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Abstract: The present research article is related to the analytical investigation of some fractional-order
equal-width equations. The homotopy perturbation technique along with Elzaki transformation is
implemented to discuss the fractional view analysis of equal-width equations. For better understand-
ing of the proposed procedure some examples related to equal-width equations are presented. The
identical behavior of the derived and actual solutions is observed. The proposed technique can be
modified to study the fractional view analysis of other problems in various areas of applied sciences.

Keywords: Elzaki transform; homotopy perturbation method; equal-width equations; Caputo operator

1. Introduction

In the past decade, fractional evaluation equations have been studied by many re-
searchers due to their wide applicability in different areas of modern science and technology.
It has been seen that fractional-order equations describe many physical systems and with
their usage, various issues are solved. Along these lines, it is the overall goal to build
up more fruitful outcomes for fractional calculus [1–5]. Simpson and Ford considered
the Caputo fractional derivative [6] the most appropriate method for detecting fractional
models, since it reliably includes the initial requirements that are not present in various
individual models [7]. Oldham and Spanier found that fractional derivatives and integrals
can be used to show far more valuable synthetic problems than conventional methods [8].
Moreover, later commitments on fractional theory and application, like fractal mathematics,
are available in the literature. Interested readers are referred to [9–19].

For the last several years, partial evaluation equations have been concentrated upon
by numerous researchers because of their wide applications in different areas of science and
innovation. These fractional equations are fit for clarifying various significant marvels in
fluid mechanics, electromagnetism, materials science, acoustics, electrochemistry, plasma
physics, optical frameworks, viscoelasticity, etc. [20–22]. The non-linear time-fractional
equal-width equations (FEWEs) are very significant partial differential equations that
represent different complex non-linear phenomena in the area of applied sciences, especially
in plasma waves, plasma physics, solid state physics, chemical physics, fluid mechanics, etc.
The EW problems can define the behavior of non-linear waves in wide classes of non-linear
schemes, such as hydromagnetic waves in ion-acoustic waves in plasma, cold plasma,
surface waves in compressible fluids, acoustic waves in enharmonic crystal, shallow water
waves, etc. [23–26].

Non-linear fractional differential equations have been solved by numerous researchers
using different techniques. Many researchers have solved a lot of problems by utilizing
different strategies. To achieve the target of significantly accurate results, several tech-
niques are developed, for instance, the finite difference method, Adomian decomposition
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technique, finite element technique, generalized differential transform technique, fractional
differential transform technique, perturbation methods, iterative strategies, homotopy anal-
ysis strategy, etc. [27–35]. The homotopy analysis technique (HAT) is a sublime scientific
plan initially suggested and implemented by Liao [36–38]. Many researchers have promis-
ingly utilized the HAT for examining various mathematical and physical models [39]. In
addition, the homotopy analysis method can be converged with the combined Laplace
transformation technique to improve a profoundly great approach known as the homo-
topy analysis transform technique. This creative converging of the HAM and the Laplace
transform is utilized to investigate different physical issues [40,41]. These modifications
encourage and improve the solving methodology contrasted with the standard techniques.

In contrast, the homotopy perturbation Elzaki transform method (HPETM) is lib-
erated from a linear operator’s supposition and utilizes the Elzaki transform approach
for the Caputo time-fractional derivative. Likewise, Tarig M. Elzaki and Sailh M. Elzaki
in [42–44] developed an Elzaki method that was implemented to acquire the solutions in
various circumstances. The Elzaki transform is an incredible asset for fathoming some
differential equations that cannot be comprehended by some other techniques for handling
linear and non-linear problems. Shakeri and Dehghan [45] and Sakar et al. [46] studied
fractional partial differential equations using the homotopy perturbation method. Many
researchers [47–50] have developed different techniques for solving fractional problems
under various applied phenomena.

2. Preliminary Concepts

Definition 1. The Caputo derivative of the arbitrary order of g(τ), g ∈ Cm
−1, m ∈ N, m > 0,

is expressed as

Dαg(τ) = Im−αDmg(τ) =
1

Γ(m− α)

∫ τ

0
(τ − ζ)m−α−1gm(ζ)dζ, where m− 1 < α ≤ m.

Definition 2. The Elzaki transform of the Caputo fractional-order derivative is given as

E[Dα
τ g(τ)] = sαE[g(τ)]−

m−1

∑
k=0

s2−α+kg(k)(0), where m− 1 < α < m.

Definition 3. The Riemann–Liouville fractional-order integral α > 0, of a function f ∈ Cm, is
defined as

Jαg(ζ) =
1

Γ(α)

∫ ζ

0
(ζ − 1)γ−1g(τ)∂τ, α, ζ > 0,

Dγ Jαg(ζ) = g(ζ).

Some properties of the operator:
For g ∈ Cm, α, δ ≥ 0 and γ > −1

Jα Jδg(ζ) = Jα+δg(ζ),

Jα Jδg(ζ) = Jδ Jαg(ζ),

Jγζα =
Γ(α + 1)

(γ + α + 1)
ζγ+α.

2.1. Elzaki Transform Basic Concept

A new transform called the Elzaki transform is defined for functions of exponential
order. We consider functions in the set A, defined by:

A = {g(τ) :3 |M, k1, k2 > 0, |g(τ)| < Me
|τ|
kj , i f (τ) ∈ (−1)j × [0, ∞)}.
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The constant M must be a finite number k1, and k2 finite or infinite for a given function
in the set. The Elzaki transform is described through the integral equation

E[g(τ)] = T(s) = s
∫ ∞

0
g(τ)e

−τ
s dτ, τ ≥ 0, k1 ≤ s ≤ k2.

We achieve the basic results

E[τn] = n!sn+2,

E[ f ′(τ)] =
T(s)

s
− s f (0),

E[ f ′′(τ)] =
T(s)

s2 − f (0)− s f ′(0),

E[ f (n)(τ)] =
T(s)

sn −
n−1

∑
k=0

s2−n+k f (k)(0).

Theorem 1. If T(s) is an Elzaki transform of (τ), the Elzaki transform of the Riemann–Liouville
derivative is defined as

E[Dαg(τ)] = s−α

[
T(s)−

n

∑
m=1
{Dα−kg(0)}

]
; −1 < n− 1 ≤ α < n.

Proof. The Laplace transformation

g′(τ) =
d

dτ
g(τ),

L[Dαg(τ)] = sαT(s)−
n−1

∑
m=0

sm[Dα−m−1g(0)],

= sαT(s)−
n−1

∑
m=0

sm−1[Dα−mg(0)] = sαT(s)−
n−1

∑
m=0

sm−2[Dα−mg(0)],

= sαT(s)−
n−1

∑
m=0

1
s−m+2 [D

α−mg(0)] = sαT(s)−
n−1

∑
m=0

1
sα−m+2−α

[Dα−mg(0)],

= sαT(s)−
n−1

∑
m=0

sγ 1
sα−m+2 [D

α−mg(0)],

L[Dαg(τ)] = sα

[
T(s)−

n−1

∑
m=0

(
1
s

)α−m+2
[Dα−mg(0)]

]
.

when we put 1
s for s2, the Elzaki transformation of fractional-order of g(τ) is as below:

E[Dαg(τ)] = s−α

[
T(s)−

n

∑
m=0

sα−m+2[Dα−mg(0)]

]
.

3. Homotopy Perturbation Elzaki Transform Method

In this section, the homotopy perturbation Elzaki transform method for the general
form of time-fractional partial differential equations is

Dα
τψ(ζ, τ) + Mψ(ζ, τ) + Nψ(ζ, τ) = h(ζ, τ), τ > 0, 0 < α ≤ 1, (1)
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with the initial condition

ψ(ζ, 0) = g(ζ). (2)

M and N are linear and nonlinear terms. Applying Elzaki transformation of Equation (1)

E[Dα
τψ(ζ, τ) + Mψ(ζ, τ) + Nψ(ζ, τ)] = E[h(ζ, τ)], τ > 0, 0 < α ≤ 1,

ψ(ζ, τ) = s2g(ζ) + sαE[h(ζ, τ)]− sαE[Mψ(ζ, τ) + Nψ(ζ, τ)].
(3)

By taking the inverse Elzaki transform, we get

ψ(ζ, τ) = E−1
[
s2g(ζ) + sαE[h(ζ, τ)]

]
− E−1[sαE{Mψ(ζ, τ) + Nψ(ζ, τ)}], (4)

where

ψ(ζ, τ) = g(ζ) + E−1[sαE[h(ζ, τ)]]− E−1[sαE{Mψ(ζ, τ) + Nψ(ζ, τ)}], (5)

The perturbation procedure in terms of power series with parameter p is presented as

ψ(ζ, τ) =
∞

∑
k=0

pkψk(ζ, τ), (6)

where the perturbation term is p and p ∈ [0, 1].
Nonlinear terms can be defined as

Nψ(ζ, τ) =
∞

∑
k=0

pk Hk(ψk), (7)

where Hm are He’s polynomials of ψ0, ψ1, ψ2, · · · , ψm, and can be determined as

Hm(ψ0, ψ1, · · · , ψm) =
1

m!
∂m

∂pm

[
N

(
∞

∑
k=0

pkψk

)]
p=0

, m = 0, 1, 2 · · · . (8)

Putting Equations (7) and (8) in Equation (5), we have
∞

∑
k=0

pkψk(ζ, τ) = g(ζ) + E−1[sαE[h(ζ, τ)]]− p×
[

E−1

{
sαE{M

∞

∑
k=0

pkψk(ζ, τ) +
∞

∑
k=0

pk Hk(ψk)}
}]

. (9)

Both sides having a comparison coefficient of p, we have

p0 : ψ0(ζ, τ) = g(ζ) + E−1[sαE[h(ζ, τ)]],

p1 : ψ1(ζ, τ) = E−1[sαE(Mψ0(ζ, τ) + H0(ψ))],

p2 : ψ2(ζ, τ) = E−1[sαE(Mψ1(ζ, τ) + H1(ψ))],
...

pk : ψk(ζ, τ) = E−1[sαE(Mψk−1(ζ, τ) + Hk−1(ψ))], k > 0, k ∈ N.

(10)

ψ(ζ, τ) = lim
M→∞

M

∑
k=1

ψk(ζ, τ). (11)

4. Implementation of the Technique

Example 1. Consider the following non-linear time-fractional equal-width equation:

Dα
τψ + ψψζ − ψζζτ = 0, τ > 0, ζ ∈ R, 0 < α ≤ 1, (12)
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with the initial condition

ψ(ζ, 0) = 3sech2

(
ζ − 15

2

)
. (13)

Employing the Elzaki transform on Equation (12) with initial condition Equation (13), we have

1
sα

E

(
ψ(ζ, τ)

)
− s2−αψ(ζ, 0) = E

[
ψζζτ − ψψζ

]
,

E

[
ψ(ζ, τ)

]
= s23sech2

(
ζ − 15

2

)
+ sαE

[
ψζζτ − ψψζ

]
.

(14)

Now using the inverse Elzaki transform we have

ψ(ζ, τ) = 3sech2

(
ζ − 15

2

)
+ E−1

[
sαE

{
ψζζτ − ψψζ

}]
. (15)

Now we implement HPM and we get

∞

∑
m=0

pmψm(ζ, τ) = 3sech2

(
ζ − 15

2

)
+ p

[
E−1

{
sαE

((
∞

∑
m=0

pmψm(ζ, τ)ζζτ

)
−
(

∞

∑
m=0

pm Hm(ψ)

))}]
. (16)

With the help of He’s polynomials Hm(ψ), the nonlinear terms can be found

Σ∞
m=0 pmHm(ψ) = ψψζ . (17)

The He’s polynomials are defined as

H0(ψ) = ψ0(ψ0)ζ ,

H1(ψ) = ψ0(ψ1)ζ + ψ1(ψ0)ζ ,
...

Comparing p-like coefficients, we get

p0 : ψ0(ζ, τ) = 3sech2

(
ζ − 15

2

)
,

p1 : ψ1(ζ, τ) = E−1

[
sαE

{
(ψ0)ζζτ − H0

}]
,

p1 : ψ1(ζ, τ) = 9sech4

(
ζ − 15

2

)
tanh

(
ζ − 15

2

)
τα

Γ(α + 1)
,

p2 : ψ2(ζ, τ) = E−1

[
sαE

{
(ψ1)ζζτ − H1

}]
,
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p2 : ψ2(ζ, τ) =
9
4

1

cosh1 2

(
1
2 ζ − 15

2

)[ sinh

(
1
2

ζ − 15
2

){
− 24

τ2α

Γ(2α + 1)
cosh3

(
1
2

ζ − 15
2

)

+ 30
τ2α

Γ(2α + 1)
cosh

(
1
2

ζ − 15
2

)
− 72

τα

Γ(α + 1)
sinh

(
1
2

ζ − 15
2

)
cosh

(
1
2

ζ − 15
2

)

+ 135
τα

Γ(α + 1)
sinh

(
1
2

ζ − 15
2

)
+ 4 cosh7

(
1
2

ζ − 15
2

)}
τα

Γ(α + 1)

]
,

...

Provided the series form solution is ψ(ζ, τ) = Σ∞
k=0ψk(ζ, τ)

ψ(ζ, τ) = 3sech2

(
ζ − 15

2

)
+ 9sech4

(
ζ − 15

2

)
tanh

(
ζ − 15

2

)
τα

Γ(α + 1)
+

9
4

1

cosh12

(
1
2 ζ − 15

2

)[ sinh

(
1
2

ζ − 15
2

){
− 24

τ2α

Γ(2α + 1)
cosh3

(
1
2

ζ − 15
2

)

+ 30
τ2α

Γ(2α + 1)
cosh

(
1
2

ζ − 15
2

)
− 72

τα

Γ(α + 1)
sinh

(
1
2

ζ − 15
2

)
cosh

(
1
2

ζ − 15
2

)

+ 135
τα

Γ(α + 1)
sinh

(
1
2

ζ − 15
2

)
+ 4 cosh7

(
1
2

ζ − 15
2

)}
τα

Γ(α + 1)

]
+ · · · ,

(18)

With Equation (18), putting α = 1, we achieve the result of the given problem as:

ψ(ζ, τ) = 3sech2

(
ζ − 15

2

)
+ 9sech4

(
ζ − 15

2

)
tanh

(
ζ − 15

2

)
τ+

9
4

1

cosh12

(
1
2 ζ − 15

2

)[ sinh

(
1
2

ζ − 15
2

){
− 24τ2 cosh3

(
1
2

ζ − 15
2

)

+ 30τ2 cosh

(
1
2

ζ − 15
2

)
− 72τ sinh

(
1
2

ζ − 15
2

)
cosh

(
1
2

ζ − 15
2

)

+ 135τ sinh

(
1
2

ζ − 15
2

)
+ 4 cosh7

(
1
2

ζ − 15
2

)}
τ

]
+ · · · .

(19)

The exact result is:

ψ(ζ, τ) = 3sech2

(
ζ − 15− τ

2

)
. (20)

Example 2. Consider the following non-linear time-fractional modified equal-width equation:

Dα
τψ + 3ψ2ψζ − ψζζτ = 0, τ > 0, ζ ∈ R, 0 < α ≤ 1, (21)
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with initial condition

ψ(ζ, 0) =
1
4

sech(ζ − 30). (22)

Incorporating the Elzaki transform in Equation (21), we get

E

[
ψ(ζ, τ)

]
= s2ψ(ζ, 0) + sαE

[
ψζζτ − 3ψ2ψζ

]
. (23)

Using the initial condition in Equation (23), we have

E

[
ψ(ζ, τ)

]
= s2 1

4
sech(ζ − 30) + sαE

[
ψζζτ − 3ψ2ψζ

]
. (24)

By applying the inverse Elzaki transform, we have

ψ(ζ, τ) =
1
4

sech(ζ − 30) + E−1

[
sαE

{
ψζζτ − 3ψ2ψζ

}]
. (25)

Now we implement HPM and we get

Σ∞
m=0 pmψm(ζ, τ) =

1
4

sech(ζ − 30) + p

[
E−1

{
sαE

(
Σ∞

m=0 pmψm(ζ, τ)ζζτ − (Σ∞
m=0 pmHm(ψ))

)}]
. (26)

With the help of He’s polynomials Hm(ψ) the nonlinear terms can be found

Σ∞
m=0 pm Hm(ψ) = 3ψ2ψζ . (27)

The He’s polynomials are defined as

H0(ψ) = 3(ψ0)
2(ψ0)ζ ,

H1(ψ) = 3(ψ0)
2(ψ1)ζ + 6ψ0ψ1(ψ0)ζ ,

...

Comparing p-like coefficients, we get

p0 : ψ0(ζ, τ) =
1
4

sech(ζ − 30),

p1 : ψ1(ζ, τ) = E−1

[
sαE

{
(ψ0)ζζτ − H0(ψ)

}]
,

p1 : ψ1(ζ, τ) =
3

64
sech3(ζ − 30) tanh(ζ − 30)

τα

Γ(α + 1)
,

...

provided the series form solution is

ψ(ζ, τ) = Σ∞
m=0ψm(ζ, τ),

ψ(ζ, τ) =
1
4

sech(ζ − 30) +
3

64
sech3(ζ − 30) tanh(ζ − 30)

τα

Γ(α + 1)
+ · · · ,

(28)

Using Equation (28) putting α = 1, we achieve the result of the given problem as:

ψ(ζ, τ) =
1
4

sech(ζ − 30) +
3

64
sech3(ζ − 30) tanh(ζ − 30) + · · · , (29)
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The exact result is:

ψ(ζ, τ) =
1
4

sech

(
ζ − 30− τ

4

)
. (30)

Example 3. Consider the following non-linear time-fractional modified equal-width equation:

Dα
τψ +

12
7
(ψ6)ζ −

3
7
(ψ6)ζζτ = 0, τ > 0, ζ ∈ R, 0 < α ≤ 1, (31)

with initial condition

ψ(ζ, 0) = cosh
2
5

(
5ζ

6

)
. (32)

Using the Elzaki transform in Equation (31), we get

E

[
ψ(ζ, τ)

]
= s2ψ(ζ, 0) + sαE

[
12
7
(ψ6)ζ −

3
7
(ψ6)ζζτ

]
. (33)

Putting the initial condition in Equation (33), we have

E

[
ψ(ζ, τ)

]
= s2 cosh

2
5

(
5ζ

6

)
+ sαE

[
12
7
(ψ6)ζ −

3
7
(ψ6)ζζτ

]
. (34)

By applying the inverse Elzaki transform, we have

ψ(ζ, τ) = cosh
2
5

(
5ζ

6

)
+ E−1

[
sαE

{
12
7
(ψ6)ζ −

3
7
(ψ6)ζζτ

}]
. (35)

Now we implement the HPM and we get

Σ∞
m=0 pmψm(ζ, τ) = cosh

2
5

(
5ζ

6

)
+ p

[
E−1

{
sαE

(
Σ∞

m=0 pmψm(ζ, τ)ζζτ

)}]
. (36)

With the help of He’s polynomials Hm(ψ) we can find nonlinear terms

Σ∞
m=0 pm Hm(ψ) =

12
7
(ψ6)ζ −

3
7
(ψ6)ζζτ . (37)

The He’s polynomials are defined as

H0(ψ) =
12
7
(ψ6

0)ζ −
3
7
(ψ6

0)ζζτ

...

Comparing p-like coefficients, we get
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p0 : ψ0(ζ, τ) = cosh
2
5

(
5ζ

6

)
,

p1 : ψ1(ζ, τ) = E−1

[
sαE

{
H0(ψ)

}]
,

p1 : ψ1(ζ, τ) = −24
7

cosh
7
5

(
5ζ

6

)
sinh

(
5ζ

6

)
τα

Γ(α + 1)
,

...

The series form solution is

ψ(ζ, τ) =
∞

∑
m=0

ψm(ζ, τ)

ψ(ζ, τ) = cosh
2
5

(
5ζ

6

)
− 24

7
cosh

2
5

(
5ζ

6

)
sinh

(
5ζ

6

)
τα

Γ(α + 1)
+ · · · , (38)

Using Equation (38) and putting α = 1, we achieve the result of the given problem as:

ψ(ζ, τ) = cosh
2
5

(
5ζ

6

)
− 24

7
cosh

7
5

(
5ζ

6

)
sinh

(
5ζ

6

)
τ + · · · , (39)

The exact result is:

ψ(ζ, τ) = cosh
2
5

{
5
6
(ζ − τ)

}
. (40)

5. Results and Discussion

In Figure 1, the exact and HPETM solutions are plotted in (a) at α = 1 and the
close contact of the actual and HPETM solutions is analyzed. In Figure 1, the graph (b)
represents the HPETM solutions at α = 1, 0.8, 0.6 and 0.4 of Example 1. The convergence
of the fractional solutions can be analyzed to the integer-order solution of the problems.
In Figure 2, the plot (a) expresses the HPETM and exact solution of each problem. The
closed relation of the HPETM and exact results is established in Figure 2. In Figure 2, the
sub-graph (b) is drawn to verify the results at different fractional orders at α = 1, 0.8, 0.6
and 0.4. The convergence of fractional to integer-order solutions is investigated. In Figure 3,
the subgraph (a) represents the exact and HPETM solutions at α = 1, and subgraph (b)
represents different fractional orders of Example 3. A closed resemblance is found between
the exact and HPETM results. It is found that fractional-order solutions are convergent
towards integer-order solution of Example 3.
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Figure 1. (a) The exact and analytical solutions graph and (b) different fractional-order α graph of
Example 1.

Figure 2. (a) Exact and analytical solutions graph and (b) different fractional-order α graph of
Example 2.

Figure 3. (a) Exact and analytical solutions graph and (b) different fractional-order α graph of
Example 3.
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6. Conclusions

In this article, we evaluated fractional-order equal-width equations, using a homotopy
perturbation Elzaki transformation technique. The solutions for certain examples were
explained and implemented for the suggested method. The HPETM result was close to
the actual result for the given examples. The current methods were used to calculate the
results of fractional-order problems. The graphical analysis of the fractional-order solutions
obtained verified the convergence towards solutions of integer order.

In future, the proposed techniques can be extended for solutions of higher nonlinear
fractional-order partial differential equations and their systems. The fractional difference
and difference differential equations can be handled by using the suggested techniques.
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