a certain environment of t on the
time axis which depends on the function I1(t), this environment shall be defined using the
convergence radius Tmax. That is Equation (13) is valid only in the domain [t− Tmax, t +
Tmax]. We note that there is no first order contribution to the force. Hence the next
contribution to the force after the quasi-static term is second order. Let us define the
dimensionless geometrical factor ~K21n as:

~K21n =
1
hn

∮ ∮
Rn−3

12
~R12(d~l2 · d~l1) = −~K12n. (14)
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in the above h is some characteristic distance between the coils. In terms of ~K21n we can
write Equation (13) as:

~F21 =
µ0

4π
I2(t)

∞

∑
n=0

I(n)1 (t)
n!

(−h
c
)n(1− n)~K21n. (15)

The force due to coil 2 that acts on coil 1 is:

~F12 =
µ0

4π
I1(t)

∞

∑
n=0

I(n)2 (t)
n!

(−h
c
)n(1− n)~K12n. (16)

The total force on the system is thus:

~FT = ~F12 + ~F21 =

µ0

4π

∞

∑
n=0

(1− n)
n!

(−h
c
)n~K12n

(
I1(t)I(n)2 (t)− I2(t)I(n)1 (t)

)
. (17)

We note that the quasi-static term n = 0 does not contribute to the sum nor does the n = 1
term. The fact that the retarded field “corrects” itself to first order in order to “mimic” a
non retarded field was already noticed by Feynman [4]. Hence we can write:

~FT =
µ0

4π

∞

∑
n=2

(1− n)
n!

(−h
c
)n~K12n

(
I1(t)I(n)2 (t)− I2(t)I(n)1 (t)

)
. (18)

We conclude that in general Newton’s third law is not satisfied, taking the leading non-
vanishing terms in the above sum we obtain:

~FT ∼= − µ0

8π
(

h
c
)2~K122

(
I1(t)I(2)2 (t)− I2(t)I(2)1 (t)

)
. (19)

This result is correct up to a second order in 1
c . Assuming that the total momentum of

the system and the current derivatives are null at t = 0, we obtain a mechanical linear
momentum as follows:

~Pmech =
∫ t

0
~FT(t′)dt′ ∼=

− µ0

8π
(

h
c
)2~K122

(
I1(t)I(1)2 (t)− I2(t)I(1)1 (t)

)
. (20)

For simplicity, we will from here on assume a direct current in loop 2 hence:

~Pmech
∼=

µ0

8π
I(1)1 (t)I2(

h
c
)2~K122 ∝

1
c2 . (21)

For a calculation of ~K122 in particular geometries see [14–16]. We stress that the mechan-
ical momentum given is of order 1

c2 and higher order terms are neglected. The kinetic
mechanical energy associated with this momentum is:

Emech =
~P2

mech
2M

=
1
2
~Pmech ·~vs. ∝

1
c4 . (22)

where M is the mass of the relativistic engine and:

~vs. =
~Pmech

M
∝

1
c2 (23)

is the engine velocity. This indicates that unlike the conservation of momentum [8] which
was independent of the mass and therefore of the velocity attained by the system, in the
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calculations of both the mechanical and electromagnetic energies the systems velocity
and mass are of paramount importance. We also note that the expression for mechanical
energy is of order 1

c4 , lower order corrections do not exist and higher order corrections
are neglected.

We define the relativistic engine effect as a motion of the center of mass of a system
due to the interaction of its two subsystems, if there is no motion of the center of mass than
the effect is null. It may be that the center of mass is moving due to the motion of each
subsystem separately but then, according to the above definition this is not a relativistic
engine effect but an effect caused by an external force.

3.1. Proposed Experiment

In the following, we calculate the factor ~K12n for a geometry of two loops of unit radius
and a unit distance placed one atop the other (see Figure 3).

Figure 3. Two loops of radius 1 and displacement 1. We depict x-z and x-y cross sections. The x-z
cross section dot describes current going inside the plane and the symbol x describes a current going
outside the plane. In the x-y section the arrow is used to specify the current direction.

According to Equation (14), we obtain by taking h = 1 (in arbitrary units since ~K12n is
dimensionless).

~K12n = −
∮ ∮

Rn−3~R(d~l2 · d~l1). (24)
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Every point on loop 1 and 2 has the coordinates ~x1 =
(cos θ1, sin θ1, 1) and ~x2 = (cos θ2, sin θ2, 0), hence:

~R = ~x12 = ~x1 −~x2 = (cos θ1 − cos θ2, sin θ1 − sin θ2, 1) (25)

Furthermore, thus:
R2 = 3− 2 cos(θ1 − θ2) (26)

The line elements can be calculated as follows:

d~l1 = dθ1θ̂1 = dθ1(− sin θ1, cos θ1, 0)

d~l2 = dθ2θ̂2 = dθ2(− sin θ2, cos θ2, 0) (27)

Hence:
d~l1 · d~l2 = dθ1dθ2 cos(θ1 − θ2) (28)

Inserting Equations (28), (26) and (25) into Equation (14) we arrive at:

~K12n = −
∫ 2π

0
dθ2

∫ 2π

0
dθ1 cos(θ1 − θ2)

(√
3− 2 cos(θ1 − θ2)

)n−3
~R(θ1, θ2). (29)

We now make a change of variable in the above integral θ′ = θ1 − θ2, in terms of the
new variable:

~K12n = −
∫ 2π

0
dθ2

∫ 2π−θ2

−θ2

dθ′ cos(θ′)
(√

3− 2 cos(θ′)
)n−3

~R(θ′ + θ2, θ2). (30)

In which:

~R(θ′ + θ2, θ2) = ((cos θ′ − 1) cos θ2 − sin θ′ sin θ2,

(cos θ′ − 1) sin θ2 + sin θ′ cos θ2, 1) (31)

The integrand is periodic with respect to θ′with a period of 2π, we thus write Equation (30) as:

~K12n = −
∫ 2π

0
dθ2

∫ 2π

0
dθ′ cos(θ′)

(√
3− 2 cos(θ′)

)n−3
~R(θ′ + θ2, θ2). (32)

Noticing that: ∫ 2π

0
cos θ2dθ2 =

∫ 2π

0
sin θ2dθ2 = 0 (33)

We arrive at the equation:

~K12n =

(
0, 0,−2π

∫ 2π

0
dθ′ cos(θ′)

(√
3− 2 cos(θ′)

)n−3
)

. (34)

Vanishing of the x and y components of the force is expected due to the symmetry. The z
components can be calculated analytically, for even values of n one needs elliptic functions,
for example:

Kz122 = 4π(Ee(−4)− 3Ke(−4)) ' −4.94,

Ee(m) ≡
∫ π

2

0
dθ
√

1−m sin2 θ

Ke(m) ≡
∫ π

2

0
dθ

1√
1−m sin2 θ

(35)

K values for n ≤ 6 are given in Table 1.



Symmetry 2021, 13, 420 9 of 56

Table 1. Table of the geometric factor K values.

n Kz12n

0 −7.18
1 −6.74
2 −4.94
3 0
4 11.97
5 39.48
6 101.03

Finally notice that for multiple loops we have:

Kz12n ∼ N1N2. (36)

where N1 and N2 are the number of turns in coil 1 and coil 2, respectively.

The Problem of Current Switching

We will address the problem of achieving constant force which is of interest for
locomotive applications. A constant force may be achieved by having a direct current in
one loop I1(t) = Ī1 and a current of uniform second derivative on the other I2(t) = 1

2 Ī2
t2

τ2
c

.
In this case the accelerating force will be according to Equation (19):

FTz ∼= −
µ0

8π
(

h
c
)2 1

τ2
c

Kz122 Ī1 Ī2 (37)

Assuming the case of circular loops of the previous subsection we obtain from Equation (35):

FTz ∼= 4.94
µ0

8π
N1N2(

h
c
)2 1

τ2
c

Ī1 Ī2 (38)

For the values given in Table 2 FTz ∼= 2.74 Newton. The switching time may represent
some difficulty which one can overcome with advanced enough switching technology,
perhaps using low resistivity superconducting materials. Another possibility is using
numerous modular solid-state devices each with fast switching and small current such
that an appreciable amount of cumulative forcing will result. In any case increasing the
current for ever is not possible, but probably can be maintained sufficiently long to allow
experimental verification. Changing periodically the current is of course possible but in
this case one is led back to the standard piston going up and down as in an ordinary car
motor and this type of motion needs to transfer momentum to the road in order to convert
circular to linear motion.

Table 2. The choice of parameters for the force calculation.

Parameter Value

N1 1000
N2 1000
Ī1 100 A
Ī2 100 A
h 0.1 m
h
c 0.3 ns

τc 10 ns
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4. Field Energy

Consider two sub-systems denoted system 1 and system 2 which are far apart such
that their interaction is negligible. In this case, Equation (12) is correct for each sub-system
separately, that is: ∫

d3x~J1 · ~E1 = −
dE f ield 1

dt
−
∮

S
~Sp 1 · n̂da. (39)

∫
d3x~J2 · ~E2 = −

dE f ield 2

dt
−
∮

S
~Sp 2 · n̂da. (40)

Next we will put the two loops closer together such that they may interact but without
modifying the charge and the current densities of each of the subsystems. The total fields
of the combined system are:

~E = ~E1 + ~E2, ~B = ~B1 + ~B2 (41)

Since both the field energy Equation (4) and Poynting’s vector Equation (5) are quadratic
in the fields the following result is obtained:

E f ield ≡ ε0

2

∫ (
~E2 + c2~B2

)
d3x = E f ield 1 + E f ield 2 + E f ield 12

E f ield 1 ≡ EE f ield 1 + EM f ield 1 ≡
ε0

2

∫ (
~E2

1 + c2~B2
1

)
d3x

E f ield 2 ≡ EE f ield 2 + EM f ield 2 ≡
ε0

2

∫ (
~E2

2 + c2~B2
2

)
d3x

E f ield 12 ≡ EE f ield 12 + EM f ield 12

≡ ε0

∫ (
~E1 · ~E2 + c2~B1 · ~B2

)
d3x (42)

~Sp ≡ 1
µ0

~E× ~B = ~Sp 1 + ~Sp 2 + ~Sp 12

~Sp 1 ≡ 1
µ0

~E1 × ~B1

~Sp 2 ≡ 1
µ0

~E2 × ~B2

~Sp 12 ≡ 1
µ0

(
~E1 × ~B2 + ~E2 × ~B1

)
(43)

The power invested in the combined system in bilinear in the current flux density and the
electric field according to Equation (10). This will lead to the following expression:

Power =
∫

d3x~J · ~E = Power1 + Power2 + Power12

Power1 ≡
∫

d3x~J1 · ~E1

Power2 ≡
∫

d3x~J2 · ~E2

Power12 ≡
∫

d3x
(
~J1 · ~E2 +~J2 · ~E1

)
(44)

Subtracting from Equation (12) the expressions given in Equations (39) and (40):

Power− Power1 − Power2

=−
d(E f ield − E f ield 1 − E f ield 2)

dt
−
∮

S

(
~Sp − ~Sp 1 − ~Sp 2

)
· n̂da. (45)
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taking into account Equations (42)–(44) we arrive at:

Power12 = −
dE f ield 12

dt
−
∮

S
~Sp 12 · n̂da. (46)

5. Field Energy of a System of Two Current Loops

We now study the case of two loops of arbitrary geometry as described in Section 3.
However, now we assume two time dependencies. One due to the intrinsic time depen-
dence of the current in the loop and another is due to its motion as part of the relativistic
engine. Thus, the current density is:

~J(~x, t) = ~J′(~x−~xc(t), t), (47)

in which~J′(~x, t) is the current density in the moving frame of the relativistic engine and
d~xc(t)

dt = ~vs.(t) is the velocity of the relativistic engine. The vector potential is [3]:

~A(~x, t) =
µ0

4π

∫
d3x′

~J(~x′, tret)

R
, ~R ≡ ~x−~x′, tret ≡ t− R

c
. (48)

Which can be written as a power series in − R
c in the form:

~A(~x, t) =
µ0

4π

∞

∑
n=0

1
n!

∫
d3x′

1
R
(−R

c
)n dn

dtn
~J(~x′, t)

=
µ0

4π

∞

∑
n=0

1
n!

dn

dtn

∫
d3x′

1
R
(−R

c
)n~J(~x′, t)

=
µ0

4π

∞

∑
n=0

1
n!

dn

dtn

∫
d3x′

1
R
(−R

c
)n~J′(~x′ −~xc(t), t), (49)

As in the case of Equation (13) this expansion is only valid in the domain [t− Tmax, t+ Tmax]
in which Tmax being the “convergence radius” of the above series. Hence this is only valid
for distances satisfying R

c < Tmax or:

R < c Tmax ≡ Rmax (50)

since c is a big number we will occasionally use Equation (49) for infinite distances while
remembering that although Rmax may be big it is not infinite. Let us introduce a comoving
integration variable: ~̃x = ~x′−~xc(t),~x′ = ~̃x +~xc(t) such that: R(t) = |~x′−~x| = |~̃x +~xc(t)−
~x| in such a comoving coordinate system we have:

~A(~x, t) =
µ0

4π

∞

∑
n=0

1
n!

dn

dtn

∫
d3 x̃

1
R(t)

(−R(t)
c

)n~J′(~̃x, t), (51)

For a thin and uniform current loop this can be written as:

~A(~x, t) =
µ0

4π

∞

∑
n=0

1
n!

dn

dtn

[
I(t)

∮
d~̃l

1
R(t)

(−R(t)
c

)n
]

. (52)

Let us define:

~A(n)(~x, t) =
µ0

4πn!
dn

dtn

[
I(t)

∮
d~̃l

1
R(t)

(−R(t)
c

)n
]

= (−1)n µ0

4πn!cn
dn

dtn

[
I(t)

∮
d~̃lR(t)n−1

]
, (53)
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in terms of ~A(n) we may write:

~A(~x, t) =
∞

∑
n=0

~A(n)(~x, t). (54)

We notice ~A(n) is at least of order 1
cn but may contain higher order terms. The reason for

this is the fact that ~A(n) contains temporal derivatives of R(t) which satisfy the equation:

dR(t)
dt

= −
~R(t)
R(t)

·~vs. = −R̂ ·~v, R̂ ≡
~R(t)
R(t)

(55)

and ~v is proportional to 1
c2 for a relativistic engine according to Equation (23). Thus, ~A(n)

may contain terms which are up to order of ( 1
c )

3n−2. We also notice that the zeroth order
terms takes the form:

~A(0)(~x, t) =
µ0

4π
I(t)

∮
d~̃l

1
R(t)

, (56)

which is just the quasi static approximation to ~A. It also easy to see that the first order term:

~A(1)(~x, t) = 0 (57)

as
∮

d~̃l = 0. As ~A(n) contains terms in various orders of 1
c , and we will be interested in

analyzing the energy problem for a definite order of 1
c , we introduce the square bracket

notation G[n] to denote a quantity of order ( 1
c )

n. Obviously, generally ~A[n] 6= ~A(n). The
electric field ~E can be calculated (in the gauge Φ = 0) as [3]:

~E = −∂t ~A. (58)

We shall define for computational convenience:

~E(n) ≡ −∂t ~A(n). (59)

This means that ~E[n] 6= ~E(n) will contain terms coming from ~A[n] but also from ~A[n−2] as
the derivative will create terms which have an additional ( 1

c )
2 factor. As for the magnetic

field ~B which can be calculated as [3]:

~B = ~∇× ~A (60)

it is easy to see that ~B[n] is the same order as ~A[n] and:

~B[n] = ~∇× ~A[n] (61)

In what follows we will use the above expressions to analyzed the energy transformation
order by order starting from n = 0 and up to n = 4 which according to Equation (22) is
the most relevant for analyzing the energy transfer between the field and the mechanical
components of a relativistic engine.

5.1. Normalization

To avoid carrying the factor µ0
4π in numerous calculations we shall define:

~A′ ≡ ~A
4π

µ0
⇒ ~A = ~A′

µ0

4π
. (62)

Furthermore, hence:

~E′ ≡ ~E
4π

µ0
⇒ ~E = ~E′

µ0

4π
, ~B′ ≡ ~B

4π

µ0
⇒ ~B = ~B′

µ0

4π
(63)
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The field energy (see Equation (42)) can be calculated in terms of the new variables as:

E f ield 12 =
µ0

16π2

∫ ( 1
c2
~E′1 · ~E′2 + ~B′1 · ~B′2

)
d3x (64)

where we are reminded that c2 = 1
µ0ε0

, the Pointing vector (Equation (43)) will take the
following form in terms of the new variables:

~Sp 12 =
µ0

16π2

(
~E′1 × ~B′2 + ~E′2 × ~B′1

)
. (65)

Finally the mechanical work which is represented by Equation (44) will take the form:

Power12 =
µ0

4π

∫
d3x
(
~J1 · ~E′2 +~J2 · ~E′1

)
. (66)

We introduce the following normalization:

~S′p 12 ≡ 16π2

µ0
~Sp 12 ⇒ ~Sp 12 =

µ0

16π2
~S′p 12

~S′p 12 =
(
~E′1 × ~B′2 + ~E′2 × ~B′1

)
. (67)

E′f ield 12 ≡ 16π2

µ0
E f ield 12 ⇒ E f ield 12 =

µ0

16π2 E′f ield 12

E′f ield 12 =
∫ ( 1

c2
~E′1 · ~E′2 + ~B′1 · ~B′2

)
d3x (68)

Power′12 ≡ 16π2

µ0
Power12 ⇒ Power12 =

µ0

16π2 Power′12

Power′12 = 4π
∫

d3x
(
~J1 · ~E′2 +~J2 · ~E′1

)
. (69)

In terms of the normalized quantities we may write the relativistic engine energy transfor-
mation Equation (46) as:

Power′12 = −
dE′f ield 12

dt
−
∮

S
~S′p 12 · n̂da. (70)

This can be analyzed order by order in terms of powers of 1
c hence:

Power′[n]12 = −
dE′[n]f ield 12

dt
−
∮

S
~S′[n]p 12 · n̂da. (71)

We notice that because of the pre-factor 1
c2 of the electric field contribution in Equation (68)

this term will not contribute to the field energy for the lowest orders: n = 0, 1. We also
notice that since we are considering a case of two loop currents Equation (69) takes the form:

Power′12 = 4π

(
I1(t)

∮
d~̃l1 · ~E′2(~x1) + I2(t)

∮
d~̃l2 · ~E′1(~x2)

)
. (72)

We are now ready to analyzed the field contribution order by order. In what follow we give
the main results the reader who is interested in the details is referred to Appendix A.
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5.2. n = 0

For n = 0 we conclude that the energy equation of order zero is indeed balanced.
Mechanical work invested or extracted in the system results in increase or decrease in the
field energy accordingly. To be more specific the magnetic field energy is affected by the
mechanical work. The power related to the mechanical work is:

Power[0]12 = −∂t I1(t)I2M[0]
12 (73)

in which:
M[0]

12 ≡
µ0

4π

∮
d~l1 ·

∮
d~l2

1
|~x1 −~x2|

(74)

and this is equal to minus the derivative of the field energy:

E[0]
f ield 12 = I1(t)I2M[0]

12 . (75)

which is what is expected from Equation (71) for the case that there is no Poynting contri-
bution. We underline that those contributions are not related the relativistic engine effect
as none of the terms depends on the engine velocity ~v, and thus the above expression will
be valid even if the engine is infinitely massive and no motion occurs.

5.3. n = 1

For n = 1 we conclude that the energy equation of order one is indeed balanced in a
trivial way. Equation (71) is satisfied in the sense that 0 = 0. From now on we will disregard
in our calculations any field term of order one, as their contribution to any expression is
obviously null.

5.4. n = 2

We conclude that the energy equation of the second order is indeed balanced. Me-
chanical work invested or extracted in the system results in increase or decrease in the
field energy accordingly. To be more specific the magnetic field energy is affected by the
mechanical work. The power related to the mechanical work is:

Power[2]12 = − µ0

8πc2
d3 I1(t)

dt3 I2

∮ ∮
d~l2 · d~l2R12 (76)

and this is equal to minus the derivative of the field energy:

E[2]
f ield 12 =

µ0

8πc2
d2 I1(t)

dt2 I2

∮ ∮
(d~l1 · d~l2)R12. (77)

which is what is expected for the case that there is no Poynting contribution. We underline
that those contributions are not related the relativistic engine effect as non of the terms
depends on the engine velocity ~v, and thus the above expression will be valid even if the
engine is infinitely massive and no motion occurs. We do not expect any relativistic engine
contributions for orders smaller than 1

c4 . For a phasor current of frequency ω we obtain
a relativistic correction to the classical mutual inductance which is important for large
systems with high frequency.

M[2]
12 ≡ −

µ0ω2

8πc2

∮
d~l1 ·

∮
d~l2R12 (78)

5.5. n = 3

We conclude that the energy of the third order is indeed balanced. Mechanical work
invested or extracted in the system results in increase or decrease in the field energy
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accordingly. To be more specific the magnetic field energy is affected by the mechanical
work. The power related to the mechanical work is:

Power[3]12 =
µ0

24πc3
d4 I1(t)

dt4 I2

∮ ∮
d~l1 · d~l2R2

12 (79)

and this is equal to minus the derivative of the volume field energy:

E[3]
f ieldV 12 = − µ0

24πc3
d3 I1(t)

dt3 I2

∮ ∮
(d~l1 · d~l2)R2

12. (80)

However, for the third order in 1
c there is also a surface contribution to the field energy:

E[3]
f ieldS 12 =

µ0

9πc3 I2
d3 I1(t)

dt3
~Ar1 · ~Ar2. (81)

in which:
~Ar ≡ 1

2

∮
~x× d~l (82)

such that the total field energy is:

E[3]
f ield 12 = E[3]

f ieldV 12 + E[3]
f ieldS 12 (83)

The change in the field energy through the surface terms results in radiation as described
by the Poynting flux:

∮
S
~S[3]

p 12 · n̂da = − µ0

9πc3 I2
d4 I1(t)

dt4
~Ar1 · ~Ar2. (84)

curiously this flux can be avoided by configuring the loops to be orthogonal to each
other [19]. We underline that third order contributions are not related the relativistic engine
effect as non of the terms depends on the engine velocity ~v, and thus the above expression
will be valid even if the engine is infinitely massive and no motion occurs. We do not
expect any relativistic engine contributions for orders smaller than 1

c4 . For a phasor current
of frequency ω the result indicates a resistive relativistic correction to the classical mutual
inductance which is important for large systems with high frequency.

M[3]
12 ≡

jµ0ω3

24πc3

∮
d~l1 ·

∮
d~l2R2

12 (85)

5.6. n = 4

We conclude that the energy of the fourth order is indeed balanced. Mechanical
work invested or extracted in the system results in increase or decrease in the field energy
accordingly. In the fourth order both electric and magnetic field energies are affected by
the mechanical work. The power related to the mechanical work is:

Power[4]12 = − µ0

96πc2
d5 I1(t)

dt5 I2

∮ ∮
(d~l1 · d~l2)R3

21 + 6
dEmech

dt
. (86)

it contains both work done by the mutual inductance and on the relativistic engine. This is
equal to minus the derivative of the volume field energy:

E[4]
f ieldV 12 = −6Emech +

µ0

96πc4
d4 I1(t)

dt4 I2

∮ ∮
(d~l1 · d~l2)R3

12. (87)

The total field energy is s made of an electric part:

E[4]
E f ield 12 = −2Emech. (88)
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and a magnetic part:

E[4]
M f ieldV 12 = −4Emech +

µ0

96πc4
d4 I1(t)

dt4 I2

∮ ∮
(d~l1 · d~l2)R3

12. (89)

Moreover, for the fourth order in 1
c there is also a surface contribution to the field energy

which satisfies:

dE′[4]f ieldS 12

dt
= −

∫
da n̂ · (~E′[4]1 mui × ~B′[0]2 ) = −

∮
S
~S[4]

p 12 · n̂da (90)

such that the total field energy is:

E[4]
f ield 12 = E[4]

f ieldV 12 + E[4]
f ieldS 12 (91)

The change in the field energy through the surface terms results in radiation as described
by the Poynting flux:

∮
S
~S[4]

p 12 · n̂da =
µ0

(4π)2

∮
S
~S′[4]p 12 · n̂da = − µ0

480πc4
d5 I1(t)

dt5 I2Rmax∮ ∮ (
7(d~l1 · d~l2)(~x1 ·~x2) + 2(d~l1 ·~x2)(d~l2 ·~x1)

)
. (92)

We underline that fourth order contributions are the only one that are related to the
relativistic engine effect as some of the terms depends on the engine velocity ~v. If the
engine is infinitely massive and no motion occurs, we are left with the mutual inductance
correction terms and radiation terms which involve higher order derivatives. For a phasor
current of frequency ω we obtain a relativistic correction to the classical mutual inductance
which is important for large systems with high frequency.

M[4]
12 ≡

µ0ω4

96πc4

∮
d~l1 ·

∮
d~l2R3

12 (93)

6. Conclusions

A relativistic engine is not a “perpetuum mobile” it requires energy to operate. The en-
ergy needed for its operation comes at the expanse of the electromagnetic field energy.
Moreover, we have shown that the total energy required is six times the mechanical energy
obtained by the engine as energy must be invested also in driving the needed current for
its operation through the loops (see Equations (A182) and (A195)). Two times comes at the
expense of the electric field energy and four times at the expense of the magnetic field energy. Notice
that we have not taken resistive losses into account but if the coils are not superconductive
this should be taken into account as well. As we collected all the terms up to and including
1
c4 we have encountered for most of the time terms that can be thought of as relativistic
corrections to the mutual inductance formula and are not connected in any way to the
relativistic engine effect. For order 1

c3 there are also radiation losses which may be avoided
by cleverly constructing the loop coils orthogonal to each other. For order 1

c4 the nature
of our series expansion prevents us from evaluating the radiation flux at infinity and we
must suffice with the radiation flux over a sphere of radius Rmax which is the distance after
which our approximation becomes invalid.

In this work we have only dealt with the energy exchange due to the interaction
of two loops but of course even a single loop looses energy due to radiation. Future
works will consider other relativistic concepts such as an electric (rather than magnetic)
relativistic engine. We will also be interested in studying the relativistic ramifications of
small body moving in a large structure generating an “external field”. In such a body
we expect additional contribution to the main “classical” force which are due to the
relativistic retardation.
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Finally we remark that although an energy of 6Emech seems excessive and inefficient,
it is highly efficient with respect to other types of engines which are purely electromagnetic.
For example, to reach a momentum p using a photon engine one needs an energy of
Ep = pc while for a relativistic engine an energy of Er = 3pvs. will suffice. The ratio is
Ep
Er

= c
3v which is a huge number for non relativistic speeds.
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Appendix A. Energy Balance from n = 0 to n = 4

Appendix A.1. n = 0

Let us look at Equation (71) and study it for the zeroth order in 1
c :

Power′[0]12 = −
dE′[0]f ield 12

dt
−
∮

S
~S′[0]p 12 · n̂da. (A1)

Appendix A.1.1. Power

We shall start by calculating Power[0]12 , according to Equation (72):

Power′[0]12 = 4π

(
I1(t)

∮
d~̃l1 · ~E

′[0]
2 (~x1) + I2(t)

∮
d~̃l2 · ~E

′[0]
1 (~x2)

)
. (A2)

The field ~E′[0] can only come from the vector potential ~A′[0] = ~A′(0) as all other ~A′(n) are of
higher order in n, hence according to Equation (56):

~A′[0](~x, t) = ~A′(0)(~x, t) = I(t)
∮

d~̃l
1

R(t)
. (A3)

According to Equation (59):

~E′(0) = −∂t ~A′(0) = −∂t I(t)
∮

d~̃l
1

R(t)
− I(t)

∮
d~̃l

~vs. · ~R(t)
R3(t)

. (A4)

However, the second term in the above equation is of order of 1
c2 and will be dealt with

later. Hence:
~E′[0] = −∂t I(t)

∮
d~̃l

1
R(t)

. (A5)
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we notice that the derivative of the integral is of order ( 1
c )

2 hence does not contribute to
the zeroth order. Now since the second coil has a constant current this leads to the result:

~E′[0]2 = 0. (A6)

Inserting the above result into Equation (A2) yields:

Power′[0]12 = 4π I2(t)
∮

d~̃l2 · ~E
′[0]
1 (~x2). (A7)

Inserting Equation (A5) into Equation (A7) will yield the expression:

Power′[0]12 = −4π∂t I1(t)I2

∮ ∮
d ˜~ 1l · d ˜~ 2l

1
R12(t)

, ~R12 = ~x1 −~x2 (A8)

This can be written in terms of the familiar mutual inductance [3]:

M[0]
12 ≡

µ0

4π

∮
d~l1 ·

∮
d~l2

1
|~x1 −~x2|

(A9)

as:
Power[0]12 =

µ0

16π2 Power′[0]12 = −∂t I1(t)I2M[0]
12 (A10)

We notice that Power[0]12 may be positive or negative according to the relative position of the
current loops and current directions, hence, energy can be invested or extracted from the
combined system according to the system configuration.

Appendix A.1.2. Field Energy

Turning our attention next to field energy defined in Equation (68):

E′[0]f ield 12 =
∫

~B′[0]1 · ~B′[0]2 d3x. (A11)

~B′[0] is calculated according to Equation (61) as:

~B′[0] = ~∇× ~A′[0]. (A12)

Now since ~A′[0] = ~A′(0) we may use Equation (56) to obtain:

~B′[0](~x, t) = −I(t)
∮

d~̃l × ~∇ 1
R(t)

= I(t)
∮

d~̃l ×
~R(t)
R3(t)

. (A13)

Inserting Equation (A13) into Equation (A11) will yield:

E′[0]f ield 12 = I1(t)I2

∫
d3x

∮
d~̃l1 × ~∇ 1

R1(t)
·
∮

d~̃l2 × ~∇ 1
R2(t)

(A14)

in which we recall that I2 is time independent. Using a well known identity from vector
analysis we may write:

E′[0]f ield 12 = I1(t)I2

∫
d3x

∮ ∮
[(d~̃l1 · d~̃l2)(~∇

1
R1(t)

· ~∇ 1
R2(t)

)

− (d~̃l1 · ~∇
1

R2(t)
)(d~̃l2 · ~∇

1
R1(t)

)]. (A15)

We shall show in the Appendix B that:∫
d3x

∮ ∮
[(d~̃l1 · ~∇

1
R2(t)

)(d~̃l2 · ~∇
1

R1(t)
)] = 0 (A16)
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Hence:
E′[0]f ield 12 = I1(t)I2

∫
d3x

∮ ∮
[(d~̃l1 · d~̃l2)(~∇

1
R1(t)

· ~∇ 1
R2(t)

)]. (A17)

Now:
~∇ 1

R1(t)
· ~∇ 1

R2(t)
= ~∇ · ( 1

R1(t)
~∇ 1

R2(t)
)− 1

R1(t)
~∇2 1

R2(t)
(A18)

Taking into account that [3]:
~∇2 1

R2(t)
= −4πδ(~R2) (A19)

in which δ(~R2) is a three dimensional delta function, we have:

~∇ 1
R1(t)

· ~∇ 1
R2(t)

= ~∇ · ( 1
R1(t)

~∇ 1
R2(t)

) +
4π

R1(t)
δ(~R2). (A20)

The first term in the right hand side is a divergence. Thus, using Gauss theorem its volume
integral will become a surface integral, the second term is a delta function. This means that
there is no contribution to the volume integral from the delta term unless ~x = ~x2. We may
now write Equation (A17) as follows:

E′[0]f ield 12 = I1(t)I2

∮ ∮
(d~̃l1 · d~̃l2)[(

∫
dan̂ · 1

R1(t)
~∇ 1

R2(t)
) +

4π

R12(t)
]. (A21)

Let us look at the surface integral and assume that the system is contained inside an infinite
sphere. On the surface of such a sphere:

dan̂ = r2dΩr̂, r̂ =
~x
r

(A22)

dΩ is an infinitesimal solid angle. Now since r = |~x| → ∞ on the surface and:

~R = ~x−~x′ = r(r̂− ~x′

r
) (A23)

it follows that:

R = |~x−~x′| = r|r̂− ~x′

r
| ' r(1− r̂ · ~x

′

r
) = r− r̂ ·~x′ (A24)

up to second order in the infinitesimal quantity ~x′
r . Furthermore, for the same reason:

1
R
' 1

r
(1 + r̂ · ~x

′

r
) (A25)

to the same order. Furthermore, also:

R3 ' r3(1− 3r̂ · ~x
′

r
),

1
R3 '

1
r3 (1 + 3r̂ · ~x

′

r
) (A26)

~∇ 1
R

= −
~R
R3 ' −

1
r2 [(1 + 3r̂ · ~x

′

r
)r̂− ~x′

r
)] (A27)

Using the above results we conclude that:

lim
r→∞

∫
dan̂ · 1

R1(t)
~∇ 1

R2(t)
= − lim

r→∞

∫
dΩ

1
r
= − lim

r→∞

4π

r
= 0 (A28)

Hence:
E′[0]f ield 12 = I1(t)I2

∮ ∮
(d~̃l1 · d~̃l2)[

4π

R12(t)
]. (A29)
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And:
E[0]

f ield 12 =
µ0

(4π)2 E′[0]f ield 12 = I1(t)I2M[0]
12 . (A30)

where we took advantage of the mutual inductance term defined in Equation (A9).

Appendix A.1.3. Poynting Vector

Finally we shall study the Poynting vector:

~S′[0]p 12 = ~E′[0]1 × ~B′[0]2 + ~E′[0]2 × ~B′[0]1 (A31)

Taking into account that ~E[0]
2 is null according to Equation (A6) this simplifies to:

~S′[0]p 12 = ~E′[0]1 × ~B′[0]2 . (A32)

Now the Poynting vector term which is usually associated with radiation only contributes
to the energy balance on a surface encapsulating the system under consideration (see
Equation (71)). Taking this surface to be spherical and at infinity we deduce that only the
asymptotic forms of ~E′[0]1 and ~B′[0]2 are of interest for the purpose of evaluating the Poynting
vector contribution. According to Equation (A5):

~E′[0] = −∂t I(t)
∮

d~̃l
1

R(t)
' −∂t I(t)

1
r2

∮
d~l r̂ ·~x′ (A33)

In which we use the approximation given in Equation (A25) and take into account that∮
d~̃l = 0. The magnetic field is given in Equation (A13):

~B′[0](~x, t) = I(t)
∮

d~̃l ×
~R(t)
R3(t)

' I(t)
1
r3

∮
d~l × [3(r̂ ·~x′)r̂−~x′]. (A34)

in the above we used again the identity
∮

d~l = 0. We shall define the quantity:

~Λ =
∮

d~l × [3(r̂ ·~x′)r̂−~x′]. (A35)

for future use. From the above it easy to see that:

lim
r→∞

~S′[0]p 12 ∝
1
r5 (A36)

and thus it is easy to see that:∮
S
~S′[0]p 12 · n̂da = lim

r→∞

∮
S
(~S′[0]p 12 · r̂)r

2dΩ = 0 (A37)

hence there is no Poynting vector contribution to the energy balance. Thus, is the quasi
static approximation there is no radiation losses as expected.

Appendix A.1.4. Intermediate Account

We conclude that the energy equation of order zero is indeed balanced. Mechanical
work invested or extracted in the system results in increase or decrease in the field energy
accordingly. To be more specific the magnetic field energy is affected by the mechanical
work. The power related to the mechanical work is:

Power[0]12 = −∂t I1(t)I2M[0]
12 (A38)
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and this is equal to minus the derivative of the field energy:

E[0]
f ield 12 = I1(t)I2M[0]

12 . (A39)

which is what is expected from Equation (71) for the case that there is no Poynting contri-
bution. We underline that those contributions are not related the relativistic engine effect
as none of the terms depends on the engine velocity ~v, and thus the above expression will
be valid even if the engine is infinitely massive and no motion occurs.

Appendix A.2. n = 1

Let us look at Equation (71) and study it for the first order in 1
c :

Power′[1]12 = −
dE′[1]f ield 12

dt
−
∮

S
~S′[1]p 12 · n̂da. (A40)

Appendix A.2.1. Power

We shall start by calculating Power[1]12 , according to Equation (72):

Power′[1]12 = 4π

(
I1(t)

∮
d~̃l1 · ~E

′[1]
2 (~x1) + I2(t)

∮
d~̃l2 · ~E

′[1]
1 (~x2)

)
. (A41)

The field ~E′[1] can only come from the vector potential ~A′[1]. As ~A′(1) = 0 (see Equation (57))
it follows that ~A′[1] = 0 and hence by Equation (58) :

~E′[1] = 0. (A42)

It then follows that:
Power′[1]12 = 0. (A43)

Hence no mechanical work is invested nor extracted for a relativistic engine in the first
order of 1

c .

Appendix A.2.2. Field Energy

Turning our attention next to field energy defined in Equation (68):

E′[1]f ield 12 =
∫
[~B′[0]1 · ~B′[1]2 + ~B′[1]1 · ~B′[0]2 ]d3x. (A44)

~B′[1] is calculated according to Equation (61) as:

~B′[1] = ~∇× ~A′[1]. (A45)

Now since ~A′[1] = 0 we may use Equation (A45) to obtain:

~B′[1](~x, t) = 0. (A46)

for the magnetic field generated from both coils. Inserting Equation (A46) into Equation (A44)
will yield:

E′[1]f ield 12 = 0. (A47)

Hence there is no contribution from first order terms in 1
c to the field energy of a relativistic

engine neither.
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Appendix A.2.3. Poynting Vector

Finally we shall study the Poynting vector:

~S′[1]p 12 = ~E′[0]1 × ~B′[1]2 + ~E′[1]1 × ~B′[0]2 + ~E′[0]2 × ~B′[1]1 + ~E′[1]2 × ~B′[0]1 (A48)

According to Equations (A42) and (A46) all the above terms vanish and we have:

~S′[1]p 12 = 0⇒
∮

S
~S′[1]p 12 · n̂da = 0. (A49)

Appendix A.2.4. Intermediate Account

We conclude that the energy equation of order one is indeed balanced in a trivial
way. Equation (71) is satisfied in the sense that 0 = 0. From now on we will disregard
in our calculations any field term of order one, as their contribution to any expression is
obviously null.

Appendix A.3. n = 2

Let us look at Equation (71) and study it for the second order in 1
c :

Power′[2]12 = −
dE′[2]f ield 12

dt
−
∮

S
~S′[2]p 12 · n̂da. (A50)

Appendix A.3.1. Power

We shall start by calculating Power[2]12 , according to Equation (72):

Power′[2]12 = 4π

(
I1(t)

∮
d~̃l1 · ~E

′[2]
2 (~x1) + I2(t)

∮
d~̃l2 · ~E

′[2]
1 (~x2)

)
. (A51)

The field ~E′[2] can only come from the vector potential ~A′[2] and ~A′[0]. ~A′[0] is given
in Equation (A3) while ~A′[2] can be deduce from ~A′(2) which can be calculated using
Equation (53) as:

~A′(2)(~x, t) =
1

2c2
d2

dt2

[
I(t)

∮
d~̃lR(t)

]
, (A52)

Or explicitly as:

~A′(2)(~x, t) =
1

2c2

{
d2 I(t)

dt2

∮
d~̃lR(t)− 2

dI(t)
dt

∮
d~̃lR̂ ·~vs.

+ I(t)
∮

d~̃l
[

1
R
(R̂×~v)2 − R̂ · d~v

dt

]}
, (A53)

in which we have used Equation (55). It is clear that ~A′(2) contain contributions to ~A′[2] but
also to ~A′[4] and ~A′[6] (but not to odd ~A′[n]’s). For now we will only be interested in ~A′[2]

which is:
~A′[2](~x, t) ≡ 1

2c2
d2 I(t)

dt2

∮
d~̃lR(t). (A54)

Combining the above result with Equations (59) and (A4) yields:

~E′[2] = − 1
2c2

d3 I(t)
dt3

∮
d~̃lR(t)− I(t)

∮
d~̃l

~vs. · ~R(t)
R3(t)

. (A55)

Now since the second coil has a constant current this leads to the result:

~E′[2]2 = −I2

∮
d~̃l2

~vs. · ~R2(t)
R3

2(t)
. (A56)
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Inserting the above results into Equation (A51) yields:

Power′[2]12 = − 4π I1(t)I2

∮ ∮
d~̃l1 · d~̃l2

~vs. · ~R12

R3
12

− 4π I1(t)I2

∮ ∮
d~̃l2 · d~̃l1

~vs. · ~R21

R3
21

− 2π

c2
d3 I1(t)

dt3 I2

∮ ∮
d~̃l1 · d~̃l2R12 (A57)

In the above:
~R21 = ~x2 −~x1 = −~R12 ⇒ R21 = |~R21| = |~R12| = R12 (A58)

Inserting Equation (A58) into Equation (A57) will result in the cancellation of the first
two terms:

Power′[2]12 = −2π

c2
d3 I1(t)

dt3 I2

∮ ∮
d~l2 · d~l2R12 (A59)

Hence:

Power[2]12 =
µ0

16π2 Power′[2]12 = − µ0

8πc2
d3 I1(t)

dt3 I2

∮ ∮
d~l2 · d~l2R12 (A60)

We notice that Power[2]12 may be positive or negative according to the relative position of the
current loops and current directions and third derivative, hence, energy can be invested
or extracted from the combined system according to the system configuration. We also
notice that this term has nothing to do with the relativistic engine effect as it is completely
independent of the mass of the engine and will exist also for an infinitely heavy motor.
This is to be expected as the relativistic engine effect is fourth order in 1

c and not second
order. We will interpret the double integral

∮ ∮
d~l2 · d~l2R12 in the next subsection dealing

with the field energy.

Appendix A.3.2. Field Energy

Turning our attention next to field energy defined in Equation (68) we obtain the
following expression for second order terms in 1

c :

E′[2]f ield 12 =
∫ ( 1

c2
~E′[0]1 · ~E′[0]2 + ~B′[0]1 · ~B′[2]2 + ~B′[2]1 · ~B′[0]2

)
d3x, (A61)

in which we are reminded that there are no field contributions which are first order in 1
c .

According to Equation (A6) the zeroth order electric field for the static current second coil
is null, hence:

E′[2]f ield 12 =
∫ (

~B′[0]1 · ~B′[2]2 + ~B′[2]1 · ~B′[0]2

)
d3x, (A62)

~B′[2] is calculated according to Equation (61) as:

~B′[2] = ~∇× ~A′[2]. (A63)

Taking into account Equation (A54) the second order correction to the magnetic field is thus:

~B′[2](~x, t) = − 1
2c2

d2 I(t)
dt2

∮
d~̃l × ~∇R(t) = − 1

2c2
d2 I(t)

dt2

∮
d~̃l ×

~R(t)
R(t)

. (A64)

Hence for a static coil:
~B′[2]2 (~x, t) = 0. (A65)
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Furthermore, thus:
E′[2]f ield 12 =

∫
~B′[2]1 · ~B′[0]2 d3x. (A66)

Inserting Equation (A13) into Equation (A11) will yield:

E′[2]f ield 12 =
1

2c2
d2 I1(t)

dt2 I2

∫
d3x

∮
d~̃l1 × ~∇R1(t) ·

∮
d~̃l2 × ~∇ 1

R2(t)
(A67)

in which we recall that I2 is time independent. Using a well known identity from vector
analysis we may write:

E′[2]f ield 12 =
1

2c2
d2 I1(t)

dt2 I2

∫
d3x

∮ ∮
[(d~̃l1 · d~̃l2)(~∇R1(t) · ~∇

1
R2(t)

)

− (d~̃l1 · ~∇
1

R2(t)
)(d~̃l2 · ~∇R1(t))]. (A68)

Let us look at the integral expression

int2 =
∫

d3x
∮ ∮

[(d~̃l1 · ~∇
1

R2(t)
)(d~̃l2 · ~∇R1(t))] (A69)

This is an expression of the type described in Equation (A305) of Appendix B with h = 1
R2

and g = R1. According to Appendix A the expression in Equation (A69) can be expressed
as a surface integral. Assuming that our system is contained in an infinite sphere we have
according to Equations (A316) and (A22):

int2 =
∮ ∮

dl1ndl2m lim
r→∞

∮
dΩ r2r̂n∂mR1

1
R2

(A70)

Now:

∂mR1 =
~R1m
R1

= R̂1m (A71)

This can be calculated up to second order in x1
r using Equations (A23) and (A24) as:

R̂1m = r̂m +
1
r
(r̂m(r̂ ·~x1)−~x1m) + O

(
(

x1

r
)2
)

. (A72)

Similarly according to Equation (A25):

1
R
' 1

r

[
1 +

r̂ ·~x2

r
+ O

(
(

x2

r
)2
)]

. (A73)

Plugging Equations (A72) and (A73) into Equation (A70) we obtain:

int2 =
∮ ∮

dl1ndl2m lim
r→∞

∮
dΩ rr̂n[

r̂m +
1
r
(r̂m(r̂ ·~x1)−~x1m) + O

(
(

x1

r
)2
)][

1 +
r̂ ·~x2

r
+ O

(
(

x2

r
)2
)]

(A74)

The O
(
( x′

r )
2
)

terms will not contribute in the limit of infinite radius and thus we may write:

int2 =
∮ ∮

dl1ndl2m lim
r→∞

∮
dΩ rr̂n

[
r̂m +

1
r
(r̂m(r̂ ·~x1)−~x1m)

][
1 +

r̂ ·~x2

r

]
(A75)
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multiplying the square brackets explicitly we obtain:

int2 =
∮ ∮

dl1ndl2m lim
r→∞

∮
dΩ rr̂n

[
r̂m +

1
r
(r̂m(r̂ · (~x1 +~x2))−~x1m)

+ O
( x1x2

r2

)]
(A76)

in the limit of large r:

int2 =
∮ ∮

dl1ndl2m lim
r→∞

∮
dΩ rr̂n

[
r̂m +

1
r
(r̂m(r̂ · (~x1 +~x2))−~x1m)

]
(A77)

Now we notice that performing a loop integral over a constant ~C we obtain a null result:∮
d~l · ~C = 0 (A78)

Since neither of the terms in the square bracket depends on both ~x1 and ~x2 (they depend
on either ~x1 or ~x2 or non of them) certainly one of the loop integrals of Equation (A77) will
vanish (or both), hence int2 = 0 and thus Equation (A68) takes the form:

E′[2]f ield 12 =
1

2c2
d2 I1(t)

dt2 I2

∫
d3x

∮ ∮
[(d~̃l1 · d~̃l2)(~∇R1(t) · ~∇

1
R2(t)

)]. (A79)

Now:
~∇R1(t) · ~∇

1
R2(t)

= ~∇ · (R1(t)~∇
1

R2(t)
)− R1(t)~∇2 1

R2(t)
(A80)

Taking into account Equation (A19), we have:

~∇R1(t) · ~∇
1

R2(t)
= ~∇ · (R1(t)~∇

1
R2(t)

) + 4πR1(t)δ(~R2). (A81)

The first term in the right hand side is a divergence. Thus, using Gauss theorem its volume
integral will become a surface integral, the second term is a delta function. This means that
there is no contribution to the volume integral from the delta term unless ~x = ~x2. We may
now write Equation (A79) as follows:

E′[2]f ield 12 =
1

2c2
d2 I1(t)

dt2 I2

∮ ∮
(d~̃l1 · d~̃l2)[

∫
dan̂ · R1(t)~∇

1
R2(t)

+ 4πR12(t)]. (A82)

Let us look at the surface integral and assume as usual that the system is contained inside
an infinite sphere.

int3 =
∮ ∮

(d~̃l1 · d~̃l2)
∫

dan̂ · R1(t)~∇
1

R2(t)

=
∮ ∮

(d~̃l1 · d~̃l2) lim
r→∞

∫
dΩ r2r̂ · R1(t)~∇

1
R2(t)

(A83)

Using Equations (A24) and (A27) this can be written as:

int3 = −
∮ ∮

(d~̃l1 · d~̃l2) lim
r→∞

∫
dΩ r2r̂ · r

[
1− r̂ · ~x1

r
+ O

(
(

x1

r
)2
)]

1
r2

[
r̂ +

1
r
(3(r̂ ·~x2)r̂−~x2) + O

(
(

x2

r
)2
)]

(A84)
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Or also as:

int3 = −
∮ ∮

(d~̃l1 · d~̃l2) lim
r→∞

∫
dΩ r

[
1− r̂ · ~x1

r
+ O

(
(

x1

r
)2
)]

[
1 +

2
r
(r̂ ·~x2) + O

(
(

x2

r
)2
)]

(A85)

In the limit of large r the terms O
(
( x

r )
2) will not contribute, hence:

int3 = −
∮ ∮

(d~̃l1 · d~̃l2) lim
r→∞

∫
dΩ r

[
1− r̂ · ~x1

r

][
1 +

2
r
(r̂ ·~x2)

]
(A86)

multiplying the square brackets explicitly we obtain:

int3 = −
∮ ∮

(d~̃l1 · d~̃l2) lim
r→∞

∫
dΩ r

[
1 +

1
r
(2r̂ ·~x2 − r̂ ·~x1) + O

(
(

x1x2

r2 )
)]

(A87)

the term O
(
( x1x2

r2 )
)

will not contribute, hence:

int3 = −
∮ ∮

(d~̃l1 · d~̃l2) lim
r→∞

∫
dΩ r

[
1 +

1
r
(2r̂ ·~x2 − r̂ ·~x1)

]
= 0 (A88)

Since neither of the terms in the square bracket depends on both ~x1 and ~x2 (they depend
on either ~x1 or ~x2 or non of them) certainly one of the loop integrals of Equation (A77) will
vanish (or both) being a loop integral over a constant vector (see Equation (A78)), hence
int3 = 0 and thus Equation (A82) takes the simple form:

E′[2]f ield 12 =
2π

c2
d2 I1(t)

dt2 I2

∮ ∮
(d~l1 · d~l2)R12. (A89)

And:

E[2]
f ield 12 =

µ0

(4π)2 E′[2]f ield 12 =
µ0

8πc2
d2 I1(t)

dt2 I2

∮ ∮
(d~l1 · d~l2)R12. (A90)

For a phasor current with frequency ω:

I1(t) = I10ejωt, j ≡
√
−1 (A91)

we obtain a second order correction to the mutual inductance of the form [18]:

M[2]
12 ≡ −

µ0ω2

8πc2

∮
d~l1 ·

∮
d~l2R12 (A92)

Such that:
E[2]

f ield 12 = I1(t)I2M[2]
12 . (A93)

Obviously the larger the system and the higher the frequency the more important this
correction is. We stress that this term is not related to the relativistic engine effect and will
exist even for an engine of “infinite” mass.

Appendix A.3.3. Poynting Vector

Finally we shall study the Poynting vector:

~S′[2]p 12 = ~E′[0]1 × ~B′[2]2 + ~E′[2]1 × ~B′[0]2 + ~E′[0]2 × ~B′[2]1 + ~E′[2]2 × ~B′[0]1 (A94)
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Taking into account that ~E[0]
2 is null according to Equation (A6) and ~B′[2]2 is null according

to Equation (A65) this simplifies to:

~S′[2]p 12 = ~E′[2]1 × ~B′[0]2 + ~E′[2]2 × ~B′[0]1 (A95)

Now the Poynting vector terms which are usually associated with radiation only contributes
to the energy balance on a surface encapsulating the system under consideration (see
Equation (71)). Taking this surface to be spherical and at infinity we deduce that only the
asymptotic forms of ~E′[2] and ~B′[0] are of interest for the purpose of evaluating the Poynting
vector contribution. According to Equation (A55):

~E′[2] = − 1
2c2

d3 I(t)
dt3

∮
d~̃lR(t)− I(t)

∮
d~̃l

~vs. · ~R(t)
R3(t)

. (A96)

Taking into account the asymptotic forms given in Equations (A24) and (A27) and taking

into account that
∮

d~̃l = 0., we arrive at the asymptotic form:

~E′[2] ' 1
2c2

d3 I(t)
dt3

∮
d~l n̂ ·~x′ + I(t)

r3

∮
d~l[~vs. ·~x′ − 3(~vs. · n̂)(n̂ ·~x′)]. (A97)

Hence for an asymptotic field created by a time dependent current we have the form :

~E′[2]1 ' 1
2c2

d3 I1(t)
dt3

∮
d~l1 n̂ ·~x1. (A98)

However, for an asymptotic field created by a time independent current we have the form :

~E′[2]2 ' I2

r3

∮
d~l2[~vs. ·~x2 − 3(~vs. · n̂)(n̂ ·~x2)] (A99)

The asymptotic form of the magnetic field ~B′[0] is given in Equations (A34) and (A35):

~B′[0](~x, t) ' I(t)~Λ
r3 . (A100)

From the above it easy to see that:

lim
r→∞

~S′[2]p 12 ∝
1
r3 (A101)

of course the contribution from Equation (A99) will go to zero much faster as: 1
r6 . This term

is only obtained when I1(t) is time dependent. It easy to see that:∮
S
~S′[2]p 12 · n̂da = lim

r→∞

∮
S
(~S′[2]p 12 · r̂)r

2dΩ = 0 (A102)

hence there is no Poynting vector contribution to the energy balance. This is expected as
the mechanical work is balanced by the field energy loss exactly in second order terms of 1

c .

Appendix A.3.4. Intermediate Account

We conclude that the energy equation of the second order is indeed balanced. Me-
chanical work invested or extracted in the system results in increase or decrease in the field
energy accordingly. To be more specific the magnetic field energy is affected by the me-
chanical work. The power related to the mechanical work is according to Equation (A60):

Power[2]12 = − µ0

8πc2
d3 I1(t)

dt3 I2

∮ ∮
d~l2 · d~l2R12 (A103)
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and this is equal to minus the derivative of the field energy Equation (A90):

E[2]
f ield 12 =

µ0

8πc2
d2 I1(t)

dt2 I2

∮ ∮
(d~l1 · d~l2)R12. (A104)

which is what is expected from Equation (A50) for the case that there is no Poynting
contribution. We underline that those contributions are not related the relativistic engine
effect as none of the terms depends on the engine velocity ~v, and thus the above expression
will be valid even if the engine is infinitely massive and no motion occurs. We do not
expect any relativistic engine contributions for orders smaller than 1

c4 . For a phasor current
of frequency ω Equation (A92) indicates a relativistic correction to the classical mutual
inductance which is important for large systems with high frequency.

Appendix A.4. n = 3

Let us look at Equation (71) and study it for the third order in 1
c :

Power′[3]12 = −
dE′[3]f ield 12

dt
−
∮

S
~S′[3]p 12 · n̂da. (A105)

Appendix A.4.1. Power

We shall start by calculating Power[3]12 , according to Equation (72):

Power′[3]12 = 4π

(
I1(t)

∮
d~̃l1 · ~E

′[3]
2 (~x1) + I2(t)

∮
d~̃l2 · ~E

′[3]
1 (~x2)

)
. (A106)

The field ~E′[3] can only come from the vector potential ~A′[3] and ~A′[1]. ~A′[1] is null according
to Equation (57) while ~A′[3] can be deduce from ~A′(3) which can be calculated using
Equation (53). As expected, the higher the frequency the more pronounced the relativistic
effect is. A third order correction to the magnetic field in a relativistic motor can be derived
from the third term ~A′(3) in the sum given in Equation (52):

~A′(3)(~x, t) = − 1
6c3

d3

dt3

[
I(t)

∮
d~̃lR2(t)

]
. (A107)

Now it is clear that this expression contains terms of the order of 1
c3 and higher (including

terms of the order 1
c5 and 1

c7 ). However, it is easy to see that there are no third order
corrections to the vector potential except:

~A′[3](~x, t) = − 1
6c3

d3 I(t)
dt3

∮
d~̃lR2(t). (A108)

Now using Equation (58) we arrive at the following equation for ~E[3]:

~E′[3] =
1

6c3
d4 I(t)

dt4

∮
d~lR2 (A109)

in which we maintained only terms of the order of 1
c3 but not higher. From which it is

clear that:
E′[3]2 = 0 (A110)

for a constant current loop. Hence according to Equation (72):

Power′[3]12 = 4π I2

∮
d~̃l2 · ~E

′[3]
1 (~x2). (A111)
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Power′[3]12 =
2π

3c3
d4 I1(t)

dt4 I2

∮ ∮
d~̃l1 · d~̃l2R2

12 (A112)

Hence:

Power[3]12 =
µ0

16π2 Power′[3]12 =
µ0

24πc3
d4 I1(t)

dt4 I2

∮ ∮
d~l1 · d~l2R2

12 (A113)

We notice that Power[3]12 may be positive or negative according to the relative position of the
current loops and current directions and fourth derivative, hence, energy can be invested
or extracted from the combined system according to the system configuration. We also
notice that this term has nothing to do with the relativistic engine effect as it is completely
independent of the mass of the engine and will exist also for an infinitely heavy motor.
This is to be expected as the relativistic engine effect is fourth order in 1

c and not third order.
We will interpret the double integral

∮ ∮
d~l1 · d~l2R2

12 in the next subsection dealing with the
field energy.

Appendix A.4.2. Field Energy

Turning our attention next to field energy defined in Equation (68) we obtain the
following expression for third order terms in 1

c :

E′[3]f ield 12 =
∫ (

~B′[0]1 · ~B′[3]2 + ~B′[3]1 · ~B′[0]2

)
d3x, (A114)

in which we are reminded that there are no field contributions which are first order in 1
c .

~B′[3] is calculated according to Equation (61) as:

~B′[3] = ~∇× ~A′[3]. (A115)

Taking into account Equation (A108) the third order correction to the magnetic field is thus:

~B′[3](~x, t) =
1

6c3
d3 I(t)

dt3

∮
d~̃l × ~∇R2(t) =

1
3c3

d3 I(t)
dt3

∮
d~̃l × ~R(t). (A116)

in which we have used:
~∇R2 = 2R~∇R = 2RR̂ = 2~R (A117)

Hence for a static coil:
~B′[3]2 (~x, t) = 0. (A118)

Furthermore, thus:
E′[3]f ield 12 =

∫
~B′[3]1 · ~B′[0]2 d3x. (A119)

Inserting Equation (A13) into Equation (A11) will yield:

E′[3]f ield 12 = − 1
6c3

d3 I1(t)
dt3 I2

∫
d3x

∮
d~̃l1 × ~∇R2

1(t) ·
∮

d~̃l2 × ~∇ 1
R2(t)

(A120)

in which we recall that I2 is time independent. Using a well known identity from vector
analysis we may write:

E′[3]f ield 12 = − 1
6c3

d3 I1(t)
dt3 I2

∫
d3x

∮ ∮
[(d~̃l1 · d~̃l2)(~∇R2

1(t) · ~∇
1

R2(t)
)

− (d~̃l1 · ~∇
1

R2(t)
)(d~̃l2 · ~∇R2

1(t))]. (A121)

Let us look at the integral expression

int4 =
∫

d3x
∮ ∮

[(d~̃l1 · ~∇
1

R2(t)
)(d~̃l2 · ~∇R2

1(t))] (A122)
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Such that:

E′[3]f ield 12 = − 1
6c3

d3 I1(t)
dt3 I2[

∫
d3x

∮ ∮
(d~̃l1 · d~̃l2)(~∇R2

1(t) · ~∇
1

R2(t)
)− int4]. (A123)

This is an expression of the type described in Equation (A305) of Appendix B with h = 1
R2

and g = R2
1. According to Appendix A the expression in Equation (A122) can be expressed

as a surface integral. Assuming that our system is contained in an infinite sphere we have
according to Equations (A316) and (A22):

int4 =
∮ ∮

dl1ndl2m lim
r→∞

∮
dΩ r2r̂n∂mR2

1
1

R2
(A124)

Now:
∂mR2

1 = 2~R1m (A125)

This can be calculated using Equation (A23) as:

~R1m = r(r̂m −
x1m

r
). (A126)

Similarly according to Equation (A25):

1
R
' 1

r

[
1 +

r̂ ·~x2

r
+ O

(
(

x2

r
)2
)]

. (A127)

Plugging Equations (A126) and (A127) into Equation (A128) we obtain:

int4 = 2
∮ ∮

dl1ndl2m lim
r→∞

∮
dΩ r2r̂n[

r̂m −
x1m

r

][
1 +

r̂ ·~x2

r
+ O

(
(

x2

r
)2
)]

(A128)

Now we recall that performing a loop integral over a constant ~C we obtain a null result:∮
d~l · ~C = 0 (A129)

The only term that contribute must depend on both ~x1 and ~x2 thus Equation (A128) takes
the form:

int4 = −2
∮ ∮

dl1ndl2m lim
r→∞

∮
dΩ r2r̂n

x1m
r

[
r̂ ·~x2

r
+ O

(
(

x2

r
)2
)]

(A130)

Furthermore, taking the limit we obtain:

int4 = −2
∮ ∮

dl1ndl2m

∮
dΩr̂nx1m r̂ ·~x2

= −2
∮ ∮

dl1ndl2mx1mx2k

∮
dΩr̂n r̂k (A131)

According to [3]: ∮
dΩr̂n r̂k =

4π

3
δnk (A132)

in which δnk is a Kronecker delta, hence:

int4 = −8π

3

∮ ∮
dl1ndl2mx1mx2n = −8π

3

∮ ∮
(d~l1 ·~x2)(d~l2 ·~x1) (A133)

Hence although int4 is a surface integral at infinity it does not vanish which indicates
radiation. The radiation contribution to the energy balance will be discussed further in the
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next subsection in which we shall consider the Poynting flux contribution. Let us now look
at the first part of the integral:

int5 =
∫

d3x
∮ ∮

[(d~̃l1 · d~̃l2)(~∇R2
1(t) · ~∇

1
R2(t)

)]. (A134)

Such that:

E′[3]f ield 12 = − 1
6c3

d3 I1(t)
dt3 I2[int5 − int4]. (A135)

Now:
~∇R2

1(t) · ~∇
1

R2(t)
= ~∇ · (R2

1(t)~∇
1

R2(t)
)− R2

1(t)~∇2 1
R2(t)

(A136)

Taking into account Equation (A19), we have:

~∇R2
1(t) · ~∇

1
R2(t)

= ~∇ · (R2
1(t)~∇

1
R2(t)

) + 4πR2
1(t)δ(~R2). (A137)

The first term in the right hand side is a divergence. Thus, using Gauss theorem its volume
integral will become a surface integral, the second term is a delta function. This means that
there is no contribution to the volume integral from that terms unless ~x = ~x2. We may now
write Equation (A122) as follows:

int5 =
∮ ∮

(d~̃l1 · d~̃l2)[
∫

dan̂ · R2
1(t)~∇

1
R2(t)

+ 4πR2
12(t)]. (A138)

Let us look at the surface integral and assume as usual that the system is contained inside
an infinite sphere.

int6 =
∮ ∮

(d~̃l1 · d~̃l2)
∫

dan̂ · R2
1(t)~∇

1
R2(t)

= −
∮ ∮

(d~̃l1 · d~̃l2) lim
r→∞

∫
dΩ r2r̂ · R2

1(t)
~R2

R3
2(t)

(A139)

We denote:
~G = R2

1(t)
~R2

R3
2(t)

(A140)

and show in Appendix C that:∮ ∮
(d~̃l1 · d~̃l2) lim

r→∞

∫
dΩ r2r̂ · ~G =

∮ ∮
(d~̃l1 · d~̃l2)

∫
dΩr̂ · (2(r̂ ·~x1)~x2) (A141)

Hence:

int6 = −
∮ ∮

(d~̃l1 · d~̃l2)
∫

dΩr̂ · (2(r̂ ·~x1)~x2)

= −2
∮ ∮

(d~̃l1 · d~̃l2)x1mx2n

∫
dΩr̂m r̂n (A142)

Now taking int account Equation (A132) we obtain the result:

int6 = −8π

3

∮ ∮
(d~̃l1 · d~̃l2)(~x1 ·~x2). (A143)

Hence:
int5 = 4π

∮ ∮
(d~̃l1 · d~̃l2)R2

12(t)−
8π

3

∮ ∮
(d~̃l1 · d~̃l2)(~x1 ·~x2). (A144)
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Now inserting Equations (A144) and (A133) into Equation (A135) will yield:

E′[3]f ield 12 = − 2π

3c3
d3 I1(t)

dt3 I2[
∮ ∮

(d~l1 · d~l2)R2
12 −

2
3

∮ ∮
(d~l1 · d~l2)(~x1 ·~x2)

+
2
3

∮ ∮
(d~l1 ·~x2)(d~l2 ·~x1)]. (A145)

we will dissect the above expression into volume and surface contributions such that:

E′[3]f ieldV 12 ≡ −
2π

3c3
d3 I1(t)

dt3 I2

∮ ∮
(d~l1 · d~l2)R2

12 (A146)

E′[3]f ieldS 12 ≡ 4π

9c3
d3 I1(t)

dt3 I2

[∮ ∮
(d~l1 · d~l2)(~x1 ·~x2)

−
∮ ∮

(d~l1 ·~x2)(d~l2 ·~x1)

]
(A147)

E′[3]f ield 12 = E′[3]f ieldV 12 + E′[3]f ieldS 12 (A148)

And:

E[3]
f ieldV 12 =

µ0

(4π)2 E′[3]f ieldV 12 = − µ0

24πc3
d3 I1(t)

dt3 I2

∮ ∮
(d~l1 · d~l2)R2

12. (A149)

It can easily seen that the change in volume energy is balance by the mechanical work
done, see Equation (A113). For a phasor current with frequency ω:

I1(t) = I10ejωt, j ≡
√
−1 (A150)

we obtain a second order correction to the mutual inductance of the form [18]:

M[3]
12 ≡

jµ0ω3

24πc3

∮
d~l1 ·

∮
d~l2R2

12 (A151)

Such that:
E[3]

f ield 12 = I1(t)I2M[3]
12 . (A152)

Obviously the larger the system and the higher the frequency the more important this
correction is. We note that this term contains a j indicating that this correction is resistive.
We stress that this term is not related to the relativistic engine effect and will exist even for
an engine of “infinite” mass. Of course we have unbalanced surface terms with field energy:

E[3]
f ieldS 12 =

µ0

(4π)2 E′[3]f ieldS 12 =
µ0

36πc3
d3 I1(t)

dt3 I2[∮ ∮
(d~l1 · d~l2)(~x1 ·~x2)−

∮ ∮
(d~l1 ·~x2)(d~l2 ·~x1)

]
. (A153)

The only way to balance the derivative of this term in the energy equation is by a Poynting
term which signifies the generation of radiation. Finally we notice the vector identity:

(~x1 × d~l1) · (~x2 × d~l2) = (d~l1 · d~l2)(~x1 ·~x2)− (d~l1 ·~x2)(d~l2 ·~x1) (A154)

and the definition of a oriented Area:

~Ar ≡ 1
2

∮
~x× d~l (A155)
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and write Equation (A153) in a compact form:

E[3]
f ieldS 12 =

µ0

9πc3 I2
d3 I1(t)

dt3
~Ar1 · ~Ar2. (A156)

Hence orthogonal current loops will generate a null surface field contribution.

Appendix A.4.3. Poynting Vector

Finally we shall study the Poynting vector:

~S′[3]p 12 = ~E′[0]1 × ~B′[3]2 + ~E′[3]1 × ~B′[0]2 + ~E′[0]2 × ~B′[3]1 + ~E′[3]2 × ~B′[0]1 (A157)

Taking into account that ~E[0]
2 is null according to Equation (A6) and ~B′[3]2 is null according

to Equation (A118) this simplifies to:

~S′[3]p 12 = ~E′[3]1 × ~B′[0]2 + ~E′[3]2 × ~B′[0]1 . (A158)

Further more according to Equation (A110) ~E′[3]2 is also null hence:

~S′[3]p 12 = ~E′[3]1 × ~B′[0]2 . (A159)

The above expression can be calculated using Equations (A109) and (A13):

~S′[3]p 12 =
I2

6c3
d4 I1(t)

dt4

∮ ∮
d~l1 ×

(
d~l2 ×

R2
1
~R2

R3
2

)

=
I2

6c3
d4 I1(t)

dt4

∮ ∮
d~l1 ×

(
d~l2 × ~G

)
(A160)

in we have used the definition of ~G given in Equation (A140). Doing some vector algebra
we have:

~S′[3]p 12 =
I2

6c3
d4 I1(t)

dt4

∮ ∮ [
d~l2(d~l1 · ~G)− ~G(d~l1 · d~l2)

]
(A161)

Now let us calculate the Poynting flux on an infinite sphere:∮
S
~S′[3]p 12 · n̂da = lim

r→∞

∫
~S′[3]p 12 · r̂ r2dΩ. (A162)

According to Equation (A161) this will take the form:

∮
S
~S′[3]p 12 · n̂da =

I2

6c3
d4 I1(t)

dt4 lim
r→∞

∫ ∮ ∮ [
d~l2(d~l1 · ~G)− ~G(d~l1 · d~l2)

]
· r̂ r2dΩ. (A163)

According to Appendix C this can be calculated using the result of Equation (A333):

∮
S
~S′[3]p 12 · n̂da =

I2

3c3
d4 I1(t)

dt4

∫
dΩr̂m r̂nx1n∮ ∮ [

dl2m(d~l1 ·~x2)− x2m(d~l1 · d~l2)
]
. (A164)

Applying Equation (A132) we obtain:

∮
S
~S′[3]p 12 · n̂da =

4π I2

9c3
d4 I1(t)

dt4

∮ ∮ [
(d~l2 ·~x1)(d~l1 ·~x2)− (~x1 ·~x2)(d~l1 · d~l2)

]
. (A165)
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Taking into account Equations (A154) and (A155) we have finally:

∮
S
~S[3]

p 12 · n̂da =
µ0

(4π)2

∮
S
~S′[3]p 12 · n̂da = − µ0

9πc3 I2
d4 I1(t)

dt4
~Ar1 · ~Ar2. (A166)

Thus, the Poynting radiation flux balances that change in surface field energy given in
Equation (A156) .

Appendix A.4.4. Intermediate Account

We conclude that the energy Equation (A105) of the third order is indeed balanced.
Mechanical work invested or extracted in the system results in increase or decrease in
the field energy accordingly. To be more specific the magnetic field energy is affected
by the mechanical work. The power related to the mechanical work is according to
Equation (A113):

Power[3]12 =
µ0

24πc3
d4 I1(t)

dt4 I2

∮ ∮
d~l1 · d~l2R2

12 (A167)

and this is equal to minus the derivative of the volume field energy Equation (A149):

E[3]
f ieldV 12 = − µ0

24πc3
d3 I1(t)

dt3 I2

∮ ∮
(d~l1 · d~l2)R2

12. (A168)

However, for the third order in 1
c there is also a surface contribution to the field energy

given in Equation (A156):

E[3]
f ieldS 12 =

µ0

9πc3 I2
d3 I1(t)

dt3
~Ar1 · ~Ar2. (A169)

such that the total field energy is:

E[3]
f ield 12 = E[3]

f ieldV 12 + E[3]
f ieldS 12 (A170)

The change in the field energy through the surface terms results in radiation as described
by the Poynting flux depicted in Equation (A166):

∮
S
~S[3]

p 12 · n̂da = − µ0

9πc3 I2
d4 I1(t)

dt4
~Ar1 · ~Ar2. (A171)

curiously this flux can be avoided by configuring the loops to be orthogonal to each
other [19]. We underline that third order contributions are not related the relativistic engine
effect as non of the terms depends on the engine velocity ~v, and thus the above expression
will be valid even if the engine is infinitely massive and no motion occurs. We do not
expect any relativistic engine contributions for orders smaller than 1

c4 . For a phasor current
of frequency ω Equation (A151) indicates a resistive relativistic correction to the classical
mutual inductance which is important for large systems with high frequency.

M[3]
12 ≡

jµ0ω3

24πc3

∮
d~l1 ·

∮
d~l2R2

12 (A172)

Appendix A.5. n = 4

Let us look at Equation (71) and study it for the fourth order in 1
c :

Power′[4]12 = −
dE′[4]f ield 12

dt
−
∮

S
~S′[4]p 12 · n̂da. (A173)
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Appendix A.5.1. Power

We shall start by calculating Power[4]12 , according to Equation (72):

Power′[4]12 = 4π

(
I1(t)

∮
d~̃l1 · ~E

′[4]
2 (~x1) + I2(t)

∮
d~̃l2 · ~E

′[4]
1 (~x2)

)
. (A174)

The field ~E′[4] can only come from the vector potential ~A′[4] and ~A′[2]. Let us start by
analyzing the contribution of the ~A′[2] term, according to Equation (A54) this is equal to:

~A′[2](~x, t) ≡ 1
2c2

d2 I(t)
dt2

∮
d~̃lR(t). (A175)

to calculate the electric field contribution to the fourth order according to Equation (58) we
shall take the temporal derivative of Equation (A175) but keep only fourth order terms,
thus we arrive at:

~E′[4]a (~x, t) ≡ 1
2c2

d2 I(t)
dt2

∮
d~̃lR̂ ·~v. (A176)

where we use Equation (55), obviously this is not the only contribution to the electric field
of the fourth order and thus it is marked by the index a other contributions to the electric
field will be marked by b. Hence for the static coil we have:

~E′[4]2a (~x, t) = 0. (A177)

and thus:
Power′[4]12a = 4π I2

∮
d~̃l2 · ~E

′[4]
1 (~x2). (A178)

Plugging Equation (A176) into Equation (A178) leads to the result:

Power′[4]12a =
2π

c2
d2 I1(t)

dt2 I2

∮
d~̃l2 ·

∮
d~̃l1R̂21 ·~v. (A179)

Using Equation (14) for defining ~K122 we arrive at the form:

Power′[4]12a =
2πh2

c2
d2 I1(t)

dt2 I2~K122 ·~v (A180)

or also:

Power[4]12a =
µ0

16π2 Power′[4]12a =
µ0h2

8πc2
d2 I1(t)

dt4 I2~K122 ·~v. (A181)

Taking into account Equation (21) we have:

Power[4]12a =
d~Pmech

dt
·~v. (A182)

which is exactly the amount of mechanical power needed to drive the relativistic engine.
Unfortunately more power is needed to drive the currents through the coils as will be
demonstrated below.

Let us now derive an expression for ~A′[4], the fourth order contribution will come
from ~A′(2) given in Equation (A53) but also from ~A′(4) defined in Equation (53):

~A′(4)(~x, t) =
1

24c4
d4

dt4

[
I(t)

∮
d~̃lR3(t)

]
. (A183)

We notice that there are no contributions from ~A′(3) which contains only odd powers of
1
c . It is clear that Equation (A183) contains terms of the order of 1

c4 and higher (including
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terms of the order 1
c6 , 1

c8 and 1
c10 ). However, it is easy to see that there are no fourth order

corrections to the vector potential coming from Equation (A183) except:

1
24c4

d4 I(t)
dt4

∮
d~̃lR3(t). (A184)

Taking into account Equation (A184) and the fourth order contributions from Equation (A53)
we obtain the expression:

~A′[4](~x, t) =
1

24c4
d4 I(t)

dt4

∮
d~̃lR3(t)− 1

c2
dI(t)

dt

∮
d~̃lR̂ ·~v− I(t)

2c2

∮
d~̃lR̂ · d~v

dt
(A185)

We shall define:
~A′[4]c ≡ 1

24c4
d4 I(t)

dt4

∮
d~̃lR3(t) (A186)

for future reference. Now using Equation (58) and keeping only fourth order contributions
we arrive at the following equation for ~E′[4]b :

~E′[4]b = − 1
24c4

d5 I(t)
dt5

∮
d~̃lR3(t) +

1
c2

d2 I(t)
dt2

∮
d~̃lR̂ ·~v

+
3

2c2
dI(t)

dt

∮
d~̃lR̂ · d~v

dt
+

I(t)
2c2

∮
d~̃lR̂ · d2~v

dt2 . (A187)

We shall define for future reference the mutual inductance fourth order electric field:

~E′[4]mui ≡ −
1

24c4
d5 I(t)

dt5

∮
d~̃lR3(t) = −∂~A′[4]c

∂t
(A188)

the last equation sign is correct up to the fourth power in 1
c . It is clear that for a constant

current we have:

E′[4]2b =
I2

2c2

∮
d~̃l2R̂2 ·

d2~v
dt2 . (A189)

We shall write down the total electric field correction to fourth order in 1
c for future

reference:

~E′[4] = ~E′[4]a + ~E′[4]b = − 1
24c4

d5 I(t)
dt5

∮
d~̃lR3(t) +

3
2c2

d2 I(t)
dt2

∮
d~̃lR̂ ·~v

+
3

2c2
dI(t)

dt

∮
d~̃lR̂ · d~v

dt
+

I(t)
2c2

∮
d~̃lR̂ · d2~v

dt2 . (A190)

Plugging Equations (A187) and (A189) into Equation (A173) will lead to the following
expression:

Power′[4]12b =
4π

c2

[
1
2

I1(t)I2

∮ ∮
(d~̃l1 · d~̃l2)R̂12 ·

d2~v
dt2

− 1
24c2

d5 I1(t)
dt5 I2

∮ ∮
(d~̃l1 · d~̃l2)R3

21(t)

+
d2 I1(t)

dt2 I2

∮ ∮
(d~̃l1 · d~̃l2)R̂21 ·~v

+
3
2

dI1(t)
dt

I2

∮ ∮
(d~̃l1 · d~̃l2)R̂21 ·

d~v
dt

+
1
2

I1(t)I2

∮ ∮
(d~̃l1 · d~̃l2)R̂21 ·

d2~v
dt2

]
. (A191)
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Now since ~R21 = −~R12 the first and fifth terms cancel. Furthermore, we obtain:

Power′[4]12b =
4π

c2

[
− 1

24c2
d5 I1(t)

dt5 I2

∮ ∮
(d~̃l1 · d~̃l2)R3

21(t)

+
d2 I1(t)

dt2 I2

∮ ∮
(d~̃l1 · d~̃l2)R̂21 ·~v

+
3
2

dI1(t)
dt

I2

∮ ∮
(d~̃l1 · d~̃l2)R̂21 ·

d~v
dt

]
. (A192)

Taking into account the definition of ~K122 given in Equation (14) we have:

Power′[4]12b =
4π

c2

[
− 1

24c2
d5 I1(t)

dt5 I2

∮ ∮
(d~̃l1 · d~̃l2)R3

21(t)

+
d2 I1(t)

dt2 I2h2~K122 ·~vs. +
3
2

dI1(t)
dt

I2h2~K122 ·
d~v
dt

]
. (A193)

Hence:

Power[4]12b =
µ0

16π2 Power′[4]12b =

[
− µ0

96πc4
d5 I1(t)

dt5 I2

∮ ∮
(d~̃l1 · d~̃l2)R3

21(t)

+
µ0

4πc2
d2 I1(t)

dt2 I2h2~K122 ·~vs. +
3µ0

8πc2
dI1(t)

dt
I2h2~K122 ·

d~v
dt

]
. (A194)

Now using the expression for the relativistic engine mechanical momentum ~Pmech given in
Equation (21) we have:

Power[4]12b =
µ0

16π2 Power′[4]12b = − µ0

96πc4
d5 I1(t)

dt5 I2

∮ ∮
(d~̃l1 · d~̃l2)R3

21(t)

+2
d~Pmech

dt
·~vs. + 3~Pmech ·

d~v
dt

= − µ0

96πc4
d5 I1(t)

dt5 I2

∮ ∮
d(~l1 · d~l2)R3

21 + 5~Pmech ·
d~v
dt

(A195)

Hence the total mechanical work done in the fourth order can be calculated using
Equations (A182) and (A195) as:

Power[4]12 = Power[4]12a + Power[4]12b

= − µ0

96πc2
d5 I1(t)

dt5 I2

∮ ∮
(d~l1 · d~l2)R3

21 + 6~Pmech ·
d~v
dt

= − µ0

96πc2
d5 I1(t)

dt5 I2

∮ ∮
(d~l1 · d~l2)R3

21 + 6
dEmech

dt
. (A196)

We notice that power invested is mechanical work to fourth order in 1
c has two parts.

One which clearly is not related the relativistic engine effect and the other which clearly
is. As related to the mechanical power needed to operate the relativistic engine it is six
times greater then the change in kinetic energy of the engine itself, the rest of the power is
invested in driving the currents through the coils. An additional part which is related to
the fifth derivative of the current is not connected to relativistic engine effect and will exist
even for an infinitely heavy engine.
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Appendix A.5.2. Field Energy

Turning our attention next to field energy defined in Equation (68) we obtain the
following expression for fourth order term in 1

c :

E′[4]f ield 12 =
∫ ( 1

c2

(
~E′[0]1 · ~E′[2]2 + ~E′[2]1 · ~E′[0]2

)
+ ~B′[0]1 · ~B′[4]2 + ~B′[2]1 · ~B′[2]2 + ~B′[4]1 · ~B′[0]2

)
d3x (A197)

in which we are reminded that there are no field contributions which are first order in 1
c .

According to Equation (A6) ~E′[0]2 = 0, and according to Equation (A65) ~B′[2]2 = 0, hence the
above equation simplifies as follows:

E′[4]f ield 12 =
∫ ( 1

c2
~E′[0]1 · ~E′[2]2 + ~B′[0]1 · ~B′[4]2 + ~B′[4]1 · ~B′[0]2

)
d3x. (A198)

The field energy can be clearly partitioned to electric field and magnetic field contributions:

E′[4]f ield 12 = E′[4]E f ield 12 + E′[4]M f ield 12

E′[4]E f ield 12 =
1
c2

∫
~E′[0]1 · ~E′[2]2 d3x,

E′[4]M f ield 12 =
∫ (

~B′[0]1 · ~B′[4]2 + ~B′[4]1 · ~B′[0]2

)
d3x. (A199)

We begin with evaluating E′[4]E f ield 12 by using ~E′[0]1 of Equation (A5) and ~E′[2]2 of Equation (A56).
Obtaining:

E′[4]E f ield 12 =
I2

c2
dI1(t)

dt

∮ ∮
(d~l1 · d~l2)~vs. ·

∫
d3x

~R2

R2
2R1

(A200)

We show in Appendix D (see also [17]) that:

2πR̂12 =
∫

d3x
~R2

R2
2R1

, (A201)

hence:

E′[4]E f ield 12 =
2π I2

c2
dI1(t)

dt
~vs. ·

∮ ∮
(d~l1 · d~l2)R̂12. (A202)

Taking into account Equation (14) we obtain:

E′[4]E f ield 12 = −2π I2

c2
dI1(t)

dt
~vs. · ~K122. (A203)

hence:

E[4]
E f ield 12 =

µ0

(4π)2 E′[4]E f ield 12 = − µ0

8πc2
dI1(t)

dt
I2~vs. · ~K122. (A204)

using the mechanical momentum Equation (21) we thus obtain:

E[4]
E f ield 12 = −~vs. · ~Pmech = −2Emech. (A205)

Turning our attention to the magnetic part of the field energy we notice that a fourth
order correction of the magnetic field ~B′[4] is needed, this can be calculated according to
Equation (61) as:

~B′[4] = ~∇× ~A′[4]. (A206)
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Taking into account Equation (A185) the fourth order correction to the magnetic field
is thus:

~B′[4](~x, t) = − I(t)
2c2

∮
~∇(R̂ · d~v

dt
)× d~̃l − 1

c2
dI(t)

dt

∮
~∇(R̂ ·~v)× d~̃l

+
1

24c4
d4 I(t)

dt4

∮
~∇R3(t)× d~̃l. (A207)

Hence for a static current:

~B′[4]2 (~x, t) = − I2

2c2

∮
~∇(R̂2 ·

d~v
dt

)× d~̃l2. (A208)

We shall find it convenient to label the different terms of the magnetic field of the fourth
order:

~B′[4](~x, t) = ~B′[4]a + ~B′[4]b + ~B′[4]c

~B′[4]a = − I(t)
2c2

∮
~∇(R̂ · d~v

dt
)× d~̃l

~B′[4]b = − 1
c2

dI(t)
dt

∮
~∇(R̂ ·~v)× d~̃l

~B′[4]c =
1

24c4
d4 I(t)

dt4

∮
~∇R3(t)× d~̃l. (A209)

Furthermore, thus the magnetic energy can also be partitioned:

E′[4]M f ield 12 = E′[4]M f ield 120 + E′[4]M f ield 12a + E′[4]M f ield 12b + E′[4]M f ield 12c

E′[4]M f ield 120 =
∫

~B′[0]1 · ~B′[4]2 d3x

E′[4]M f ield 12a =
∫

~B′[4]1a · ~B
′[0]
2 d3x

E′[4]M f ield 12b =
∫

~B′[4]1b · ~B
′[0]
2 d3x

E′[4]M f ield 12c =
∫

~B′[4]1c · ~B
′[0]
2 d3x. (A210)

We shall start by evaluating E′[4]M f ield 120. Using Equations (A13) and (A208) we obtain:

E′[4]M f ield 120 = − I1(t)I2

2c2

∫
d3x

∮ ∮ (
d~̃l2 × ~∇(R̂2(t) ·

d~v
dt

)

)
·
(

d~̃l1 × ~∇ 1
R1(t)

)
(A211)

Using a well known identity from vector analysis we may write:

E′[4]M f ield 120 = − I1(t)I2

2c2

∫
d3x

∮ ∮
[
(

d~̃l1 · d~̃l2
)(

~∇(R̂2(t) ·
d~v
dt

) · ~∇ 1
R1(t)

)
−

(
d~̃l2 · ~∇

1
R1(t)

)(
d~̃l1 · ~∇(R̂2(t) ·

d~v
dt

)

)
]. (A212)

Let us look at the integral expression

int7 =
∫

d3x
∮ ∮

[(d~̃l2 · ~∇
1

R1(t)
)(d~̃l1 · ~∇(R̂2(t) ·

d~v
dt

))] (A213)

This is an expression of the type described in Equation (A305) of Appendix B with g = 1
R1

and h = R̂2(t) · d~v
dt . According to Appendix A the expression in Equation (A213) can be
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expressed as a surface integral. Assuming that our system is contained in an infinite sphere
we have according to Equations (A316) and (A22):

int7 =
∮ ∮

dl1ndl2m lim
r→∞

∮
dΩ r2r̂n∂m

1
R1

R̂2 ·
d~v
dt

(A214)

The following asymptotic expressions will now come in handy (see Equations (A72) and (A84)):

R̂2 = r̂ +
1
r
(r̂(r̂ ·~x2)−~x2) + O

(
(

x2

r
)2
)

. (A215)

∂m
1

R1
= − 1

r2

[
r̂m +

1
r
(3(r̂ ·~x1)r̂m −~x1m) + O

(
(

x1

r
)2
)]

. (A216)

Inserting Equations (A215) and (A216) into Equation (A214) and taking the limit will yield:

int7 = −
∮ ∮

dl1ndl2m

∮
dΩ r̂n r̂m r̂ · d~v

dt
(A217)

However, according to Equation (A129) a closed loop integral over a constant is null hence:

int7 = 0 (A218)

Furthermore, Equation (A212) simplifies to:

E′[4]M f ield 120 = − I1(t)I2

2c2

∫
d3x

∮ ∮
[
(

d~̃l1 · d~̃l2
)(

~∇(R̂2(t) ·
d~v
dt

) · ~∇ 1
R1(t)

)
]. (A219)

Now:
~∇(R̂2 ·

d~v
dt

) · ~∇ 1
R1

= ~∇ ·
(
(R̂2 ·

d~v
dt

)~∇ 1
R1

)
− (R̂2 ·

d~v
dt

)~∇2 1
R1

(A220)

Taking into account Equation (A19), we have:

~∇(R̂2 ·
d~v
dt

) · ~∇ 1
R1

= ~∇ ·
(
(R̂2 ·

d~v
dt

)~∇ 1
R1

)
+ 4π(R̂2 ·

d~v
dt

)δ(~R1). (A221)

Plugging Equation (A221) into Equation (A219) and using Gauss theorem we obtain:

E′[4]M f ield 120 = − I1(t)I2

2c2

∮ ∮ (
d~l1 · d~l2

)
[
∫

dan̂ · (R̂2 ·
d~v
dt

)~∇ 1
R1

+ 4πR̂12 ·
d~v
dt

]. (A222)

Let us perform the surface integral on an infinite sphere as usual and look at the integral:

int8 =
∮ ∮ (

d~l1 · d~l2
)

lim
r→∞

∮
dΩ r2r̂ · (R̂2 ·

d~v
dt

)~∇ 1
R1

(A223)

Now Equation (A216) takes the asymptotic form:

~∇ 1
R1

= − 1
r2

[
r̂ +

1
r
(3(r̂ ·~x1)r̂−~x1) + O

(
(

x1

r
)2
)]

. (A224)

Using Equations (A215) and (A224) in Equation (A223) and taking the limit:

int8 = −
∮ ∮ (

d~l1 · d~l2
) ∮

dΩ r̂ · (r̂ · d~v
dt

)r̂ = −
∮ ∮ (

d~l1 · d~l2
) ∮

dΩ (r̂ · d~v
dt

) (A225)

However, according to Equation (A129) a closed loop integral over a constant is null hence:

int8 = 0 (A226)
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and thus Equation (A222) simplifies

E′[4]M f ield 120 = −2π I1(t)I2

c2

∮ ∮ (
d~l1 · d~l2

)
R̂12 ·

d~v
dt

. (A227)

Taking into account the definition Equation (14) this is simplified to the form:

E′[4]M f ield 120 = 2π I1(t)I2
h2

c2
~K122 ·

d~v
dt

. (A228)

Next we turn our attention to E′[4]M f ield 12a (see Equation (A210)), using Equations (A13) and
(A209) we obtain:

E′[4]M f ield 12a = −
I1(t)I2

2c2

∫
d3x

∮ ∮ (
d~̃l1 × ~∇(R̂1(t) ·

d~v
dt

)

)
·
(

d~̃l2 × ~∇ 1
R2(t)

)
. (A229)

However, this integral is the same as the integral given in Equation (A211) with the indices
1 and 2 interchanged. It immediately follows that E′[4]M f ield 12a is equal to right hand side of
Equation (A228) with the indices 1 and 2 interchanged, thus:

E′[4]M f ield 12a = 2π I1(t)I2
h2

c2
~K212 ·

d~v
dt

. (A230)

However, according to Equation (14):

~K212 = −~K122. (A231)

Thus, we obtain:
E′[4]M f ield 12a = −E′[4]M f ield 120. (A232)

Furthermore, Equation (A210) simplifies to the form:

E′[4]M f ield 12 = E′[4]M f ield 12b + E′[4]M f ield 12c (A233)

this is to be expected as the energy terms should not depend on acceleration but only
on velocity. We now turn our attention to E′[4]M f ield 12b defined in Equation (A210). Using
Equations (A13) and (A209) we obtain:

E′[4]M f ield 12b = − I2

c2
dI1(t)

dt

∫
d3x

∮ ∮ (
d~̃l1 × ~∇(R̂1(t) ·~vs.)

)
·
(

d~̃l2 × ~∇ 1
R2(t)

)
. (A234)

Using a well known identity from vector analysis we may write:

E′[4]M f ield 12b = − I2

c2
dI1(t)

dt

∫
d3x

∮ ∮
[
(

d~l1 · d~l2
)(

~∇(R̂1 ·~vs.)) · ~∇ 1
R2

)
−

(
d~l1 · ~∇

1
R2

)(
d~l2 · ~∇(R̂1 ·~vs.)

)
]. (A235)

Let us look at the integral expression

int9 =
∫

d3x
∮ ∮ (

d~l1 · ~∇
1

R2

)(
d~l2 · ~∇(R̂1 ·~vs.)

)
(A236)

This is an expression of the type described in Equation (A305) of Appendix B with g =
R̂1 ·~vs. and h = 1

R2
. According to Appendix A the expression in Equation (A202) can be
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expressed as a surface integral. Assuming that our system is contained in an infinite sphere
we have according to Equations (A316) and (A22):

int9 =
∮ ∮

dl1ndl2m lim
r→∞

∫
dΩ r2r̂n∂m(R̂1 ·~vs.)

1
R2

(A237)

Now:
~∇(R̂ ·~v) = vi~∇(

Ri
R
) = vi(

x̂i
R
− RiR̂

R2 ) =
1
R
(~vs.− (~vs. · R̂)R̂) (A238)

Taking into account the asymptotic expressions in Equations (A215) and (A25) the limit of
Equation (A237) takes the following form:

int9 =
∮ ∮

dl1ndl2m

∫
dΩ r̂n(vm − (~vs. · r̂)r̂m) (A239)

However, according to Equation (A129) a closed loop integral over a constant is null hence:

int9 = 0 (A240)

Furthermore, Equation (A235) simplifies to:

E′[4]M f ield 12b = − I2

c2
dI1(t)

dt

∫
d3x

∮ ∮ (
d~l1 · d~l2

)(
~∇(R̂1 ·~vs.) · ~∇ 1

R2

)
. (A241)

Now:
~∇(R̂1 ·~v) · ~∇

1
R2

= ~∇ ·
(
(R̂1 ·~v)~∇

1
R2

)
− (R̂1 ·~vs.)~∇2 1

R2
(A242)

Taking into account Equation (A19), we have:

~∇(R̂1 ·~v) · ~∇
1

R2
= ~∇ ·

(
(R̂1 ·~v)~∇

1
R2

)
+ 4π(R̂1 ·~vs.)δ(~R2) (A243)

Plugging Equation (A242) into Equation (A241) and using Gauss theorem we obtain:

E′[4]M f ield 12b = − I2

c2
dI1(t)

dt

∮ ∮ (
d~l1 · d~l2

)
[
∫

dan̂ · (R̂1 ·~v)~∇
1

R2
+ 4πR̂21 ·~v]. (A244)

Let us perform the surface integral on an infinite sphere as usual and look at the integral:

int10 =
∮ ∮ (

d~l1 · d~l2
)

lim
r→∞

∮
dΩ r2r̂ · (R̂1 ·~v)~∇

1
R2

(A245)

Using Equations (A215) and (A224) in Equation (A245) and taking the limit we obtain:

int10 = −
∮ ∮ (

d~l1 · d~l2
) ∮

dΩ r̂ · (r̂ ·~v)r̂ = −
∮ ∮ (

d~l1 · d~l2
) ∮

dΩ (r̂ ·~v) (A246)

However, according to Equation (A129) a closed loop integral over a constant is null hence:

int10 = 0 (A247)

and thus Equation (A244) simplifies to:

E′[4]M f ield 12b = 4π
I2

c2
dI1(t)

dt

∮ ∮ (
d~l1 · d~l2

)
R̂12 ·~v. (A248)

Taking into account the definition in Equation (14) this is simplified to the form:

E′[4]M f ield 12b = −4π I2
dI1(t)

dt
h2

c2
~K122 ·~v. (A249)
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Hence:

E[4]
M f ield 12b =

µ0

(4π)2 E′[4]M f ield 12b = − µ0

4π
I2

dI1(t)
dt

h2

c2
~K122 ·~v. (A250)

Taking into account the mechanical momentum Equation (21) and the mechanical energy
Equation (22) this can be written as:

E[4]
M f ield 12b = −2~Pmech ·~vs. = −4Emech. (A251)

Finally we turn we turn our attention to E′[4]M f ield 12c defined in Equation (A210), by taking

the time derivative of E′[4]M f ield 12c and keeping only terms of the fourth order in 1
c :

dE′[4]M f ield 12c

dt
=
∫

∂~B′[4]1c
∂t
· ~B′[0]2 d3x (A252)

According to Equations (A206), (A186) and (A188) this can be written as:

dE′[4]M f ield 12c

dt
= −

∫
~∇× ~E′[4]1 mui · ~B

′[0]
2 d3x (A253)

However, according to a well known vector analysis identity:

~∇× ~E′[4]1 mui · ~B
′[0]
2 = ~∇ · (~E′[4]1 mui × ~B′[0]2 ) + ~E′[4]1 mui · ~∇× ~B′[0]2 (A254)

Now to zeroth order in 1
c Maxwell equations dictate that:

~∇× ~B′[0]2 = 4π~J2 (A255)

Thus, we may write:

~∇× ~E′[4]1 mui · ~B
′[0]
2 = ~∇ · (~E′[4]1 mui × ~B′[0]2 ) + 4π~E′[4]1 mui ·~J2 (A256)

Plugging Equation (A256) into Equation (A253) and using Gauss theorem we obtain:

dE′[4]M f ield 12c

dt
= −

∫
da n̂ · (~E′[4]1 mui × ~B′[0]2 )− 4π I2

∮
d~l2 · ~E

′[4]
1 mui(~x2) (A257)

Now taking into account Equation (A188) this can be written as:

dE′[4]M f ield 12c

dt
=

1
24c4

d5 I1(t)
dt5 [

∫
da n̂ · (

∮
d~̃l1R3

1(t)× ~B′[0]2 )

+ 4π I2

∮ ∮
(d~l1 · d~l2)R3

12] (A258)

to the fourth order in 1
c we may write:

dE′[4]M f ield 12c

dt
=

d
dt

{
1

24c4
d4 I1(t)

dt4 [
∫

da n̂ · (
∮

d~̃l1R3
1(t)× ~B′[0]2 )

+ 4π I2

∮ ∮
(d~l1 · d~l2)R3

12]

}
(A259)
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Hence up to a constant:

E′[4]M f ield 12c =
1

24c4
d4 I1(t)

dt4 [
∫

da n̂ · (
∮

d~̃l1R3
1(t)× ~B′[0]2 )

+ 4π I2

∮ ∮
(d~l1 · d~l2)R3

12] (A260)

We notice that this magnetic energy term has a surface and volume contributions as follows:

E′[4]M f ield 12c = E′[4]M f ieldV 12c + E′[4]M f ieldS 12c (A261)

In which:

E[4]
M f ieldV 12c =

µ0

(4π)2 E′[4]M f ieldV 12c =
µ0

96πc4
d4 I1(t)

dt4 I2

∮ ∮
(d~l1 · d~l2)R3

12. (A262)

It can easily seen that the change in volume energy is balance by the mechanical work done
(see Equation (A196)). For a phasor current with frequency ω defined in Equation (A150)
we obtain a fourth order correction to the mutual inductance of the form

M[4]
12 ≡

µ0ω4

96πc4

∮
d~l1 ·

∮
d~l2R3

12 (A263)

Such that:
E[4]

M f ieldV 12c = I1(t)I2M[4]
12 . (A264)

Obviously the larger the system and the higher the frequency the more important this
correction is. We stress that this term is not related to the relativistic engine effect and will
exist even for an engine of “infinite” mass. The surface terms of the field energy are:

E[4]
M f ieldS 12c =

µ0

(4π)2 E′[4]M f ieldS 12c

=
µ0

384π2c4
d4 I1(t)

dt4 I2

∫
da n̂ · (

∮
d~̃l1R3

1(t)× ~B′[0]2 ) (A265)

We recall that the derivative of this term is:

dE′[4]M f ieldS 12c

dt
= −

∫
da n̂ · (~E′[4]1 mui × ~B′[0]2 ) (A266)

This term is not balanced by mechanical work and thus the only way to balance the
derivative of this term in the energy equation is by a Poynting term which signifies the
generation of radiation and will be discussed in the next section. We notice that this term

will not exist if d4 I1(t)
dt4 = 0 but the relativistic engine effect will still exist provided there is a

second order derivative to the current.
The total magnetic energy can calculated by plugging Equations (A261) and (A251)

into Equation (A233). This will partitioned into a volume and surface terms as follows:

E[4]
M f ield 12 = E[4]

M f ieldV 12 + E[4]
M f ieldS 12 (A267)

in which:

E[4]
M f ieldV 12 = −4Emech +

µ0

96πc4
d4 I1(t)

dt4 I2

∮ ∮
(d~l1 · d~l2)R3

12. (A268)

and:
E[4]

M f ieldS 12 = E[4]
M f ieldS 12c (A269)
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Finally we may calculate the total field energy by plugging Equations (A267) and (A205)
into Equation (A199). The total field energy will partitioned into a volume and surface
terms as follows:

E[4]
f ield 12 = E[4]

f ieldV 12 + E[4]
f ieldS 12 (A270)

in which:

E[4]
f ieldV 12 = −6Emech +

µ0

96πc4
d4 I1(t)

dt4 I2

∮ ∮
(d~l1 · d~l2)R3

12. (A271)

and:
E[4]

f ieldS 12 = E[4]
M f ieldS 12c (A272)

It can easily seen that the change in volume energy is balance by the mechanical work
done (see Equation (A196)). However, the surface term remains unbalanced and cannot
be balanced with a Poynting flux which indicate radiation. We stress that this term has

nothing to do with the relativistic engine effect and will vanish for d4 I1(t)
dt4 = 0.

Appendix A.5.3. Poynting Vector

We shall now study the Poynting vector correction of the fourth order in 1
c :

~S′[4]p 12 = ~E′[0]1 × ~B′[4]2 + ~E′[2]1 × ~B′[2]2 + ~E′[4]1 × ~B′[0]2 + ~E′[0]2 × ~B′[4]1

+ ~E′[2]2 × ~B′[2]1 + ~E′[4]2 × ~B′[0]1 (A273)

Taking into account that ~E[0]
2 is null according to Equation (A6) and ~B′[2]2 is null according

to Equation (A65) this simplifies to:

~S′[4]p 12 = ~E′[0]1 × ~B′[4]2 + ~E′[4]1 × ~B′[0]2 + ~E′[2]2 × ~B′[2]1 + ~E′[4]2 × ~B′[0]1 (A274)

We will find it useful to make the following definitions:

~S′[4]p 12 a ≡ ~E′[0]1 × ~B′[4]2 , ~S′[4]p 12 b ≡ ~E′[4]1 × ~B′[0]2 ,

~S′[4]p 12 c ≡ ~E′[2]2 × ~B′[2]1 , ~S′[4]p 12 d ≡ ~E′[4]2 × ~B′[0]1 . (A275)

Furthermore, thus:
~S′[4]p 12 = ~S′[4]p 12 a +

~S′[4]p 12 b +
~S′[4]p 12 c +

~S′[4]p 12 d. (A276)

We shall also find it useful to define the Poynting flux:

PF′ ≡
∮

S
~S′[4]p 12 · n̂da. (A277)

The Poynting flux will be calculated on an “infinite” sphere, while recalling that the sphere
cannot actually be infinite as we are limited by the convergence radius Rmax and can only
be “big”, hence:

PF′ = lim
r→∞

∫
~S′[4]p 12 · r̂ r2dΩ. (A278)

We will find it convenient to make the following definitions:

PF′a ≡
∮

S
~S′[4]p 12 a · n̂da, PF′b ≡

∮
S
~S′[4]p 12 b · n̂da,

PF′c ≡
∮

S
~S′[4]p 12 c · n̂da, PF′d ≡

∮
S
~S′[4]p 12 d · n̂da, (A279)

Furthermore, thus:
PF′ = PF′a + PF′b + PF′c + PF′d. (A280)
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From Equation (A278) it is clear that only the asymptotic expressions of ~S′[4]p 12 are relevant
for the Poynting flux.

Let us start by looking ~S′[4]p 12 a =
~E′[0]1 × ~B′[4]2 . The asymptotic form of ~E′[0]1 is given in

Equation (A33). From Equations (A208) and (A238) we have:

~B′[4]2 (~x, t) = − I2

2c2

∮
~∇(R̂2 ·

d~v
dt

)× d~̃l2. = − I2

2c2

∮ 1
R2

(
d~v
dt
− (

d~v
dt
· R̂2)R̂2)× d~̃l2 (A281)

which shall show in Appendix E that for large r:

~B′[4]2 (~x, t) ∝
1
r2 (A282)

hence ~S′[4]p 12 a ∝ 1
r4 and thus:

PF′a = 0 (A283)

on the infinite sphere (see Equation (A278)).
Let us now look at ~S′[4]p 12 b = ~E′[4]1 × ~B′[0]2 the asymptotic expression for ~B′[0]2 is given in

Equation (A34) according to which asymptotically ~B′[0]2 ∝ 1
r3 . For the electric field we turn

our attention to Equation (A190) and partition the field into relativistic engine terms and
mutual inductance (see also Equation (A188)) correction terms:

~E′[4] = ~E′[4]rel + ~E′[4]mui

~E′[4]rel ≡ 3
2c2

d2 I(t)
dt2

∮
d~̃lR̂ ·~v +

3
2c2

dI(t)
dt

∮
d~̃lR̂ · d~v

dt
+

I(t)
2c2

∮
d~̃lR̂ · d2~v

dt2 .

~E′[4]mui ≡ − 1
24c4

d5 I(t)
dt5

∮
d~̃lR3(t) (A284)

This in turn will lead to a partition of ~S′[4]p 12 b such that:

~S′[4]p 12 b = ~S′[4]p 12 b rel +
~S′[4]p 12 b mui

~S′[4]p 12 b rel ≡ ~E′[4]1 rel × ~B′[0]2 .

~S′[4]p 12 b mui ≡ ~E′[4]1 mui × ~B′[0]2 . (A285)

Now ~E′[4]1 rel contain integrals of the type
∮

d~lR̂ · ~w for a constant ~w. It follows from

Equation (A345) that asymptotically ~E′[4]rel ∝ 1
r and thus ~S′[4]p 12 b rel ∝ 1

r4 thus this term
will have a null contribution to PFb. Hence:

PF′b = lim
r→∞

∫
~S′[4]p 12 b mui · r̂ r2dΩ = lim

r→∞

∫
~E′[4]1 mui × ~B′[0]2 · r̂ r2dΩ (A286)

Plugging into the above equation, Equations (A284) and (A13) will result in:

PF′b = − I2

24c4
d5 I1(t)

dt5 lim
r→∞

∫
dΩ r2r̂ ·

∮ ∮ (
d~l1 ×

(
d~l2 ×

R3
1
~R2

R3
2

))
(A287)

We shall now use the definition
~G2 ≡ |R̃1|~G (A288)

to write the above equation as:

PF′b = − I2

24c4
d5 I1(t)

dt5 lim
r→∞

∫
dΩ r3r̂ ·

∮ ∮ (
d~l1 ×

(
d~l2 × ~G2

))
(A289)
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Using standard vector identities:

PF′b =
I2

24c4
d5 I1(t)

dt5

lim
r→∞

∫
dΩ r3

∮ ∮ (
(d~l1 · d~l2)(r̂ · ~G2)− (r̂ · d~l2)(d~l1 · ~G2)

)
(A290)

This equation is analyzed in Appendix F. Using Equations (A361) and (A370) we obtain
the result:

PF′b = − π

30c4
d5 I1(t)

dt5 I2Rmax∮ ∮ (
7(d~l1 · d~l2)(~x1 ·~x2) + 2(d~l1 ·~x2)(d~l2 ·~x1)

)
(A291)

Turning next our attention to PF′c we notice that this term involves a cross product of
~E′[2]2 and ~B′[2]1 . According to Equation (A99) ~E′[2]2 decreases as 1

r3 while ~B′[2]1 is given by
Equation (A64):

~B′[2]1 (~x, t) = − 1
2c2

d2 I1(t)
dt2

∮
d~̃l1 × R̂1(t). (A292)

Taking into account Equation (A72) it then follows that ~B′[2]1 decreases asymptotically as 1
r

and thus ~S′[4]p 12 c decreases asymptotically as 1
r4 . It follows that:

PF′c = 0 (A293)

Finally we evaluate PF′d. We notice that this term involves a cross product of ~E′[4]2 and
~B′[0]1 . As for ~B′[0]1 , we have already indicated that according to Equation (A34) it behaves

asymptotically as: ~B′[0]1 ∝ 1
r3 . ~E′[4]2 is defined in Equation (A189), it is of the form type∮

d~lR̂ · ~w for a spatial constant ~w. It thus follows from Equation (A345) that asymptotically
~E′[4]2 ∝ 1

r and thus ~S′[4]p 12 d ∝ 1
r4 . We conclude that:

PF′d = 0 (A294)

Collecting all terms of Poynting flux it follows that:

PF′ = PF′a + PF′b + PF′c + PF′d = PF′b =

− π

30c4
d5 I1(t)

dt5 I2Rmax

∮ ∮ (
7(d~l1 · d~l2)(~x1 ·~x2) + 2(d~l1 ·~x2)(d~l2 ·~x1)

)
(A295)

Or we may write:

∮
S
~S[4]

p 12 · n̂da =
µ0

(4π)2

∮
S
~S′[4]p 12 · n̂da = − µ0

480πc4
d5 I1(t)

dt5 I2Rmax∮ ∮ (
7(d~l1 · d~l2)(~x1 ·~x2) + 2(d~l1 ·~x2)(d~l2 ·~x1)

)
. (A296)

This term is clearly not a relativistic engine term and involves a fifth derivative of the
current (only a second derivative is needed for a relativistic engine). We underline again
that the expansion is valid for large but finite range Rmax defined in Equation (50), however,
the explicit value of Rmax enters explicitly only into the field energy surface terms and the
Poynting flux of the fourth order in 1

c , for small or null fourth derivative of the current one
need not worry about such terms.
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Appendix A.5.4. Intermediate Account

We conclude that the energy Equation (A173) of the fourth order is indeed balanced.
Mechanical work invested or extracted in the system results in increase or decrease in the
field energy accordingly. In the fourth order both electric and magnetic field energies are
affected by the mechanical work. The power related to the mechanical work is according
to Equation (A196):

Power[4]12 = − µ0

96πc2
d5 I1(t)

dt5 I2

∮ ∮
(d~l1 · d~l2)R3

21 + 6
dEmech

dt
. (A297)

it contains both work done by the mutual inductance and on the relativistic engine. This is
equal to minus the derivative of the volume field energy Equation (A271):

E[4]
f ieldV 12 = −6Emech +

µ0

96πc4
d4 I1(t)

dt4 I2

∮ ∮
(d~l1 · d~l2)R3

12. (A298)

Moreover, for the fourth order in 1
c there is also a surface contribution to the field energy

given in Equation (A272) which according to Equation (A266) satisfies:

dE′[4]f ieldS 12

dt
= −

∫
da n̂ · (~E′[4]1 mui × ~B′[0]2 ) = −

∮
S
~S[4]

p 12 · n̂da (A299)

such that the total field energy is:

E[4]
f ield 12 = E[4]

f ieldV 12 + E[4]
f ieldS 12 (A300)

The change in the field energy through the surface terms results in radiation as described
by the Poynting flux depicted in Equation (A296):

∮
S
~S[4]

p 12 · n̂da =
µ0

(4π)2

∮
S
~S′[4]p 12 · n̂da = − µ0

480πc4
d5 I1(t)

dt5 I2Rmax∮ ∮ (
7(d~l1 · d~l2)(~x1 ·~x2) + 2(d~l1 ·~x2)(d~l2 ·~x1)

)
. (A301)

We underline that fourth order contributions are the only one that are related to the
relativistic engine effect as some of the terms depend on the engine velocity ~v. If the
engine is infinitely massive and no motion occurs, we are left with the mutual inductance
correction terms and radiation terms which involve higher order derivatives. For a phasor
current of frequency ω Equation (A263) indicates a relativistic correction to the classical
mutual inductance which is important for large systems with high frequency.

M[4]
12 ≡

µ0ω4

96πc4

∮
d~l1 ·

∮
d~l2R3

12 (A302)

Appendix B. On the Nullification of a Certain Integral

We would like to prove the equality:∫
d3x

∮ ∮
[(d~l1 · ~∇

1
R2(t)

)(d~l2 · ~∇
1

R1(t)
)] = 0 (A303)
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Which may be written in terms of the Einstein summation convention as follows:∫
d3x

∮ ∮
[(dl1m∂m

1
R2(t)

)(dl2n∂n
1

R1(t)
)] = 0 (A304)

in the above we have used the symbol ∂m = ∂
∂xm

. To do this let us look at a more general

case. Let g(~R1) and h(~R2) be two arbitrary functions. Furthermore, let us evaluate the
integral:

Int =
∫

d3x
∮ ∮

(dl1m∂mh(~R2))(dl2n∂ng(~R1)) (A305)

The following set of equations follow:

∂mg(~R1)∂nh(~R2) = ∂n(∂mg(~R1)h(~R2))− h(~R2)∂
2
mng(~R1)

= ∂n(∂mg(~R1)h(~R2))− ∂m(∂ng(~R1)h(~R2)) + ∂mh(~R2)∂ng(~R1) (A306)

Now since ~R1 = ~x−~x1 it follows that:

∂ng(~R1) = −∂n1g(~R1), ∂n1 ≡
∂

∂x1n
(A307)

Furthermore, since ~R2 = ~x−~x2 it follows that:

∂mh(~R2) = −∂m2h(~R2), ∂m2 ≡
∂

∂x2m
(A308)

Summing up the above results we have:

∂mg(~R1)∂nh(~R2) =

∂n(∂mg(~R1)h(~R2))− ∂m(∂ng(~R1)h(~R2)) + ∂m2h(~R2)∂n1g(~R1) (A309)

We thus conclude that:

Int =
∫

d3x
∮ ∮

dl1ndl2m[∂n(∂mg(~R1)h(~R2))− ∂m(∂ng(~R1)h(~R2))

+ ∂m2h(~R2)∂n1g(~R1)] (A310)

Now for every single valued set of function h and g we have:∮
dl1n∂n1g(~R1) =

∮
dg = 0,

∮
dl2m∂m2h(~R2) =

∮
dh = 0 (A311)

Hence:

Int =
∫

d3x
∮ ∮

dl1ndl2m[∂n(∂mg(~R1)h(~R2))− ∂m(∂ng(~R1)h(~R2))] (A312)

The above integral contains only gradients which once integrated can only contribute to
surface terms as follows:

Int =
∮ ∮

dl1ndl2m[
∮

dan∂mg(~R1)h(~R2)−
∮

dam∂ng(~R1)h(~R2)] (A313)

Now: ∮ ∮
dl1ndl2m

∮
dam∂ng(~R1)h(~R2)

= −
∮ ∮

dl1ndl2m

∮
dam∂n1g(~R1)h(~R2) = 0 (A314)
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according to Equations (A307) and (A311). Hence:

Int =
∮ ∮

dl1ndl2m

∮
dan∂mg(~R1)h(~R2) (A315)

Suppose now that the system is contained in an infinite sphere of radius r = ∞ and
suppose that:

lim
r→∞

∮
dan∂mg(~R1)h(~R2) = 0 (A316)

Then it follows that:
Int = 0 (A317)

Furthermore, Equation (A303) is proved. To verify that this is indeed so we only need to
substitute h(~R2) =

1
R2(t)

and g(~R1) =
1

R1(t)
and take into account Equations (A22), (A25)

and (A27).

Appendix C. Asymptotic Values

In the limit r → ∞ we may think of:

ε ≡ 1
r

(A318)

as a small parameter. In terms of this small parameter we expand ~G defined in Equation (A140):

~G(ε) = ~G(0) + ε~G′(0) +
1
2

ε2~G′′(0) + O
(

ε3
)

(A319)

Inserting Equation (A319) into Equation (A141) will result in:∮ ∮
(d~̃l1 · d~̃l2) lim

r→∞

∫
dΩ r2r̂ · ~G =

∫
dΩ lim

ε→0

1
ε2

∮ ∮
d~l1 · d~l2r̂ · ~G(0)

+
∫

dΩ lim
ε→0

1
ε

∮ ∮
d~l1 · d~l2r̂ · ~G′(0) +

∫
dΩ

1
2

∮ ∮
d~l1 · d~l2r̂ · ~G′′(0) (A320)

the terms O
(
ε3) will cancel in the limit. Obvious the first two terms in right hand side will

diverge unless the closed loop integrals vanish. Let us denote:

R̃ ≡
~R
r
= r̂− ε~x′ (A321)

and
|R̃| =

√
1− 2εr̂ ·~x′ + ε2~x′2 (A322)

in terms of R̃ we may write ~G as:

~G =
R2

1
~R2

R3
2

=
|R̃1|

2R̃2

|R̃2|
3 (A323)

obviously:
~G(0) = r̂. (A324)

However, since a closed loop integral over a constant vanishes (see Equation (A78)), it
follows that:∫

dΩ lim
ε→0

1
ε2

∮ ∮
d~l1 · d~l2r̂ · ~G(0) =

∫
dΩ lim

ε→0

1
ε2

∮ ∮
d~l1 · d~l2 = 0 (A325)
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Now let us calculate G′(ε) to do this we notice the following identities:

dR̃
dε

= −~x′, d2R̃
dε2 = 0,

d|R̃|
dε

=
ε~x′2 − r̂ ·~x′

|R̃|
(A326)

Using the above identities we calculate:

~G′(ε) = 2(ε~x2
1 − r̂ ·~x1)R̃2|R̃2|

−3 − 3(ε~x2
2 − r̂ ·~x2)R̃2|R̃2|

−5|R̃1|
2 −~x2|R̃2|

−3|R̃1|
2 (A327)

Furthermore, thus:
~G′(0) = r̂(3(r̂ ·~x2)− 2(r̂ ·~x1))−~x2 (A328)

Hence: ∫
dΩ lim

ε→0

1
ε

∮ ∮
d~l1 · d~l2r̂ · ~G′(0)

= 2
∫

dΩ lim
ε→0

1
ε

∮ ∮
d~l1 · d~l2((r̂ ·~x2)− (r̂ ·~x1)) = 0 (A329)

because at least one of the two loop integrals is done over a constant. Finally we calculate
~G′′(ε) which leads to a somewhat lengthy but straight forward expression:

~G′′(ε) = 2~x2
1R̃2|R̃2|

−3

+ 2(ε~x2
1 − r̂ ·~x1)

(
−~x2|R̃2|

−3 − 3R̃2|R̃2|
−5

(ε~x2
2 − r̂ ·~x2)

)
+ 15|R̃2|

−7
(ε~x2

2 − r̂ ·~x2)
2|R̃1|

2R̃2

− 6|R̃2|
−5

(ε~x2
1 − r̂ ·~x1)R̃2(ε~x2

2 − r̂ ·~x2)

+ 3~x2|R̃2|
−5|R̃1|

2
(ε~x2

2 − r̂ ·~x2)

− 3|R̃2|
−5|R̃1|

2
~x2

2R̃2

− ~x2

(
2(ε~x2

1 − r̂ ·~x1)|R̃2|
−3 − 3|R̃1|

2|R̃2|
−5

(ε~x2
2 − r̂ ·~x2)

)
(A330)

From the above expression we calculate ~G′′(0) as follows:

~G′′(0) = 4(r̂ ·~x1)~x2 + 2~x2
1 r̂ + 15(r̂ ·~x2)

2r̂− 6~x2(r̂ ·~x2)− 3~x2
2 r̂ (A331)

Obviously only the first term contributes as it depends on both ~x1 and ~x2 (and not on each
variable alone) and hence:∫

dΩ
1
2

∮ ∮
d~l1 · d~l2r̂ · ~G′′(0) = 2

∫
dΩ

∮ ∮
d~l1 · d~l2(r̂ ·~x2)(r̂ ·~x1) (A332)

Finally inserting the results from Equations (A325), (A329) and (A332) into Equation (A320)
we obtain∮ ∮

(d~̃l1 · d~̃l2) lim
r→∞

∫
dΩ r2r̂ · ~G = 2

∫
dΩ

∮ ∮
d~l1 · d~l2(r̂ ·~x2)(r̂ ·~x1) (A333)

which is identical to Equation (A141).

Appendix D. Q Function Evaluation

We shall now calculate the term:

~Q =
∫ [ 1

R1(t)

~R2(t)
R3

2(t)

]
d3x (A334)
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First let us introduce a change of variables:

~y = ~R2 = ~x−~x2 (A335)

Since the integral ~Q is calculated at a fixed point ~x2 it follows that d3y = d3x and:

~R1 = ~x−~x1 = ~y +~x2 −~x1 = ~y− ~R12. (A336)

This leads to the following expression for ~Q:

~Q =
∫

y−3~y
∣∣∣~y− ~R12

∣∣∣−1
d3y. (A337)

This integral is now evaluated using a spherical coordinate system in which the “z” axis
point at the direction of ~R21. In this case d3y = −y2dyd cos θdφ and ~Q can be calculated
as follows:

~Q = −
∫ ∞

0
dy
∫ −1

1
d cos θ

∫ 2π

0
dφy−1~y

∣∣∣~y− ~R12

∣∣∣−1
. (A338)

Now: ∣∣∣~y− ~R12

∣∣∣ = √y2 + R2
12 − 2~y · ~R12 =

√
y2 + R2

12 − 2yR12 cos θ, (A339)

In which we notice that the above expression is not dependent on the azimuthal angle φ.
Moreover, using a cartesian set of unit vectors ŷ1, ŷ2, ŷ3 one may write:

y−1~y = sin θ cos φŷ1 + sin θ sin φŷ2 + cos θŷ3, (A340)

Thus, it can easily be seen that there is component to ~Q in the ŷ1, ŷ2 directions as the
azimuthal integral vanishes. In the ŷ3 direction the azimuthal integral is trivial and we
obtain the result:

~Q = 2πŷ3

∫ ∞

0
dy
∫ 1

−1
d cos θ cos θ

√
y2 + R2

12 − 2yR12 cos θ
−1

. (A341)

Let us make a change of variables s ≡ cos θ, y′ ≡ y
R12

and notice that ŷ3 = R̂12 which

is a unit vector in the direction of ~R12, in terms of those variables we obtain a simpler
representation of ~Q:

~Q = 2πR̂21

∫ ∞

0
dy′

∫ 1

−1
dss
√

y′2 + 1− 2y′s
−1

. (A342)

However, we can evaluate analytically the s integral to obtain:

∫ 1

−1
dss
√

y′2 + 1− 2y′s
−1

=
2
3

{
1

y′2 y′ ≥ 1
y′ y′ < 1

. (A343)

Furthermore, plugging this back into Equation (A342) we obtain:

~Q = 2πR̂12. (A344)

Appendix E. Asymptotic Form of ~B′[4]
2

Let us write Equation (A72) in the form (keeping only the first order term in 1
r ):

R̂2 ' r̂− ~x2⊥
r

(A345)

in which we define a perpendicular vector to r̂ as follows:

~w⊥ = ~w− r̂(r̂ · ~w) (A346)
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Hence we may write up to first order in 1
r ):

(
d~v
dt
· R̂2)R̂2 ' (

d~v
dt
· r̂)r̂− ~x2⊥

r
(

d~v
dt
· r̂)−− r̂

r
(

d~v
dt
·~x2⊥) (A347)

Let us use the above equation and Equation (A25) in Equation (A281), we obtain:∮ 1
R2

(
d~v
dt
− (

d~v
dt
· R̂2)R̂2)× d~l2

' 1
r

∮
(1 +

r̂ ·~x2

r
)

(
d~v
dt ⊥

+
~x2⊥

r
(

d~v
dt
· r̂) + r̂

r
(

d~v
dt
·~x2⊥)

)
× d~l2 (A348)

Now since for a constant loop integral we have:∮
~C× d~l = 0 (A349)

It follows that: ∮ 1
R2

(
d~v
dt
− (

d~v
dt
· R̂2)R̂2)× d~l2

' 1
r2

∮ (
(r̂ ·~x2)

d~v
dt ⊥

+~x2⊥(
d~v
dt
· r̂) + r̂(

d~v
dt
·~x2⊥)

)
× d~l2 (A350)

and Equation (A282) is thus derived.

Appendix F. Evaluating PFb

Let us look at ~G2 defined in Equation (A288). In terms of the small parameter ε defined
in Equation (A318) we may expand ~G2 as follows:

~G2(ε) = ~G2(0) + ε~G′2(0) +
1
2

ε2~G′′2 (0) +
1
6

ε3~G′′′2 (0) + O
(

ε4
)

(A351)

Thus, we have: ∮ ∮
(d~l1 · d~l2) lim

r→∞

∫
dΩ r3r̂ · ~G2

=
∮ ∮

(d~l1 · d~l2) lim
ε→0

1
ε3

∫
dΩr̂ · ~G2(0)

+
∮ ∮

(d~l1 · d~l2) lim
ε→0

1
ε2

∫
dΩr̂ · ~G′2(0)

+
1
2

∮ ∮
(d~l1 · d~l2) lim

ε→0

1
ε

∫
dΩr̂ · ~G′′2 (0)

+
1
6

∮ ∮
(d~l1 · d~l2)

∫
dΩr̂ · ~G′′′2 (0) (A352)

the terms O
(
ε4) will cancel in the limit. Obviously the first three terms in right hand side

will diverge unless the closed loop integrals vanish. However:

~G2(0) = r̂. (A353)

Since a closed loop integral over a constant vanishes (see Equation (A78)), it follows that:∫
dΩ lim

ε→0

1
ε3

∮ ∮
(d~l1 · d~l2)r̂ · ~G2(0) =

∫
dΩ lim

ε→0

1
ε3

∮ ∮
(d~l1 · d~l2) = 0 (A354)

For calculating the derivatives of ~G2 we shall use computer algebra due to the complexity
of the expressions. We shall write down only the values of the derivative in 0 since only
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those are of interest to us for evaluating the expressions in Equation (A352). For ~G′2(0)
we obtain:

~G′2(0) = 3r̂(r̂ · (~x2 −~x1))−~x2 (A355)

Hence: ∫
dΩ lim

ε→0

1
ε2

∮ ∮
d~l1 · d~l2r̂ · ~G′(0)

=
∫

dΩ lim
ε→0

1
ε2

∮ ∮
d~l1 · d~l2(2(r̂ ·~x2)− 3(r̂ ·~x1)) = 0 (A356)

because at least one of the two loop integrals is done over a constant. Let us now evaluate
~G′′2 (0):

~G′′2 (0) = 3
(

r̂(r̂ ·~x1)
2 − 2~x2(r̂ ·~x2) + 5r̂(r̂ ·~x2)

2

+ 2(r̂ ·~x1)(~x2 − 3r̂(r̂ ·~x2)) + r̂(~x2
1 −~x2

2)
)

(A357)

Obviously only the first term contributes as it depends on both ~x1 and ~x2 (and not on each
variable alone) thus:

~G′′2 12(0) = 6(r̂ ·~x1)(~x2 − 3r̂(r̂ ·~x2)) (A358)

and hence:

1
2

∮ ∮
(d~l1 · d~l2) lim

ε→0

1
ε

∫
dΩr̂ · ~G′′2 (0)

= −6 lim
ε→0

1
ε

∮ ∮
(d~l1 · d~l2)

∫
dΩ(r̂ ·~x2)(r̂ ·~x1) (A359)

Taking into account Equation (A132) we thus have:

1
2

∮ ∮
(d~l1 · d~l2) lim

ε→0

1
ε

∫
dΩr̂ · ~G′′2 (0) = −8π lim

ε→0

1
ε

∮ ∮
(d~l1 · d~l2)~x1 ·~x2. (A360)

As this result is diverging we are reminded that we are not allowed to use our expansion
beyond Rmax (see Equation (50)) and thus the above integral takes the value:

− 8πRmax

∮ ∮
(d~l1 · d~l2)~x1 ·~x2 + O(1). (A361)

in which O(1) stands for terms which are either independent of Rmax or decrease with
Rmax.

For the same reasons the first two terms in the expansion do not contribute to the
second integral of Equation (A290) and we are left with third term. Thus:

− lim
r→∞

∫
dΩ r3

∮ ∮ (
(r̂ · d~l2)(d~l1 · ~G2)

)
(A362)

will be equal to:

− 1
2

lim
ε→0

1
ε

∫
dΩ

∮ ∮ (
(r̂ · d~l2)(d~l1 · ~G′′2 (0))

)
(A363)

and taking into account Equation (A358) we obtain:

− 3 lim
ε→0

1
ε

∫
dΩ

∮ ∮ (
(r̂ · d~l2)d~l1 · (r̂ ·~x1)(~x2 − 3r̂(r̂ ·~x2))

)
(A364)

The above expression can be written in terms of Einstein summation notation as:

− 3 lim
ε→0

1
ε

∫
dΩ

∮ ∮ [
(d~l1 ·~x2)x1kdl2n r̂k r̂n − 3dl1mdl2nx1sx2k r̂m r̂n r̂s r̂k

]
(A365)
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taking into account Equation (A132) and also the result [3]:∮
dΩr̂n r̂k r̂m r̂l =

4π

15
(δnkδlm + δnlδkm + δnmδkl) (A366)

we obtain:

− 4π lim
ε→0

1
ε

∮ ∮ [
(d~l1 ·~x2)x1kdl2nδnk

− 3
5

dl1mdl2nx1sx2k(δnkδsm + δnsδkm + δnmδks)

]
. (A367)

Taking into account that
∮

d~l1 ·~x1 =
∮

d~l2 ·~x2 = 0, Equation (A367) takes the form:

− 4π lim
ε→0

1
ε

∮ ∮ [
(d~l1 ·~x2)(d~l2 ·~x1)

− 3
5
((d~l1 ·~x2)(d~l2 ·~x1) + (d~l1 · d~l2)(~x1 ·~x2))

]
(A368)

or more simply as:

4π

5
lim
ε→0

1
ε

∮ ∮ [
3(d~l1 · d~l2)(~x1 ·~x2)− 2(d~l1 ·~x2)(d~l2 ·~x1)

]
(A369)

This term is diverging and thus we shall replace the infinite sphere with a sphere which is
simply big to the maximum allowable size of the expansion:

4π

5
Rmax

∮ ∮ [
3(d~l1 · d~l2)(~x1 ·~x2)− 2(d~l1 ·~x2)(d~l2 ·~x1)

]
+ O(1). (A370)
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