
symmetryS S

Article

Feature Point Matching Method for Aerial Image Based on
Recursive Diffusion Algorithm

Jiayan Shen 1 , Xiucheng Guo 1,*, Wenzong Zhou 2, Yiming Zhang 1 and Juchen Li 1

����������
�������

Citation: Shen, J.; Guo, X.; Zhou, W.;

Zhang, Y.; Li, J. Feature Point

Matching Method for Aerial Image

Based on Recursive Diffusion

Algorithm. Symmetry 2021, 13, 407.

https://doi.org/10.3390/sym13030407

Academic Editor: Dumitru Baleanu

Received: 15 January 2021

Accepted: 22 February 2021

Published: 2 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Transportation, Southeast University, No. 2 Dongnandaxue Road, Nanjing 211189, China;
230149532@seu.edu.cn (J.S.); seuzym@seu.edu.cn (Y.Z.); 230189272@seu.edu.cn (J.L.)

2 ZTE Corporation, No. 55 Keji South Road, Shenzhen 518057, China; zhou.wenzong@zte.com.cn
* Correspondence: 101002320@seu.edu.cn

Abstract: Aerial images are large-scale and susceptible to light. Traditional image feature point
matching algorithms cannot achieve satisfactory matching accuracy for aerial images. This paper
proposes a recursive diffusion algorithm, which is scale-invariant and can be used to extract sym-
metrical areas of different images. This narrows the matching range of feature points by extracting
high-density areas of the image and improving the matching accuracy through correlation analysis
of high-density areas. Through experimental comparison, it can be found that the recursive diffusion
algorithm has more advantages compared to the correlation coefficient method and the mean shift
algorithm when matching accuracy of aerial images, especially when the light of aerial images
changes greatly.

Keywords: aerial image; feature point matching; recursive diffusion algorithm; high-density area
extraction; correlation analysis

1. Introduction

In aerial surveying and mapping, scattered aerial images can be spliced into a whole
area image through the positioning of the connection points, providing support for the
solution of aerial triangulation. In the early days, connection points were manually placed
on the ground. The development of image processing technology makes it possible to use
the feature points of an aerial image itself as connection points, which will greatly improve
the automation rate of aerial surveying and mapping. However, aerial images have a large
scale and are susceptible to changes in airflow and light, which requires the feature point
matching algorithm to have strong spatial scale invariance and robustness. In order to
meet the above conditions, we presented a recursive diffusion algorithm which is suitable
for the extraction of symmetrical areas to promote the matching accuracy of the feature
points for aerial images.

Many research studies on the matching of image feature points have been con-
ducted [1,2]. Lowe [3–5] proposed the Scale Invariant Feature Transform (SIFT), which
converts an image into many local feature vectors. Based on this, many pieces of research
on the application and improvement of the SIFT method have been carried out [6–10]. In
addition to the SIFT method, the Mean Shift, which is a general non-parametric technique,
was introduced in 1975 [11]. Meer et al. [12–14] adopted the Mean Shift to analyze complex
multimodal feature space and depict clusters of arbitrary shapes. Hu et al. [15] used the
Mean Shift to extract the road centerline from images of complex urban areas based on
multiple features. Feng et al. [16] detected moving objects in the visual perception network
by introducing the Gaussian Mixture Model and Mean Shift algorithm. Yue et al. [17]
applied the Mean Shift for multi-level clustering to extract the low-level texture area from
distorted building images.

Additionally, Duraisamy et al. [18] proposed a strategy to register 3D LiDAR data with
2D images. Jeong et al. [19,20] developed a matching algorithm suitable for deformable
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objects. Ma et al. [21–23] proposed a variety of feature matching methods to seek reliable
correspondences and eliminate the mismatching of feature sets. Abdel-Basset et al. [24]
designed a two-level clustering strategy to discover the copy movement forgery in digi-
tal images.

Deep learning technology has provided more research points for image processing.
The Convolutional Neural Networks (CNNs) were used by Simo-Serra et al. [25] as an
alternative to SIFT for the learning and training of a Siamese network. Liu et al. [26]
proposed a trained local feature generation method named Deeply Learned Feature Trans-
form (DELFT), which was used to describe image patches through triple convolutional
networks and showed good distinctiveness and robustness. Krizhevsky et al. [27] designed
a large-scale deep convolutional neural network to handle the classification problem of
1.2 million images with high resolution, obtaining better results than previous studies.
Wang et al. [28] adopted the cross-graph convolution for supervised graph correspondence
learning. Kluger et al. [29] presented a strong estimator suitable for the fitting of multi-
parameter models, and a neural network was introduced to determine the probability of
hypothesis selection.

Many researchers have made efforts to improve image feature point matching, but
the proposed matching methods have certain limitations, and the matching results are
not ideal when used in aerial images. This research aims to develop a scale-invariant and
robust method called recursive diffusion algorithm for feature point matching in aerial
images, which is unaffected by changes in light and rotation of shooting angles. The
rest of this paper is organized as follows: In Section 2, the methodology of the recursive
diffusion algorithm is introduced, including the division of density nodes, the marking
of high-density nodes, the extraction of high-density areas, and the matching of feature
points. The results and discussion of the aerial image feature point matching experiments
are demonstrated in Section 3. Section 4 is the main conclusion of this paper.

2. Methodology

The core idea of the recursive diffusion algorithm is to first extract high-density areas
with dense feature points in aerial images so as to reduce the feature point matching area
from the entire image to a small local area. Then, correlation analysis is performed to
restrict the matching range of feature points, which will effectively improve the matching
accuracy and greatly reduce algorithm complexity. The recursive diffusion algorithm for
image feature point matching includes four main steps: dividing feature point density
nodes, marking high-density nodes, extracting high-density areas, and matching feature
points, as shown in Figure 1.
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Figure 1. Process of the recursive diffusion algorithm.

2.1. Dividing of Density Nodes

In order to facilitate computer processing, the aerial image needed to be divided into
small square units through a grid, as shown in Figure 2. Each grid cell was defined as a
feature point density node.
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(a) 10 × 10 pixels 

Figure 2. The division of the feature point density nodes.

The size of the feature point density node is related to the algorithm’s accuracy. The
smaller the density node, the more accurate the matching area obtained, and the larger
the density node, the rougher the matching area obtained. In actual image processing,
too-large or too-small density nodes are not ideal. The appropriate size of the density
node was determined according to the size of the Harris operator feature point detection
window. When the detection window was a 7 × 7 pixel matrix, multiple experiments
were conducted by selecting 10, 20, 40, and 80 pixels as the side length of the density
node. Figure 3 shows that when the density node was divided into 10 × 10 pixels or
20 × 20 pixels, the number of feature points in a single density node was too scarce. When
the density node was divided into 80 × 80 pixels, the area with low feature point density
would also be regarded as a high-density area. Through the comparison of experimental
results, selecting 40 × 40 pixels as the density node division standard best reflected the
distribution of feature points.
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2.2. Marking of High-Density Nodes

Traverse all the feature point density nodes on the image to count the number of
feature points, n, in each density node and set a threshold, t. When n ≥ t, this density
node is marked as a high-density node. Otherwise, it was marked as a low-density node.
Using t = 1 as an example to mark the high-density nodes, Figure 4a,b can be obtained.
The squares represented by diagonal lines in Figure 4c were high-density nodes. For the



Symmetry 2021, 13, 407 5 of 15

subsequent algorithm calculation, the high-density node was represented by 1 and the
low-density node was represented by 0. The coordinate system as shown in Figure 4d was
established with the upper-left corner of the image as the origin of the coordinate system,
with the horizontal and vertical axis as the x-axis and y-axis, respectively.
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2.3. Extracting of High-Density Areas
2.3.1. Data Structure

The appropriate data structures should be determined in advance to store the high-
density node and high-density area for the recursive diffusion algorithm development.
The data structure of the high-density node was represented by a data class called “Node”,
in which only a bool variable named “isUsed” was needed to mark whether the node
had been used. The high-density area was composed of multiple connected high-density
nodes. A data class called “HightArea”, which contained three integer variables and a
comparator, was used to represent the data structure of the high-density area. The three
integer variables were represented by 1x, 1y, and size. 1x and 1y are used to record the x-
axis value and the y-axis value in the upper left corner of the high-density area, respectively.
The integer variable size was used to record the number of high-density nodes contained
in the high-density area. Additionally, a comparator was needed to compare the size of the
high-density areas, which was sorted by the value of the integer variable size from largest
to smallest. The algorithm data structures are shown in Figure 5.
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2.3.2. Logical Design

Recursion is a process of simplifying a big problem into smaller problems with the
same structure. The big problem that needs to be solved is defined as a parent problem,
and the simplified small problems are defined as sub-problems. The high-density area
extraction in this paper was regarded as the parent problem, and whether the four adjacent
nodes of a high-density node are high-density was the sub-problem decomposed from
the parent problem. The end condition of the recursion is that there are no unmarked
high-density nodes around a high-density node.

Take the high-density node diffusion process shown in Figure 6 as an example. In
Figure 6a, the red 1 represents the current high-density node recursively, and the single
slash shading 1 represents the high-density node that has been diffused. Figure 6b describes
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the diffusion process of the central high-density node in four directions. The 0 in the dashed
box represents the low-density node that cannot be diffused, and the 1 in the solid box
represents the high-density node that could be diffused. In the same way, the high-density
nodes diffused in the previous stage were used as the new central high-density node in
the later stage to diffuse in four directions (the diffused high-density node will no longer
be diffused twice). When no new central high-density nodes were produced, the entire
diffusion process ended and the high-density connected areas were obtained.
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2.3.3. Model Construction

Construction of a recursive diffusion function is shown in Equation (1):

f(x, y) =


m1(x, y− 1)
m2(x, y + 1)
m3(x− 1, y)
m4(x + 1, y)

(1)

where the function m(x, y) represents the diffusion recursive sub-function in which the
high-density node moves up, down, left, and right by one step. This movement is expressed
using the trinocular equation:

m(x, y) = (x, y) ∈ {(x, y)|Node(x, y).num > t∩Node(x, y).isUsed = false}?f(x, y) : return (2)
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where Node(x, y).num > t is the judgment condition of the high-density node, and
Node(x, y).isUsed = false means that the density node has not been used. If the result of
the function f(x, y) is true, continue to recurse with (x,y) as the diffusion center. Otherwise,
exit the recursion.

2.3.4. Coordinate Position Update

To facilitate the subsequent feature points matching of the high-density area, the
coordinates of the upper left corner of the area, namely the smallest x-value component
and the smallest y-value component, were selected to represent the distribution position
of the area. Taking a branch of the entire recursive diffusion algorithm as an example,
the high-density area extraction process is shown in Figure 7. From f(x 1, y1) to f(x 3, y2)
is a recursive stacking process. When the function f(x, y) is called for the first time, its
sub-process mi in a certain direction looks for the high-density node that can be diffused.
This new high-density node will serve as the diffusion center of the next recursion, and
its distribution position (x 2, y1) will be passed into f(x 2, y1) as an input parameter for a
new recursive call. When the recursion proceeds to f(x 3, y2), no suitable diffusible high-
density node can be found anymore, and then the recursion end condition is triggered. In
accordance with the order of the arc arrows, the sub-process takes the return value (xi, yi)
and compares it with

(
xi−1, yi−1

)
step-by-step to update the position coordinates of the

high-density area.
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2.4. Matching of Feature Points

The extracted high-density areas contained two pieces of information: position (x, y
coordinates) and the number of high-density nodes (size). The high-density areas of the
two images that needed to be matched (represented by the left image and the right image)
were arranged in their respective queues according to the number of high-density nodes
from large to small. Select the first largest high-density area in the queue of the left image to
compare with the high-density areas in the queue of the right image. The specific matching
steps are as follows:

Step 1: Compare the distribution positions (x,y) of the high-density areas of the left
and right images. If the x or y difference between the two areas exceeds half of the side
length of the image, exclude them. Otherwise, go to step 2.

Step 2: If the difference in the number of high-density nodes contained in the left and
right high-density areas is greater than 2, exclude them. Otherwise, go to step 3.

Step 3: Perform correlation analysis.



Symmetry 2021, 13, 407 8 of 15

With the high-density area distribution positions of the left and right images as the
center, spread 40 × 40 pixels around to obtain two corresponding pixel matrices, denoted
by X and Y respectively. Calculate the correlation coefficient of X and Y by Equation (3):

ρX,Y =
cov(X, Y)
σXσY

=
E((X− µX)(Y− µY))

σXσY
(3)

where cov(X,Y) is the covariance of the pixel matrices X and Y, and σXσY is the standard
deviation product of the pixel matrices X and Y.

Step 4: Select a group of high-density areas with the largest correlation coefficient to
match the left and right images. The distribution positions difference is the calibration
parameter of the left and right images and the calculation equation is as follows:{

rx= xr − xl±k

ry= yr − yl±k,
(4)

where xl and xr are the x components. yl and yr are the y components. k is the allowable
matching error, and the value set in this paper is 25 pixels.

3. Results and Discussion
3.1. Matching Results of the Diffusion Recursive Algorithm

A group of aerial images over a mine in northwestern China were collected as the
experimental object. Before the feature point matching, the image block preprocessing was
performed, and the feature points were extracted by the Harris operator. Considering that
the light of the collected aerial images changes greatly, the diffusion recursive algorithm
proposed in this paper was used to match the feature points of the images by C# language
programming.

Three sets of representative experimental results are shown in Figure 8, where the red
crosshairs represent the feature points of the image, the blue boxes represent the extracted
high-density areas, and the blue crosshairs are the matching reference points. It can be
found that the recursive diffusion algorithm can deal with the problem of image light
changes well, especially in the third set of experiments. The brightness difference in this
experiment is obvious, which leads to the different extraction results of high-density areas.
However, due to the increase of the correlation analysis of high-density areas, a good
matching result is obtained in the end.
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3.2. Comparison with the Mean Shift Algorithm

The mean shift algorithm was also applied to match the feature points in the third set
of experiments, and the results are shown in Figure 9. Through comparison, it can be found
that when the light of the image changes significantly, the matching accuracy obtained by
the mean shift algorithm is not as good as the recursive diffusion algorithm. The recursive
diffusion algorithm has good stability to the light changes of aerial images.

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 15 
 

 

  

  
(c) The third set of experiments 

Figure 8. Matching results of the diffusion recursive algorithm: (a) The first set of experiments; (b) 
The second set of experiments; (c) The third set of experiments. 

3.2. Comparison with the Mean Shift Algorithm 
The mean shift algorithm was also applied to match the feature points in the third set 

of experiments, and the results are shown in Figure 9. Through comparison, it can be 
found that when the light of the image changes significantly, the matching accuracy 
obtained by the mean shift algorithm is not as good as the recursive diffusion algorithm. 
The recursive diffusion algorithm has good stability to the light changes of aerial images. 

  
Figure 9. Matching results of the mean shift algorithm. Figure 9. Matching results of the mean shift algorithm.



Symmetry 2021, 13, 407 11 of 15

3.3. Comparison with the Correlation Coefficient Matching Algorithm

Three sets of comparative experiments with traditional correlation coefficient matching
algorithms were carried out, and the results can be seen from Figures 10–12. In Figure 10, the
correlation coefficient method matches the two feature points with the largest correlation
coefficient, but the matching results have obvious errors. The diffusion recursive algorithm
can avoid this kind of false matching through the restriction of spatial location. Figure 11
shows the matching results when the correlation coefficient method and the diffusion
recursive algorithm are applied to natural environment images with fewer man-made
objects. Due to the high similarity between the feature points of natural environment
images, the matching effect of the correlation coefficient method is not ideal, but the
diffusion recursive algorithm can obtain good matching results. Similarly, when the light
changes significantly, the diffusion recursive algorithm has a better matching accuracy than
the correlation coefficient method, which can be seen in Figure 12.
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3.4. Analysis of Matching Accuracy and Timing Performance

A total of 18 sets of experimental images were selected, and the correlation coefficient
method, the mean shift algorithm, and the diffusion recursive algorithm were used respec-
tively to match the feature points of these experimental images. The matching accuracy
and timing performance of the three different methods were compared and analyzed. The
results are shown in Table 1. Among the 18 sets of experimental images, the number of
successful matches using the correlation coefficient method was four sets, and the suc-
cessful matching rate was only 22.2%. The number of successful matches using the mean
shift algorithm was 15 sets, and the successful matching rate was 83.3%. The number of
successful matches using the diffusion recursive algorithm was 17 sets, and the successful
matching rate was 94.4%. The time-consumption of the correlation coefficient method, the
mean shift algorithm, and the diffusion recursive algorithm are 7434 ms, 12,587 ms, and
16,648 ms, respectively, with the Intel Core i7-4720HQ processor. Compared with the other
two methods, the diffusion recursive algorithm has no advantage in timing performance.
However, when there are high requirements for image matching accuracy, the diffusion
recursive algorithm can obtain satisfactory matching results.

Table 1. The matching accuracy and timing performance of the three different methods.

The Correlation
Coefficient Method

The Mean Shift
Algorithm

The Diffusion
Recursive Algorithm

Number of successful
matches 4 15 17

Successful matching rate (%) 22.2 83.3 94.4
Time-consumption (ms) 7434 12,587 16,648

4. Conclusions

A new feature point matching method named diffusion recursive algorithm has been
presented to deal with the problems of large scale and susceptibility to light interference of
aerial images. The method mainly includes four steps: dividing of density nodes, marking
of high-density nodes, extracting of high-density areas, and matching of feature points.
Through the extraction of high-density areas of the image, the feature point matching area is
reduced from the entire image to the extracted area. The correlation analysis of high-density
areas further restricts the matching range of feature points. The experimental analysis of
the collected aerial images shows that the diffusion recursive algorithm is suitable for the
feature point matching of aerial images, and it can still obtain good matching accuracy
even when the light changes greatly. Compared with the correlation coefficient method
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and the mean shift algorithm, although the diffusion recursive algorithm has no advantage
in timing performance, it has the best matching accuracy and can meet the requirements of
high-precision matching.

However, this research still has some limitations. First, the determination of the
density node division standard still requires manual calibration, which limits the real-time
performance of the diffusion recursive algorithm. In follow-up research, an improvement
is needed to expand the applicability of the proposed algorithm. Second, the algorithm
is currently suitable for 2D image matching. The feasibility of the algorithm in 3D image
matching should be further studied by adding auxiliary technologies such as LiDAR. In
addition, when there are higher requirements for image matching accuracy, sub-pixel
positioning technology can be introduced to further improve the algorithm.
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