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Abstract: Graphitic carbon nitride is a stable and distinct two dimensional carbon-based polymeric
semiconductor with remarkable potentials in organic pollutants degradation, chemical sensors, the
reduction of CO2, water splitting and other photocatalytic applications. Efficient utilization of this
material is hampered by the nature of its band gap and the rapid recombination of electron-hole
pairs. Heteroatom incorporation due to doping alters the symmetry of the semiconductor and has
been among the adopted strategies to tailor the band gap for enhancing the visible-light harvesting
capacity of the material. Electron modulation and enhancement of reaction active sites due to doping
as evident from the change in specific surface area of doped graphitic carbon nitride is employed
in this work for modeling the associated band gap using hybrid genetic algorithm-based support
vector regression (GSVR) and extreme learning machine (ELM). The developed GSVR performs better
than ELM-SINE (with sine activation function), ELM-TRANBAS (with triangular basis activation
function) and ELM-SIG (with sigmoid activation function) model with performance enhancement
of 69.92%, 73.59% and 73.67%, respectively, on the basis of root mean square error as a measure of
performance. The four developed models are also compared using correlation coefficient and mean
absolute error while the developed GSVR demonstrates a high degree of precision and robustness.
The excellent generalization and predictive strength of the developed models would ultimately
facilitate quick determination of the band gap of doped graphitic carbon nitride and enhance its
visible-light harvesting capacity for various photocatalytic applications.

Keywords: graphitic carbon nitride; support vector regression; band gap; surface area; genetic
algorithm; extreme learning machine

1. Introduction

Graphitic carbon nitride (GCN) is a stable, metal-free and economical polymeric
semiconductor characterized by tristriazine units coupled with connected planar amino
group [1]. The high stability, low cost and visible light absorption capacity of GCN
contributes significantly to its photocatalytic activity for environmental remediation and
solar energy conversion [2–4]. The intrinsic challenges of undoped GCN for photocatalysis
include low separation rate of charge carriers and inefficient solar energy utilization due to
the nature of its wide band gap [5–7]. The electronic structure of photocatalytic material
plays an important role in its light harvesting capacity, while heteroatom incorporation in
the lattice structure of GCN results in electron modulation which could enhance its solar
energy utilization through band gap tuning. The crystal lattice heteroatom incorporation
alters the symmetry of GCN, changes the material band structure and could further destroy
the long-chain atomic order, change the spin density, result in a negative/positive charge
effect due to the electronegativity difference or give rise to the ligand effect consequent
upon unsaturated coordination [8]. This ultimately modifies the surface area of the material.

Symmetry 2021, 13, 411. https://doi.org/10.3390/sym13030411 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-6666-1755
https://orcid.org/0000-0003-0951-9450
https://doi.org/10.3390/sym13030411
https://doi.org/10.3390/sym13030411
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13030411
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13030411?type=check_update&version=2


Symmetry 2021, 13, 411 2 of 16

The specific surface area resulting from doping for photocatalytic enhancement is employed
in this contribution to model the corresponding band gap of doped GCN.

The versatility of carbon coupled with its unique bonding capacity contributes enor-
mously to useful the properties exhibited by carbon-based materials and further strengthens
their applications in diverse areas. Combining carbon with nitrogen to form new com-
pounds has attracted significant interest since nitrogen is also characterized with unique
feature to form triple, double or single bonds with other elements [9]. Graphitic carbon ni-
tride (GCN) is a carbon and nitrogen-based material with a graphene like layered structure.
GCN has useful applications in water reduction and oxidation (which yields hydrogen
and oxygen), carbon IV oxide reduction in the production of hydrocarbon fuels and has
shown remarkable performance in photocatalysis [10]. The wide band gap of GCN, the
high recombination rate of charge carriers as well as its blue light absorbing limit of 460 nm
practically limits the material’s usefulness in photocatalytic activity. However, an effective
method of band gap engineering in this compound is still challenging [9]. Among the
practical methods of addressing the challenges of the wide band gap of this compound are
hetero or nanostructuring with other conductors or semiconductors as well as the elemental
doping technique [11]. Heteroatom insertion into GCN framework has been a common
method of band gap modification in this compound. However, the nonuniform distribution
of dopants in the GCN crystal lattice has high tendency to further widen the band gap of the
compound or lead to complete closure [9]. The doping of GCN with elements changes the
symmetry of the compound and has become one of the effective methods of performance
improvement in polymeric semiconductors due to electronic structure modification as well
as enhancing surface properties for a better photocatalytic activity. Improvement in surface
properties such as specific surface area after doping can be attributed to the enhancement
of reaction active sites as well as high porosity, which greatly promotes the mass transfer of
the product and reactant molecules. Sulfur doped GCN has been reported to enlarge the
specific surface area as well as light harvesting capacity [12]. Similar electronic and band
structure modulation coupled with enhanced specific surface area has been reported for
oxygen doped GCN [12]. Therefore, doping GCN enhances specific surface area as well
as band gap energy. This present work correlates enhancement in surface area with band
gap tailoring for specific application using a hybrid genetic algorithm (GA)-based support
vector regression (SVR) and extreme learning machine (ELM).

Support vector regression (SVR) is a prominent supervised intelligent technique with
excellent generalization and predictive strength. The algorithm was initially developed
for classification problems but later extended to address regression problems [13]. The
unique features of SVR that have promoted its implementation in various research fields
include the ease of convergence to global solutions, its robust and powerful mathematical
background and its intrinsic capacity to address and approximate nonlinear problems.
These uniqueness have rendered the algorithm relevant in addressing many challenges
that are difficult to handle using conventional methods. The user defined hyperparameters
of the algorithm control the precision of the model and are tuned in this contribution using
the heuristic genetic algorithm optimization method [14].

Extreme learning machines are a special class of single hidden layer feedforward
neural network with reportedly excellent approximation capacity [15,16]. The random
generation of the hidden neuron weights results in fast training speeds attributed to ELM
algorithms. Therefore, a reduced computational time as compared with other classical
methods characterized this ELM computational intelligence method. These promising
qualities have widened the applicability of ELM algorithms in several research areas [17–19].
This present work explores the uniqueness of ELM algorithms in modeling the band gap of
doped GCN using specific surface area as a descriptor.

The organization of the remaining part of the manuscript is structured as follows:
Section 2 describes the mathematical background of the developed hybrid support vector
regression and genetic algorithm (GSVR) as well as extreme learning machines (ELM)
while Section 3 presents the computational strategies of the developed models. Reports
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on the dataset acquisition and description are presented in Section 3 of the manuscript.
Discussions of the outcomes of the developed models are reported in Section 4. Section 5
concludes the manuscript.

2. Mathematical Formulation of the Proposed Hybrid Algorithms

This present section reports the mathematical description of the support vector regres-
sion algorithm and the implemented genetic population-based optimization algorithm.
The mathematical formulation of extreme learning machine is also presented.

2.1. Support Vector Regression Machine Learning Algorithm

Support vector machine is a statistical learning theory-based intelligent algorithm
developed originally for addressing classification problems [13]. The incorporation of loss
function purposely for approximating the acquired pattern connecting the descriptors with
the target allows the extension of the algorithm for handling regression problems. Hence,
support vector regression (SVR) conveniently solves regression problems through data
transformation to feature space where linear regression is to be constructed. The structural
risk minimization principle upon which the SVR algorithm is built gives peculiar unique-
ness to the algorithm as compared to the traditional empirical risk minimization principle
characterized with some challenges [17]. The SVR algorithm aims at mapping training data
samples g = [

{
x1, E∗1

}
, . . . . . . {xt, E∗t } in which xt ∈ Rm, E∗t ∈ R and t = 1, 2, . . . T, where T

is the number of training samples, to feature space P of high dimensionality using mapping
function µ. Equation (1) presents the regression function for the SVR algorithm [20–22].

E(x) = ω·µ(x) + bµ : Rm → P ω ∈ P (1)

The empirical risk is minimized using ε− insensitive loss function and the minimiza-
tion equation is presented in Equation (2) while the ε− insensitive model is depicted by
Equation (3)

L f unction =
T

∑
t=1

l(E(xt)− E∗t ) (2)

l(x, E∗, E) = |E∗ − E|ε =
{

0 |E(x)− E∗| ≤ ε

|E(x)− E∗| − ε |E(x)− E∗| > ε
(3)

In primal space formulation, the minimization characterizing the resulted optimization
problem is depicted by Equation (4)

L∗ = L f unction +
1
2
‖ω‖2 (4)

The incorporation of slack variables that enhance actualization of the flat function in
the SVR algorithm formulates the convex optimization problem as presented in Equation (5).
With the constraints presented in Equation (6), the dual problem can be addressed. Imple-
mentation of the condition of saddle point characterizing the Langrage function yields the
formulation presented in Equation (7) while the final regression function is depicted by
Equation (8) [23,24].

1
2‖ω‖

2 +
T
∑

t=1
(χt − χ∗t )

Subject to
E∗t − (ω·E∗ + b) ≤ ε + χ
(ω·E∗ + b)− E∗t ≤ ε− χ∗

χ, χ∗ ≥ 0

(5)
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
T
∑

t=1
(ηt − η∗t ) = 0

0 ≤ ηt
η∗t ≤ C

T , t = 1, 2, . . . T

(6)

Q(η, η∗) =
1
2

T

∑
t=1

(η∗t − ηt)(η
∗
i − ηi)µ(xt, xi) + ε

T

∑
t=1

(η∗t + ηt)−
T

∑
t=1

E∗(η∗t − ηt) (7)

E(x) =
T

∑
t=1

(η∗t − ηt)µ(xt, xi) + b (8)

The kernel function that transforms the specific surface area and band gap energy of
doped GCN to feature space is presented in Equation (9).

µ(xt, xi) = exp

(
|xt − xi|2

λ

)
(9)

where λ is the kernel option.
The development of a reliable and robust SVR-based model strongly depends on the

choice of the hyperparameters. The regularization factor C contained in Equation (6) trades
off between margin error minimization and maximization. The kernel option controls data
transformation while the epsilon controls the insensitive loss zone. These three parameters
are optimized in this contribution with the aid of a genetic optimization algorithm.

2.2. Brief Description of Genetic Population-Based Optimization Algorithm

The genetic algorithm is a population driven heuristic optimization algorithm-based
upon the Darwin’s evolution theory and proposed by Holland for addressing real life
problems [14]. The algorithm employs natural selection process to attain global solutions in
a complex search space with multidimensionality [25]. It generates new strings of better fit
from the current strings through the implementation of variant of operators with defined
probabilities. Thereby, weak individuals are disposed of at the expense of the strongest
surviving individuals following a stochastic search [23]. The operational processes of the
algorithm involve the random generation of an initial population, individual population
evaluation, offspring creation through selection, crossover and mutation operations, the
inspection of stopping conditions and iterative repetition processes purposely to achieve
one of the stopping conditions. The random generation of the initial population involves
the initialization of a number of chromosomes that encodes the parameters to be optimized,
each carrying a defined character called a “gene” [26,27]. During the evaluation process, a
defined function is employed for determining the potency of the individual and allows the
strongest individual chromosomes to be dichotomized for subsequent transition to the next
generation. Selection, crossover and mutation operations are the navigating procedures of
this algorithm in attaining quick and mature convergence to a global solution.

2.3. Extreme Learning Machine

Extreme learning machine (ELM) is an intelligent algorithm with fixed network ar-
chitecture of a single hidden layer feedforward neural network [19,28]. The algorithm
generates weights attached to the hidden nodes randomly and implements a pseudoinverse
matrix for the computation of output weights. The ELM-based approximated function for
determining band gap of doped GCN is presented in Equation (10).

E∗(xk) =
T

∑
t=1

βt f (ωtxk + bt) = E (10)

where the specific surface area descriptor is represented by x, the maximum number of
nodes in the hidden layer is represented by T, βt stands for the output weights linking the
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hidden layer with the output layer, ωt represents the weights connecting the input with
the hidden layer, bt defines the bias of the input and hidden layer and f (ωtxk + bt) is the
activation function.

From the function presented in Equation (10), it can be observed that band gap of
doped GCN premises on the computation of βt. The input weights ωt and the bias bt are
randomly generated by the algorithm using a pseudorandom number generator in the
MATLAB environment. The approximated linear function can be represented as depicted
in Equation (11) [29,30].

E = Hβ (11)

where matrix components of H and β are, respectively, presented in Equation (12) and
Equation (13)

H(ω1, . . . ωT , x1, . . . xk, b1, . . . bT) =

 f (ω1 ∗ x1 + b1) . . . f (ωT ∗ xk + bT)
: . . . :

f (ω1 ∗ xk + b1) . . . f (ωT ∗ xk + bT)

 (12)

β = [β1, β2, . . . βk]
T (13)

The monolayer neural network is trained through iterative variation of the hidden
bias layer and input layer, which results in a programming problem characterized with
minimum error presented in Equation (14)

‖H(ω1, . . . ωk, b1, . . . bk)β− E‖ = min
ω, b, β

‖H(ω1, . . . ωk, b1, . . . bk)β− E‖ (14)

The ELM algorithm addresses the problem presented in Equation (10) using the
minimum norm least square method with ultimate transformation to generalized inverse
problem for matrix computation. In the case that β does not lead to a unique solution due to
the larger number of training samples as compared with the number of nodes, generalized
Moore–Penrose inverse (H+) is invoked for β computation as presented in Equation (15).

β = H+E (15)

where H+ represents the pseudoinverse matrix of H.
Assuming that (HT H)

−1 exists, the pseudoinverse matrix can be expressed as defined
in Equation (16).

H+ = (HT H)
−1

HT (16)

Therefore, β can be obtained as presented in Equation (17)

β = (HT H)
−1

HTE (17)

3. Computational Methodology of the Proposed Hybrid GSVR and ELM

The presentation of the computational strategies employed in hybridizing genetic
algorithm with support vector regression is contained in this section. Dataset acquisition
and computation descriptions of the proposed extreme learning machine are also presented.

3.1. Dataset Acquisition and Description

Band gap modeling of doped GCN utilizes experimental data obtained from 105
GCN-based compounds. The experimental data consists of band gap and Brunauer–
Emmett–Teller specific surface area extracted from the literature [1,3–7,31–41]. Preliminary
statistical analysis was carried out on the dataset purposely to extract useful statistical
information guiding the implementation as well as the suitability of the proposed algo-
rithms. The results of statistical analysis presented in Table 1 show the dataset content,
range (from maximum and minimum values) and the degree of linear relationship between
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descriptor and the band gap energy. The low value of correlation coefficient between the
surface area and band gap of doped GCN shows that the descriptor and the target are not
linearly correlated and any attempt to develop a linear model would definitely lead to poor
performance. This observation necessitates the nature of nonlinear models such as hybrid
support vector regression and extreme learning machine developed in this work.

Table 1. Preliminary statistical analysis performed on the dataset.

Mean Maximum Minimum Correlation
Coefficient

Surface area 49.36926 210.1 5.6 −0.03
Band gap 2.650952 2.93 1.68

3.2. Support Vector Regression and Genetic Algorithm Hybridization

The entire computational task involved in the hybridization of SVR with GA was
conducted within the MATALAB computing environment. Randomization of the whole
dataset precedes separation of the dataset into training and testing phases. Randomiza-
tion allows even distribution and diffusion of the dataset and ultimately leads to efficient
computation. A ratio of 8:2 was adopted for dataset partitioning into training and testing
phases. Therefore, 84 GCN-based compounds were employed for support vector acqui-
sition while the accessibility of the future generalization and predictive strength of the
developed model was conducted using testing dataset. The genetic algorithm aids hyper-
parameter searching and consequently promotes the precision and robustness of the model.
The optimized hyperparameters include the kernel option, epsilon and regularization
factor. The computational processes of the developed hybrid GSVR model are itemized as
detailed below.

Step a: Population generalization and initialization: Initial population is initiated
though random generation of many individual solutions. The size of the generated initial
population depends on the nature of the problem and the size of the search space. The size
of the population generated in this work covers the whole range of probable solutions and
varies from 50 to 300 solutions.

Step b: Possible solution evaluation: The probable solutions initiated and generated
are evaluated using fitness function that determines the goodness of the solution. Root
mean square error (RMSE) between the measured and predicted band gap serves as the
fitness function in this work. The fitness evaluation procedures are itemized as follows

i. Kernel function selection: choose a function from Gaussian, Sigmoid or Polynomial
that serves as the kernel function.

ii. Each chromosome that depicts hyperparameters (in a known and defined order)
goes into the chosen kernel function and SVR algorithm is trained using the training
set of data. RMSE-training value corresponding to each of the trained models is
recorded while the support vectors acquired during the training are saved.

iii. The support vectors saved in (ii) are employed in further evaluation of each of the
trained SVR algorithm using testing dataset. The associated RMSE-testing for each
of the chromosome is saved

iv. Each of the developed models is evaluated using RMSE-testing obtained in (iii).
The model characterized with the lowest value of RMSE-testing is regarded as the
best model, while the model with largest value of RMSE-testing is the worst of
the models.

Step c: Population selection (reproduction): Breeding of new generation is carried out
through selection of some proportion of the existing population. Fitness-based procedure
is followed for individual solution selection and 0.8 probability is employed for ensuring
breeding of new population with best fitness.

Step d: Implementation of crossover operator: The crossover operator varies or alters
the programing of the chromosomes from previous generation to the subsequent ones. The
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genetic crossover operator might be sexual, asexual or multirecombination depending on
the number of the parents (also known as arity). In sexual crossover, two parents produce
one or two offspring while an offspring is generated from a parent in asexual crossover.
Multirecombination allows more than two parents to produce one or more offspring. The
sexual crossover probability implemented in this work was set at 0.65.

Step e: Mutation operation: The genetic diversity is maintained between generations
with the aid of mutation operator. It also ensures the accessibility of full range of allele for
each gene. The mutated offspring were generated in this work using mutation probability
of 0.009. The mutation probability was set at this small value to prevent distorted solutions.

Step f: Population replacement: New individuals replace the least-fit in the population.
Step g: Stopping conditions: The algorithm stops when RMSE-testing gives zero value

or same value of RMSE-testing is obtained after fifty consecutive iterations. If either of
these conditions is not met, the algorithm follows a new iterative loop as detailed in Step b
to Step f.

3.3. Computational Implementation of Extreme Learning Machine-Based Model

In order to ensure even and just comparison between GSVR- and ELM-based models,
the randomized and separated data implemented while developing GSVR model was also
implemented for developing ELM-based models. The functions that serve as activation
functions include sine function (SINE), sigmoid function (SIG) and triangular basis func-
tion (TRANBAS). Computational implementation of ELM involves random generation
of hidden layer neurons bias and the weights joining the hidden layer with input layer.
The activation function is then selected for the hidden layer neurons while the hidden
layer output matrix is computed. The weights linking the hidden with the output layer
are computed. The schematic diagram of the developed ELM-based models is presented
in Figure 1.
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Figure 1. Flow chart of the computational strategies employed for extreme learning machine (ELM)-based model development.

4. Results and Discussion

The discussion and the actual results of this research work are presented in this
section. The influence of population numbers on the convergence of SVR hyperparameters
is also presented in this section. Performance comparison between the developed models
is presented. The significance of several dopants on the photocatalytic activity of GCN
compounds is contained in this section.

4.1. Number of Population in Genetic Algorithm and Model Convergence

The response of GSVR model convergence to the number of population is presented
in Figure 2. The result presented in Figure 2 was normalized by subtracting the minimum
fitness value at the maximum iteration from each of the fitness values at every point of the
iteration for each number of agents exploiting the search space. The number of probable
solutions was varied from 50 to 300 as shown in the figure.
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Figure 2. Model (genetic algorithm-based support vector regression; GSVR) convergence with the
number of population.

The model displays a premature convergence when 50 as well as 100 probable solu-
tions were initiated within the model search space while a global solution was attained
as more populations were added. The developed GSVR model showed no further im-
provement in performance as the number of probable solutions was increased to 200. The
corresponding variation in the values of the regularization factor and Gaussian kernel
option are, respectively, presented in Figures 3 and 4. The obtained optimum values of
each of the hyperparameters are presented in Table 2.

Figure 3. Convergence of the regularization factor of developed GSVR model.
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Figure 4. Convergence of kernel option of the developed GSVR model.

Table 2. Optimum obtained values of support vector regression (SVR) parameters using genetic
algorithm (GA).

HyperParameters (GSVR) Optimum Value

C 1
N 200
Gaussian kernel option 0.001099
Epsilon 0.002
Hyperparameter lambda 10−7

4.2. Performance Comparison and Evaluation of the Developed Models

The developed GSVR and ELM-based models are evaluated and compared on the
basis of the correlation coefficient between the measured and predicted band gap of doped
GCN, mean absolute error as well as root mean square error of the model estimates for
the combined dataset. Comparison on the basis of coefficient of correlation is presented in
Figure 5. The developed GSVR model shows outstanding performance as compared with
other developed models.

Figure 5. Comparing GSVR and ELM-based models using coefficient of correlation.
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The developed GSVR model performs better than ELM-SINE, ELM-TRANBAS and
ELM-SIG model with performance improvement of 36.63%, 70.96% and 71.90%, respec-
tively, on the basis of the correlation coefficient. Using the same yardstick, ELM-SINE
outperforms ELM-TRANBAS and ELM-SIG model with performance improvement of
54.18% and 55.67%, respectively, while ELM-TRANBAS performs better than ELM-SIG
with performance enhancement of 3.25%. The model performance measuring parameters
are presented in Table 3.

Table 3. Model performance evaluation parameters.

Coefficient of Correlation RMSE (ev) MAE (ev)

GSVR 0.9680 0.0490 0.0245
ELM-SINE 0.6134 0.1631 0.1219
ELM-TRANBAS 0.2811 0.1857 0.1252
ELM-SIG 0.2720 0.1863 0.1274

Comparison of the performance of the developed GSVR and ELM-based models on
the basis of root mean square error (RMSE) and mean absolute error (MAE) are presented in
Figures 6 and 7, respectively. On the basis of RMSE, the developed GSVR outperforms ELM-
SINE, ELM-TRANBAS and ELM-SIG model with performance enhancement of 69.92%,
73.59% and 73.67%, respectively, while ELM-SINE performs better than ELM-TRANBAS
and ELM-SIG model with improvement of 12.19% and 12.44%, respectively. Similarly,
ELM-TRANBAS model performs better than ELM-SIG model with improvement of 0.27%.
Using MAE as the yardstick for performance comparison, GSVR performs better than ELM-
SINE, ELM-TRANBAS and ELM-SIG model with respective performance improvement of
79.93%, 80.48% and 80.81% while ELM-SINE outperforms ELM-TRANBAS and ELM-SIG
model with performance improvement of 2.70% and 4.35%, respectively. ELM-TRANBAS
model also outperforms ELM-SIG on the basis of MAE. Correlation cross plot between the
estimated band gap and the measured values is presented in Figure 8. The plotted experi-
mental band gap energy in the figure are extracted from the literature [1,3–7,31–41]. The
band gap datapoints estimated by GSVR model show perfect alignment while datapoints
from other developed models show deviations depending on the value of the coefficient of
correlation. The outstanding performance of the developed GSVR model can be attributed
to the hybridizing power of GA to effectively optimize SVR hyperparameters as well as
unique features governing the operating principles of SVR algorithm such as structural risk
minimization principle, the strong mathematical formulation upon which the algorithm
was developed and nonconvergence to local solution.

Figure 6. Comparing GSVR and ELM-based models using root mean square error (RMSE).
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Figure 7. Comparing GSVR and ELM-based models using mean absolute error (MAE).

Figure 8. Correlation cross-plot between the estimated and measured band gaps using the
developed models.

4.3. Effect of Experimental Preparation Conditions on the Band Gap of GCN Using the Developed
GSVR Model

The effect of different precursor concentrations during the experimental preparation
of GCN on the photocatalytic activities of the polymeric semiconductor using the best of
the developed model (GSVR) is presented in Figure 9. The estimates of the GSVR model
are also compared with the experimentally measured band gap [7]. The experimental
condition alters the specific surface area of the samples and thereby tailors the band gap
energy of the semiconductor as shown in the figure. The observed increase in pore sizes
and surface area enhance the adsorbing capacity of the semiconductor and provide more
active sites for photocatalytic processes [7].
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Figure 9. Influence of the preparation condition on band gap of graphitic carbon nitride (GCN).

4.4. Photocatalytic Effect of Sulfur Dopant and Temperature Treatment on GCN

The incorporation of sulfur dopants in the lattice structure of GCN followed by vari-
ation in calcination temperature alters the photocatalytic activity of GCN as observed
from the reduction in the energy band gap. Comparison between the estimated and mea-
sured band gap is presented in Figure 10. The predicted band gap using specific surface
area of each of the treated samples as descriptor agree excellently with the measured val-
ues [5]. The pore volume and the specific surface area increase with increase in calcination
temperature; hence, the band gap of the sample was tailored accordingly.

Figure 10. Significance of heating temperature and sulfur dopants on the band gap of GCN.

4.5. Significance of Oxygen Incorporation on the Band Gap of GCN

The photocatalytic activity of oxygen doped porous GCN using the developed GSVR
model is presented in Figure 11. The figure also compares the measured values of the band
gap with the estimated band gaps. The increase in the concentration of oxalic acid (which
varies the concentration of oxygen in the samples) changes the surface area of the samples



Symmetry 2021, 13, 411 14 of 16

and correspondingly alters the band gap of the semiconductor. The estimated values agree
excellently with the measured band gaps [35]. The active sites for photocatalytic reactions
are enhanced due to the change in electronic structure of the samples consequent upon
improvement in the surface area.

Figure 11. Effect of oxygen incorporation in GCN crystal structure on the energy band gap.

5. Conclusions

The band gap of graphitic carbon nitride (GCN) subjected to incorporation of external
dopants and different experimental conditions are modeled using extreme learning ma-
chine (ELM)-based models and hybrid support vector regression and genetic algorithm.
Since the specific surface area of two dimensional polymeric semiconductors enhances the
number of active sites for photocatalytic reactions as well as electronic structure, while this
surface area can be altered through experimental conditions coupled with the incorpora-
tion of dopants in the lattice structure of GCN, the developed models in this work utilize
specific surface area as a descriptor for estimating band gap energy. The genetically opti-
mized support vector regression (GSVR) outperforms ELM-based models with different
activation functions such as sine (ELM-SINE), triangular basis function (ELM-TRANBAS)
and sigmoid function (ELM-SIG) using three different parameters for model evaluation.
From the outcomes of this work, the performance of the developed models can be ranked
as GSVR > ELM-SINE > ELM-TRANBAS > ELM-SIG. The developed GSVR model inves-
tigates the influence of different experimental conditions and dopants on the band gap
of GCN while the obtained band gaps agree excellently with the measured values. The
reported precision of the developed models as observed from the closeness of the estimates
of the models with the measured values and from the values of three different performance
evaluation parameters, clearly signify that the developed models would provide a quick
and accurate precision in estimating the band gap of doped GCN at relatively low cost
with the circumvention of experimental stress.
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