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Abstract: With the development of modern power systems (smart grid), energy consumption pre-
diction becomes an essential aspect of resource planning and operations. In the last few decades,
industrial and commercial buildings have thoroughly been investigated for consumption patterns.
However, due to the unavailability of data, the residential buildings could not get much attention.
During the last few years, many solutions have been devised for predicting electric consumption;
however, it remains a challenging task due to the dynamic nature of residential consumption patterns.
Therefore, a more robust solution is required to improve the model performance and achieve a better
prediction accuracy. This paper presents an ensemble approach based on learning to a statistical
model to predict the short-term energy consumption of a multifamily residential building. Our
proposed approach utilizes Long Short-Term Memory (LSTM) and Kalman Filter (KF) to build
an ensemble prediction model to predict short term energy demands of multifamily residential
buildings. The proposed approach uses real energy data acquired from the multifamily residential
building, South Korea. Different statistical measures are used, such as mean absolute error (MAE),
root mean square error (RMSE), mean absolute percentage error (MAPE), and R2 score, to evaluate
the performance of the proposed approach and compare it with existing models. The experimental
results reveal that the proposed approach predicts accurately and outperforms the existing models.
Furthermore, a comparative analysis is performed to evaluate and compare the proposed model
with conventional machine learning models. The experimental results show the effectiveness and
significance of the proposed approach compared to existing energy prediction models. The proposed
approach will support energy management to effectively plan and manage the energy supply and
demands of multifamily residential buildings.

Keywords: energy prediction; machine learning; deep learning; Kalman filter; ensemble approach;
time series; multifamily residential buildings

1. Introduction

In recent times, a considerable amount of energy consumption is attributed to resi-
dential buildings. owing to a high consumption share of the building sector worldwide
has turned into an undefined energy sink. The residential building sector worldwide
consumes about 40% of energy consumption [1] comparative to industrial and commercial
sectors. Increased electric consumption leads to increased wastage and the least energy
savings. Wasting a scarce resource such as electricity is a substantial threat to economy and
sustainability of a country. Moreover, electricity generated through fossil fuels such as coal
and natural gas produce CO2 emissions, which become the leading causes of greenhouse
gas emissions and global warming [2]. Achieving building energy efficiency can assist
authorities in minimizing and controlling the carbonization of the energy sector. Therefore,
energy modeling for the buildings sector is a dire need of the current hour to analyze
the building electric consumption with respect to improving building design, achieving
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control system optimization, reducing energy wastage, facilitating stable grid operations,
and improving decision power through development of efficient electricity consumption
prediction models. The critical aspect of electricity is that its production, transmission,
and distribution happens in real-time, and there is no mechanism to store it; furthermore,
instantaneous production of electric energy is impossible as the production process requires
time and effort; therefore, accurate energy consumption forecasts are needed to avoid over
and underproduction of electricity.

Electricity consumption prediction is a substantial part of power system planning
and operation of electric utility companies. Planning facilitates an electric utility to make
informed decisions about future requirements. Prediction assists building owners and
electric utility companies by provisioning future electric consumption likelihood to the
planning department, which further implements specific planning strategies for effective
management. Electric consumption prediction estimates future electric consumption
based on the already recorded consumption data and some influencing variables such
as weather and occupant comfort indexes, etc. Electric utility companies need different
types of consumption forecasts to satisfy their vast business needs. Electric consumption
forecasts are a major concern of power authorities to avoid blackouts and power-outages;
moreover, for efficient financial planning and smooth electricity transmission, distribution,
and generation. However, electric consumption forecasting is a challenging task due
to various influencing factors such as outdoor weather conditions, size of the building,
number of occupants, the economic state and comfort index of the occupant, the use of
heating, ventilation, and air conditioning components (HVAC), operating schedules, and
energy usage pattern of the occupant [3,4]. Electric energy consumption prediction is
comprised of various temporal scales to analyze consumer electricity demands, such as
hourly, sub-hourly, daily, weekly, monthly, yearly, and seasonally (Summer, Winter, and
Fall) [5]. Therefore, it is beneficial to utilize data analytics to process and analyze the hidden
characteristics of electrical energy consumption data that is essential for understanding the
energy demands of multifamily residential buildings.

Time series data are widely used to forecast the future consumption of electricity.
It can be defined as a chronological sequence of samples on a pattern of interest [6]. As
we discussed earlier, the consumption demands of electricity depend on different time
series patterns, such as hourly, daily, weekly, etc. Therefore, it is required to unearth
the time-series patterns to analyze consumer demands. Nowadays, Data Mining (DM)
techniques are widely used to discover essential characteristics from a large data scale [7].
It is an effective process of discovering useful patterns and hidden trends from electricity
consumption data, which is important for energy management to plan electricity demands
and supply [8]. The DM techniques can examine and analyze a massive amount of time
series data through analytical reasoning models for extracting useful characteristics and
insights from complex consumption data that is an indispensable part of efficient energy
management and for devising strategies to plan, control, and coordinate energy supply
and consumption demands.

Recently, machine learning (ML) algorithms are widely used by the researchers to
build intelligent inference models based on discovered characteristics using DM techniques
to forecast time series data. ML algorithms are employed by many researchers to develop
intelligent models in various domains, such as computer vision [9], business intelligence,
pattern recognition [10], navigation systems [11], decision-making systems [12], etc. ML-
based techniques are robust to build intelligent inference models based on historical electric
consumption data and discover underlying characteristics to derive a conclusion. Deep
learning models have gained enormous attention in recent times and have successfully
produced state-of-the-art results. It is an active technology employed in various research
areas like computer vision, bioinformatics, energy forecasting, health care systems, speech
recognition, etc. [13]. Deep learning models can learn representations from structured and
unlabeled data using multilayered neural networks. Comparative to traditional models,
deep learning models offer better prediction performance because of varying layers and
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abstraction levels [14]. Deep neural networks are based on stochastic optimization, like
Long Short Term Memory Recurrent Neural networks (LSTM-RNN). Recurrent Neural Net-
works (RNN) possess an internal memory block that aids learning from past experiences;
moreover, it comprise of looping structures from output to input nodes. Recurrent nets
are sequence-based models that are capable of tackling dependencies between consecutive
time steps. RNN can be considered a replicating structure of the same network, with each
copy passing a message to the next node [15]. However, practically, RNN faces difficulties
in learning long-range dependencies. LSTM neural networks offer a solution to such
problems by providing feedback connections. LSTM is highly productive and provides a
solution to various domains like prediction, data processing, and classification, etc. LSTM
is a special variant of RNN that has self-connecting hidden layers and gating structure and
is efficient at handling long term dependencies with better controllability [16]. The LSTM
based prediction model learns from past data and predicts future outcomes. However,
adapting to dynamic conditions associated with intricate electric consumption patterns
is a challenging task. To cope with this issue, researchers have realized the potential of
employing KF to improve the performance of prediction models [17]. Kalman filter is a
statistical algorithm that only requires previous state information (predicted state) and
noise measurements to predict optimal, unbiased actual system state.

The major contributions of the proposed work are listed as follows:

• Provide different time-series analysis of energy consumption data of multifamily
residential buildings, South Korea, to highlight hidden insights and characteristics for
stakeholders to devise effective policies.

• Integration of deep learning and statistical models to forecast short-term energy
consumption using time-series data collected from multifamily residential buildings,
South Korea.

• Experimental results demonstrate that the proposed ensemble prediction approach
produces better generalization and outperforms standalone models, such as LSTM
and KF.

• Comparative analysis is also given to highlight the significance of the proposed model
compared to standalone models.

The rest of the paper is summarized as follows: Section 2 presents the related works;
Section 3 presents methodology of the proposed ensemble prediction model based on LSTM
and KF using time-series electricity consumption data of multi-family buildings. Section 4
presents detailed time-series analysis to investigate hidden characteristics of electricity
consumption data. In Section 5, prediction approaches are discussed. In Section 6, we
present the implementation environment, experimental, and performance analysis results.
Section 7 concludes the paper with possible future directions.

2. Related Work

This section presents existing work related to energy prediction models and provides
an overview of state-of-the-art methods applied to the domain of electric consumption
forecasting. Previously, a variety of electric consumption prediction models have been
developed using various software packages like Ecotect [18], Energy-plus [19], DOE2 [20],
IES [21], etc. This type of modeling requires detailed knowledge of the building’s structural,
thermal, and material properties. Additionally, such methods utilize engineering models to
calculate the future electric consumption of a building. However, such detailed information
about a building is unavailable at the time of prediction, and, if obtained, it is difficult
to validate it, creating a hindrance in prediction performance and accuracy. Due to the
complexities associated with electric consumption prediction, particularly low accuracy
and deteriorated prediction performance, employing simulation tools is therefore not the
right choice for energy prediction. To overcome the limitations in existing solutions, there
is a growing interest in data-driven approaches [22]. Data-driven models learn from past
electric consumption data and predict future consumption based on past consumption
patterns [23]. With the advent of Smart Metering Infrastructure (SMI) in recent years,
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data-driven approaches are successfully applied to this domain due to fast computational
power and improved prediction performance.

Data-driven methods applied to energy consumption prediction are generally devel-
oped using statistical and artificial intelligence (AI) methods. Statistical methods build
probabilistic models based on historical data as their internals are known, making it easy
to understand the internal processes. These statistical models include Exponential Smooth-
ing [24], Auto-regressive Moving Average [25], Regression Analysis [26], Stochastic Time
Series Modeling [27], etc. Statistical methods are uncomplicated and simpler in imple-
mentation yet they cannot handle intricate nonlinear electric consumption patterns. In
contrast, ML-methods are robust and effective in handling shortcomings, as mentioned
above. Commonly used AI methods include artificial neural networks (ANN), deep neural
networks (DNN), support vector machine (SVM), fuzzy inference systems (FIS), expert
systems (ES), etc. ANN based studies include work from Chae et al. [28]. The authors fore-
casted electric consumption of an office building using ANN and Bayesian Regularization;
comparing ANN and nine other methods and experimental results proved that ANN along
Bayesian regularization outperformed all other methods. Quilumba et al. [29] applied
neural networks and clustered data from smart meters to forecast intraday load at a system
level. In [30], the authors proposed a hybrid model to integrate physical and SVM models
to predict short-term electric consumption. Paudel et al. [31] employed SVM to forecast the
overall (heating and cooling) energy consumption of a residential building. Refs. [32,33]
successfully applied fuzzy inference systems by mapping the relationship between electric
consumption and variables affecting it. Although ANN is one of the popular techniques,
it is unable to achieve lower error due to over fitting, issues in training, inappropriate
generalization, and weakness of back propagation.

Recently, deep learning has become the most popular approach due to its application
in several areas due to its successful application in various research areas: natural lan-
guage translation, picture captioning, pattern recognition, and, most importantly, sequence
learning. Deep learning consists of several architectures like long short term memory
(LSTM), recurrent neural network (RNN), convolution neural network (CNN), and deep
belief network (DBN) [34–36]. Among the ML methods employed in energy consumption
prediction, DNN methods have proven effective and robust to handle nonlinear time series
problems [4]. Deep networks are successfully applied to energy forecasting and achieved
the best results compared to previous methods. Deep learning uses the concept of stochastic
optimization for performing ML tasks. Multiple layers of a neural network are stacked
over each other to improve results and learning ability; they are provided with different
abstraction levels [14]. DL methods are a suitable choice to overcome the problems that
existed in previous methods because these methods can model complex functions.

Deep networks are successfully applied to energy forecasting and achieved the best
results compared to previous methods. Debinec et al. [37] employed a deep belief network
to forecast daily electric consumption in Macedonia by stacking multiple Restricted Boltz-
mann Machine (RBM) layers. Mocanu et al. [38] introduced another deep learning method
called a conditional restricted Boltzmann machine for predicting the load of a residential
building for a single meter and achieved better performance compared to ANN and SVM.
El-shark [39] employed radial basis recurrent neural networks with multilayer perceptron
and parallel artificial neural networks. In [40], the authors used an ensemble deep belief
networks to predict electric consumption using three different time-series data sets. In [41],
the authors introduced a novel approach known as hybrid quantized elman neural network
(HQENN) to predict future hourly load consumption. Ertugrul et al. [42] presented a
novel prediction approach based on an RNN and extreme learning machine (ELM). The
proposed work aims to predict electricity consumption to facilitate policy makers formulate
policies according to electric consumption prediction statistics. Mandal et al. [43] applied
basic ANN to forecast electric consumption by clustering similar days consumption profile
using hourly electric consumption and temperature as an input. Similarly, in [44], the
authors employed a novel sequence-based LSTM (S-LSTM) to predict electric consumption
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and achieved promising results compared to simple LSTM. In [45], the authors proposed
a novel deep learning-based framework for improving the prediction accuracy of short
term electric load forecasting. Another study employed CNN and deep CNN along with
LSTM.The authors [46] formulated a novel approach based on a hybrid of ANN with
an evolutionary algorithm called as Follow The Leader (FTL) to predict short-term load.
The proposed hybrid scheme provides optimal parameter tuning for neural networks,
thus improving learnability and predictive performance. In [47], the authors presented a
sister forecasters-based short-term load forecasting approach. The proposed framework
presented a family of prediction models called sisters having the same model structures
but a different variable selection process. The authors proposed a bi-directional LSTM
model to predict short term load of electricity in smart grid to support peer-to-peer energy
trading [48].

Several studies proposed statistical-based prediction models to predict short-term
electricity consumption of residential buildings. In [49], the authors proposed a Kalman
filter (KF) based method for short term electric load forecasting. The proposed method
employs state-space combined with fuzzy rule-based logic. Experiments conducted with
a real dataset comprised of load and weather data demonstrating MAPE of 0.7 percent.
Similarly, in [50], the authors proposed an hourly load forecasting approach employing
Kalman filter and the adaptive neural-fuzzy inference system (ANFIS). In [51], the authors
also presented a Kalman Filter -based method to forecast short term electric load forecasting
for power systems. Experimental results suggested that KF is an excellent choice for six
hours ahead of forecasting. The authors proposed a novel electric load forecasting and
analysis framework based on ensemble KF and multiple regression method [52]. This
approach was based on state-space load modeling and ensemble Kalman filtering for
state estimation. In [53], the authors developed a framework for monthly load forecasting
using a hybrid empirical mode decomposition and state-space model. The proposed work
optimizes the parameters of state-space models using Kalman Filter.

Table 1 summarizes the existing prediction models proposed by different researchers
to predict short-term energy load to facilitate policymakers.

Table 1. Summary of the existing energy forecasting models.

Model Dataset Types of Prediciton MAPE (%) Objective

Ensemble [1] Weather and
Time-Series Data

Heating and cooling energy
consumption (Non-Residential) 4.97 Ensemble model to deal with multi-dimensional complex data

AR [3] Weather and
Time-Series Data

Overall energy consumption
(Non-Residential) 6.10 Forecast energy hourly load of non-residential buildings using

ARIMA and NN

Hybrid [30] Energy consumption
and building details

Overall energy consumption
(Residential Single Family) 5.30 Integrated data-driven method with a physical model to forecast

hourly and daily energy consumption

ANN [28] Weather, Time-Series,
and Operational

Commercial buildings energy
prediction 9.09 Developed ANN-based energy forecasting model to predict

short-term energy consumption

DBN [37] Time-Series Electric power systems of
Macedonian 8.6

Developed DBN model to predict short-term electricity load
and analyzed electricity consumptions of Macedonia city to
extract hidden insights

FCRMB [38] Time-Series Energy Demand Consumption
(Multifamily Residential) 8.60 Stochastic models were developed to analyze time-series data

of energy consumption to forecast short-term energy load

HQENN [41] Weather and
Time-Series Predict electricity load – Evolutionary technique is used to develop robust ANN model to

forecast short-term energy load

RELM [42] Time Series electric
consumption data Electric load forecasting Developed RLEM model to forecast energy consumption load to

facilitate energy providers
S2S LSTM
architecture [44]

Historical electric
consumption data Short term load forecasting – Deep learning based approach was proposed to predict power

load to facilitate policymakers.

ANN-FTL [46] Historical load and
weather data

Short term load forecasting
for load commercial market 3.30 Evolutionary algorithm was used to predict power load to help

power distribution organizations

To the best of the authors’ knowledge, all of the mentioned prediction models at-
tempted to forecast short-term energy consumption using DL or statistical models. None of
the aforementioned studies attempted to combine DL and statistical techniques to predict
short-term energy consumption to facilitate energy strategists. Therefore, it is the first-ever
attempt to combine LSTM and KF to predict short-term electricity consumption using real
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data of multi-family residential buildings, South Korea. The combination of LSTM and
KF can achieve superior performance, fast convergence, and the least error consumption
prediction. The proposed ensemble prediction model will facilitate energy policymakers to
control and plan electricity demands and supply.

3. Proposed Ensemble Prediction Approach Based on Learning to Statistical Model

This section presents a proposed ensemble prediction approach based on learning to
statistical model in order to accurately predict electric consumption requirements. Efficient
building energy management requires accurate electric consumption prediction. Noisy
sensor readings, weather changes, and variability in occupant energy use behavior makes
electric consumption prediction a challenging task and sometimes results in poor prediction
accuracy. Traditional methods are not able to get the desired level of accuracy and suffer
from over fitting; these methods learn the data patterns from scratch, thus creating a com-
plexity in correlation among the variables. All of these issues can be solved by an ensemble
sequential learning to statistical model. Therefore, we proposed an ensemble learning
to statistical (LSTM-Kalman Filter) prediction model. The architecture of the proposed
ensemble model is depicted in Figure 1. Figure 1 shows building electric consumption data
along with temperature and humidity being fed to both stochastic (LSTM) and heuristic
(Kalman filter) algorithms. The input features are electric consumption for past k sequences,
time stamp, temperature, and humidity. Each day consists of 24 hourly readings along with
the other parameters, making a 27-dimensional sample space. Before training the models,
the data are preprocessed and normalized to get better prediction accuracy. After data
preprocessing, the data are fed to the training algorithms to get prediction results. After
getting prediction results, we applied the aggregated mean as a combining mechanism
to produce final ensemble model results. In this study, we employed LSTM as the base
level model for training; afterwards, KF acts as a meta-model and uses the output of base
model as an input for training. Hence, the electric consumption prediction produced by
LSTM is used as features for the stochastic model. After testing the model with the test
set, performance will be evaluated. In case of poor prediction performance, the models
will be retrained. Model evaluation involves the evaluation of the prediction model using
standard evaluation metrics such as MAPE, MSE, RMSE, and R2 score. Furthermore, our
proposed ensemble learning to statistical prediction model has the ability to estimate states
of a dynamically changing system.

Multistory Building 1

Multistory Building 2

Multistory Building 3

Multistory Building 4

Building Energy Consumption Data

Kalman Filter 
(KF)

LSTM

Stochastic 
Algorithm 

Heurastic 
Algorithm 

Energy 
Consumption 

Data

Energy
 Consumption 

Data

Combinator 
(Aggregated 

Mean)

Prediction
Results 
using KF

Prediction
Results 
using 
LSTM

Combining 
Techniques Mean Square Error (MSE)

Root Means Square (RMSE)

Mean Absolute Percentage 
Error (MAPE)

R2 Score

Performance Analysis 

Ensemble 
Model 
Results

Prediction Results using LSTM

Prediction Results using Kalman Filter

Figure 1. Basic flow of the proposed ensemble prediction model.

Proposed Ensemble Prediction Model Architecture

This subsection presents architecture of the proposed ensemble prediction model. The
following Figure 2 presents the architecture of the proposed ensemble prediction model to
predict short-term demands of energy consumption for residential buildings. The proposed
model architecture consists of the following steps: acquisition of residential energy con-
sumption data, preprocessing of energy consumption data, time-series analysis (including
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hourly, daily, weekly, monthly, and seasonally), data normalization, data splitting into
training and testing subsets, training and testing of ensemble model based on LSTM and
Kalman Filter, and performance evaluation.

Multistory Residential Building Energy Consumption Data

Data Preprocessing

Data Fusion Handling Missing ValuesRemove Duplicate Records

Data Analytics 

Hourly Analysis 

Weekly Analysis 

Daily Analysis Monthly Analysis

Yearly Analysis Seasonally Analysis 

Data Normalization 
(Min-Max Normalization) 

Training Data Testing Data

Performance Evaluation 

MAE RMSE MAPE R2 Square 

Kalman FilterLSTM 
Model 

Validation

Hyperparameters Tunning  

Validating

Validation 
Error

Updated
 Hyperparameters

Trained LSTM 
Model

Trained

Training LSTM Model

Prediction 
Results

Testing Model

Predicted Energy 
Consumption 

Prediction Results

Performance Analysis 

Time Series Data

Preprocessed Data

Normalized Energy
 Consumption Data

Data Splitting 

Ensemble Prediction Model

Testing 
Data Samples

Training 
Base Learner 

Testing 
Data Instances

Building 1 Building 2 Building 3 Building 4

Model Building  

Combinator

Outcome

Figure 2. Proposed ensemble prediction model architecture.

The dataset consists of electric consumption data corresponding to the timespan of one
year starting from 1 January 2010 to 31 December 2010 along with time stamp information.
Data are collected using smart meters, and weather data are provided by KMA. In the
preprocessing step, missing values are handled, duplicated values are removed, and data
fusion is done in order to help the model achieve better accuracy and improvable model
training. Next, we performed time-series analysis to get a clearer picture of the collected
data, and some basic statistics are calculated to get the insight of the data distribution. In
this paper, we performed different time-series analysis, such as hourly, daily, weekly, yearly,
and seasonal data analysis, to analyze hidden insights of the given data. Due to a large
amount of consumption data, data normalization is done to make sure weights and biases
achieve convergence. In the data normalization step, we use the min-max normalization
technique to normalize data in some defined range [0,1] to avoid data skewness. As LSTM
is sensitive with regards to input scaling, therefore we normalized the data through scaling
the features using min-max normalization. The data splitting step is used to divide the
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given data into training and testing sets. In this paper, we use a standard split ratio of
70/30; 70% of data instances are used for the training model and remaining data/days are
fixed for validation and testing. The next step is used to discuss an ensemble prediction
model based on LSTM and KF. LSTM acts as a heuristic learner which learn patterns from
hourly electric consumption to predict short-term energy consumption demands of the
residential buildings, whereas KF acts as a stochastic algorithm that is used to process
the training filtering problem and works by estimating states by the reduction of average
distance between data and its curve, although it only stores the result computed from the
previous step. Besides being beneficial, another aspect of the Kalman Filter is that it relies
on the dynamic model because reason because LSTM is used as they both complement each
other to overcome certain issues that exist in each of them separately. An aggregated mean
is used to combine prediction results of the LSTM and KF. Integration of LSTM and KF not
only eliminates its dependency on the dynamic model but also facilitates learning from
the data. Moreover, it also increases the ability of electric consumption prediction in the
Kalman filter. Finally, we use different performance measures to evaluate the performance
of the proposed ensemble prediction model, such as MSE, RMSE, MAPE, and R2 Score.

4. Time Series Analysis of Building Energy Consumption Data

This section presents time-series analysis to investigate hidden insights of the energy
consumption data. The time series analysis of building electric consumption has enabled
us to analyze the load signals with respect to time as a series of hourly, daily, weekly, and
seasonal predictions.

4.1. Residential Building Energy Consumption Data

This study is conducted on a real dataset consisting of electric consumption data
collected from a residential building to forecast the electric consumption. The acquired
dataset consists of four residential multi-family buildings. Each residential building consists
of 33 floors. Data have been recorded on an hourly basis for each apartment. Each building
has different families (having unique characteristics) residing in each apartment. This
dataset is recorded at an hourly temporal granularity. Data are collected using smart
meters; each apartment has one smart meter to record consumption. The input features
consists of historical electric consumption for past k sequences,and time stamp. Each day
consists of 24 hourly consumption readings and the other inputs making a 25-dimensional
sample space. The dataset has electric consumption data corresponding to a period of one
year starting from 1 January 2010 to 31 December 2010. Data aggregation is done at the
building level. The collected data were in the form of XML files converted into CSV for
experimental use.

4.2. Data Preprocessing/Cleaning

Data preprocessing is the most vital step for achieving high accuracy, the electric
consumption data and weather related data suffer from missing values. Missing values
if not dealt can be very problematic. Therefore, we filled the missing values by taking
into account adjacent hourly and daily values related to that specific input feature. In the
next phase, we remove the duplicate records to avoid over fitting of the model; first, we
detect them using a technique from pandas library and then drop the duplicated values.
Then, we fused the data to produce a collective integrated data from multiple files for
producing lower error in results. For further preprocessing, we assumed that the data
have noise as many factors may influence the reading. Moving average is considered one
of the widely used methods to deal with time-series data abnormalities [54]. Hence, we
employed moving average to deal with abnormalities. Moving average is calculated as
follows in Equation (1):

y[i] =
1
M

M−1

∑
k=0

x(i + k) (1)



Symmetry 2021, 13, 405 9 of 26

where output signal is represented by y, x is the input, and M represents how many points
there are on average. This method use load average values taken from the same days and
same time in a sequence on similar to same day same time in previous weeks.

4.3. Time Series Analysis

This subsection presents time-series analysis to get a clearer picture of the collected
data, and some basic statistics are calculated to get the insight of the data distribution.
Moreover, time-series analysis is used to gain a perspective over past outcomes and
forecasting future values and analyzing fluctuations in sequence data.

Figure 3 depicts hourly electric consumption data prior to data normalization. The
highest and lowest range for consumption is depicted in Figure 3. Hourly data analysis is
used to reveal hourly load peaks; therefore, it is important for policy makers to plan and
control energy supply and demands. The hourly data consumption fluctuates between
10,000 KWh and 27,000 KWh for all four multi-family residential buildings.

Figure 3. Hourly electric energy consumption data (January 2010–January 2011).

In Figure 4, we can see fluctuations in daily and weekly electric consumption of a
building, weekdays start from Monday and end on Friday, social and working activities
are on the rise during the week day; likewise, the consumption increases. Therefore, we
incorporated holiday label features to separate weekday consumption from non-week days.
Residential load is dynamic in nature, and multi-storied residential buildings have their
own schedule of operations, comfort levels, and occupant consumption behavior. This
is why electric consumption varies as we progress along various time steps. Moreover,
external weather conditions also greatly impact the consumption and performance of the
model, which can be seen clearly in the daily consumption representation.

Figure 4. Daily electric energy consumption data (January 2010–December 2010).
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Similarly, Figure 5 presents weekly analysis to visualize energy consumption data. It
can be observed that the weekly building energy consumption is more stable compared to
commercial context where there is a rise during weekdays due to fixed operating hours,
and the consumption decreases on the weekend. However, the residential context shows
a slight increase during the daytime, and the curve flattens at night due to personalized
energy use and occupants’ comfort levels.

Figure 5. Weekly electric energy consumption data (January 2010–January 2011).

Likewise, Figure 6 presents monthly percentage analysis of electric energy consump-
tion data. It clearly shows the impact of the sparse yet uniform pattern in the monthly
energy consumption. It can be observed that the energy consumption requirements for
January are high as compared to other months.

Figure 6. Monthly percentage analysis of electric energy consumption (January 2010–January 2011).

Figure 7 depicts the time series trends of electric energy consumption. Figure 7a
presents the daily analysis of electric consumption, and the analysis shows a uniform pat-
tern in the daily consumption with majority values lying between 22,500 and 25,000 KWh.
Figure 7b presents how electric consumption is distributed throughout the week. The
weekly patterns show some variations in consumption patterns due to weekends and holi-
days; hence, the peak load hours and off-peak hours have caused fluctuations in electricity
consumption trends. The monthly prediction analysis shows variations in consumption
due to seasonal variations. During the spring and autumn seasons, electricity consumption
is lower due to the limited need for heating and cooling. Similarly, during extreme weather
conditions, the need for heating and cooling with respect to the occupant comfort levels is
reflected in the monthly analysis. The quarterly analysis shows the electricity consumed
during the first, second, third, and fourth quarter. Consumption patterns are high in
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the first and fourth quarters, which show the high consumption share and the rest of all
average consumption behavior quarterly.

(a) Daily Analysis (b) Weekly Analysis

(c) Monthly Analysis (d) Quarterly Analysis

Figure 7. Energy consumption trends based on time-series analysis.

Figure 8 presents seasonal-based percentage analysis of the electric energy con-
sumption. The impacts of seasonal variation can be seen in the corresponding electric
consumption.
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Figure 8. Seasonal-based percentage analysis of electric energy consumption (January 2010–January
2011).

The consumption share of winters is the highest because South Korea has extremely
cold winters; hence, heating appliances increase electricity consumption. Thus, occupants
consume more electricity according to their comfort levels and special needs. Weather
predominantly affects the consumption patterns and thus temperature has a highly negative
correlation with electric consumption compared to humidity, hence seasonal variations
also change consumption profiles. Therefore, a seasonal-based percentage analysis has
been performed to get a clear insight into seasonal based percentage of consumption.
Table 2 summarized seasonal-based percentage analysis of electric energy consumption. It
is evident that Winter has the highest percentage as compared to the other seasons, such
as Spring, Summer, and Autumn. It is also evident that Autumn is the low percentage of
22.60% as compared to other seasons.

Table 2. Season-based percentage analysis of residential building energy consumption.

Season Percentage (%)

Winter 27.20
Spring 24.50
Summer 25.70
Autumn 22.60

This representation has been very effective in our analysis and understanding of the
distribution of the data. The electric consumption data are sparse, yet a seasonal pattern
is evident in the distribution, which motivated us to use it for the generalization of the
sequence based LSTM-Kalman model.

4.4. Correlation Analysis

Correlation analysis lies under the category of statistical methods that measure the
degree of relationship strength and associations between continuous variables (quantita-
tive/continuous). Figure 9 presents the correlation analysis of then extracted time-series
data based on hourly, days of week based, quarterly, monthly, yearly, days of year based,
days of month based, and weeks of year based. The relationship between variables specify
how well they relate to one another such that we can ascertain their future behavior and
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impact. Correlation analysis involves a correlation coefficient that assigns value to the rela-
tionship between variables. The relationship between variables can be negative, positive,
and or no relationship at all. High correlation depicts a strong relationship while weak
correlation value means variables are least related to each another. It is evident from the
figure how electric consumption on particular days is correlated. It can be found that the
day of year feature is contributed more compared to other proposed features. It is evident
that the following features can be eliminated from the prediction process, such as hour,
quarter, month, and year because of low contribution in the model training process.

Figure 9. Correlation analysis of the extracted time-series features.

5. Ensemble Prediction Approach for Efficient Building Energy Management

This section presents prediction models developed to forecast electric consumption of
multi-family storied residential buildings. This paper employed three different models,
such as Long Short Term Memory (LSTM), Kalman Filter, and ensemble prediction model
by integrating LSTM and Kalman Filters to predict energy consumption requirements of
the residential buildings for energy management.

5.1. LSTM Model

Recurrent neural network (RNN) is a special case of artificial neural network (ANN)
designed for extracting hidden patterns from data sequences such as time series data,
text and NLP, etc. RNN is based on time and the sequence of data during that time; as
sequential data have temporal correlations, RNN is a powerful tool to deal with temporal
dependencies. The specialty of RNN is the memory units, which make them perfect for
dealing time series problems. RNN efficiently uses sequential information because each
node is directly connecting to the successive nodes in a layer. Recurrent nets are named
as recurrent because they have feedback looping structures to save information for future
use. These memory units work recursively to calculate new cell states through application
of activation functions on new inputs and old/previous cell states. Information in RNN
circulates in hidden nodes, which helps to find correlations between different events called
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long term dependencies. Theoretically, RNN can utilize information contained in long
sequences; practically, they have the ability to only look back a few steps.

To provide a solution to the problem of vanishing gradient, in order to allow deeper
neural networks and recurrent neural nets to work together practically, we need a mecha-
nism through which we can lessen the number of gradients’ multiplication that are less
than zero. It works by using internal memory state, adding it to the (processed) input so
that the multiplicative effect of smaller gradients is reduced significantly. LSTM possesses
memory cells and gates such as input, forget, and output gate; these gates ensure the
preserving of error that propagates back through layers and continue to learn over various
time steps.

Figure 10 shows the simplified representation of LSTM; in the first step, the network
decides if there is any information that is irrelevant in a particular time step and needs to be
deleted from the cell. Sigmoid function is the one that makes this decision by considering
the present input and the current state and then calculates the function. The gate involved
in step one is known as the forget gate. Basically, it forgets the information that is not
needed or the one that is less important. In the second step, the forget gate decides how
much of this unit adds to the current state; this steps has two functions involved; the first
one is a sigmoid function, and the second one is the Tanh (tangent hyperbolic function). The
first function acts like a filter and decides which values to let in. The tangent hyperbolic
function adds weights to these values. Weights are assigned to values on the basis of
their importance in the current context. The gate involved in this step is called input gate.
The input gate decides which information to let through based on its importance. The
input gate adds some new information to the current input. In the last step, the output
gate calculates the output, involving two layers. One is the sigmoid layer that makes a
decision about which cell parts/states will be output. Then, the cell states values are passed
to a tangent hyperbolic function to push them between (−1 +1) and then the answer is
multiplied to a sigmoid gate output.
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Figure 10. Simplified representation of LSTM.

5.2. Kalman Filter

Kalman Filter (KF) is a stochastic algorithm that is used to estimate the dynamic
system states through noisy readings, which make it a multi-functional algorithm both as a
predictor and an estimator. During each time step, the network requires all information
up to the present point including derivatives computed since learning began (from the
first iteration). It provides estimation of current value based on previous estimate reading
and the most recent reading. Figure 11 is used to represent the basic flow of the Kalman
Filter. Basically, KF has two modules: one in prediction (state variable estimation) and the
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other is correction (state variables correction). KF can be modeled mathematically using
the following equations [11].

MC=control variable matrix

PSN= noise in forecasting

PNC= noise covariance in process

L,M=  adaption matrices 

CM= Conversion matrix

IM= Identity matrix 
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Figure 11. Basic flow of KF.

The step-by-step formulation process of KF is shown to predict electricity consumption
of multifamily residential buildings to facilitates policy-makers. The following Equation (2)
is used to predict a new state based on the previous state:

I′ = L ∗ Ik−1 + MCk + PSNk (2)

The prediction of a new state is done on the basis of the previous state (I0 and P0) and the
output of a physical model with a correction term added in the prediction error in the form
of predicted state noise and process noise covariance error so that error is minimized. MC
represents a control variable matrix while PSN is noise in prediction, i.e., (process state
noise). The next step is calculated as defined in Equation (3):

P′k = L ∗ CFk−1LT + PNCk (3)

where PNC represents noise covariance levels (estimated error) in a particular process, L
represents the state transaction matrix, and LT is used to indicate the transpose of the state
transaction matrix. CFk represents the last instance of the covariance factor. Using KM, we
are able to calculate the likelihood function of error in prediction, which is further utilized
for the system’s unknown (future consumption behavior) parameter estimation.

Kalmangain is calculated in phase two, called the correction of state variables phase
using the measurements from an input, such as electric consumption state and noise level
measurements. In this study, Kalmangain plays a significant role as it can significantly
influence the performance of KF in controlling behavior. It is updated using iteration based
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on the conversion matrix and estimated error in the measurement process. The Kalmangain
is defined as shown in Equation (4):

Kalmangain =
P′k ∗ CT

m

Cm ∗ P′kCT
m + R

(4)

where Cm represents conversion (observation) matrix, CT
m represents transpose of observa-

tion matrix, and R indicates the estimated error in the prediction process.
Kalman gain makes the decision of more weight assignment to any one of them:

estimate or measurement. After Kalman gain computation, we update the states and
covariance error using the following Equations (5) and (6). Let ECt represent the recent
consumption of energy at time t. Then, we can use Equation (5) to predict the actual energy
consumption of multi-residential buildings to facilitate energy providers for effective
policy-making:

Ik = I′k + Kalmangain(ECt − Cm ∗ I′k) (5)

and finally Equation (6) is used to update covariance factor CFk for the next iteration
(observation):

CFk = (IM− Kalmangain)PCM′k, (6)

where Ik represents state matrix and CFk represents covariance error states as the output.

5.3. Proposed Ensemble Prediction Model

This subsection presents flow of the proposed ensemble prediction approach. Figure
12 presents basic flow of the proposed ensemble prediction model. The proposed ensemble
approach is comprised of different steps, such as acquisition of electricity consumption
data, preprocessing and normalization of data, training and testing ensemble model, and
evaluation of the proposed model using different metrics. The first step for learning to
prediction is data acquisition. The experiments have been performed on a real electric
consumption dataset acquired from four multi-storied multifamily residential buildings
situated in South Korea. Data preprocessing is a critical step that directly influences the
model performance and results make data ready for model building; the first step is data
preprocessing, so that optimal model performance can be achieved. Preprocessing data
are a multi step process; each step has the same goal of building the best predictive model.
For our model, we normalized our data by scaling it in a specified range as it is important
to scale the data before model training so that the difference in attributes could be well
adjusted. After data normalization, we split our data into training and test sets. Training
set is further supplied to the LSTM model to learn the complex input to output mappings.
While the test set is for model evaluation, actual case predictions from the training data
model are acquired on the testing data set inputs and are kept for comparison with test
set outputs so that performance can be evaluated. After training the model, the validation
step comes. It is another way to evaluate the model on unseen data and ascertain how well
the model behaves in an average case or how well the generalizability holds. After model
validation error is calculated we tune the model hyper-parameters in such a way that error
is minimized. Once the desired error threshold is attained, the learning process is stopped,
and the resulting data are sent to the combinator where the results are combined with KF
prediction results. The test data is also fed to the KF with the purpose of optimal parameter
estimation of variables. It has the ability to predict the error covariance in the prediction
process and state ahead by computing the Kalman gain. Basically, KF aids the process
of acquiring reliable estimates based on observed sequential data. The estimated energy
consumption output is sent to the combinator where it is combined with the LSTM output,
and the aggregated mean is calculated. Lastly, the system outputs the final short-term
electric energy prediction based on which the performance analysis is done using MAE,
RMSE, MAPE, and R2 score.
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Figure 12. Basic flow of the proposed ensemble prediction approach.

6. Experimentation Environment, Results, and Performance Analysis

This section presents experimentation environment, short-term energy prediction
results, and performance analysis.

6.1. Experimentation Environment

This subsection discusses the experimentation environment of the proposed ensemble
prediction model based on the learning to statistical approach. The development of pro-
posed models is done using Python programming language. Moreover, preprocessing of
data and regression analysis is completed using a library called scikit learn. Pykalman and
predict function in KF have been applied to attain electric consumption prediction. Table 3
presents the implementation setup of the proposed ensemble prediction model.

Table 3. Experimentation setup of the proposed ensemble model.

System Components Description

Operating System Microsoft Windows 10 (64-bits)
CPU Intel® Core™ i5-4300 CPU at 3.40 GHz
RAM 16 GB
Programming Language Python
Storage MySQL and MS Excel
IDE PyCharm Professional

6.2. Short-Term Energy Consumption Demands’ Prediction Results

This subsection presents energy prediction results obtained using KF, LSTM, and
the ensemble prediction model. KF is used as a stochastic model to forecast the hourly
electric consumption and is expressed in terms of a linear function of inputs. It uses the
past electric consumption data in order to estimate the parameters of the model. The
experimental results presented in Figure 13 clearly depict that the independent Kalman
model performs slightly worse than other solutions due to its dependency on the dynamic
model. Moreover, due to diversity in human behavior, the electric consumption patterns in
multistoried residential apartments are highly dissimilar; therefore, the trained model is
behaving differently on the test set, and the error becomes high in that case.
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Figure 13. Comparative analysis of actual and predicted hourly energy consumption requirements
using KF.

Figure 14 shows the daily prediction of the electricity consumption by LSTM. We can
analyze from the results of statistical measures that performance of the independent LSTM
model is better than the independent Kalman model. It is evident that the LSTM model
performed well and provided accurate electric consumption prediction as compared to the
Kalman Filter. The overall performance of the LSTM prediction model in terms of MAE,
RMSE, MAPE, and R2 score is 557.96, 695.552, 3.925, and 0.956, respectively. The core
reason for LSTM to outperform the Kalman-filter prediction model is due to its ability to
learn the sequential behavior of the electric consumption; moreover, they are more efficient
at the learning context for predicting electricity consumption.

Figure 14. Comparative analysis of actual and predicted hourly energy consumption requirements
using LSTM.

Similarly, Figure 15 presents the comparative analysis of the actual and predicted
electric consumption yield by the ensemble prediction model based on the learning to
statistical approach (combined using Mean). It is evident from the results that there is a
significant improvement in prediction performance, and the model has produced more
stable results (MAPE and R2 scores) compared to independent models. The performance
of the model is attributed to the dynamic adjustment capability of the Kalman Filter. The
prediction performance of the ensemble prediction model in terms of MAE, RMSE, MAPE,
and R2 score is 373.58, 487.0, 3.264, and 0.966, respectively. Hence, the ensemble prediction
model provides a better fit and generalization to data and also increases the overall perfor-
mance of the prediction model in terms of R2 score as compared to independent KF and
LSTM models.
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Figure 15. Comparative analysis of actual and predicted hourly energy consumption requirements
using the proposed ensemble prediction model.

Lastly, Figure 16 presents an overall comparative analysis of the proposed hourly
energy consumption prediction models. The following Figure 16 presents a comparative
analysis of actual and predicted consumption of the electricity produced by the ensemble
prediction model, independent Kalman Filter, and independent LSTM.

Figure 16. Comparative analysis of proposed hourly energy consumption prediction models.

It can be observed from the values of statistical measures that the ensemble model
performs far better as compared to counterpart independent prediction models. Experi-
mental results prove that the proposed ensemble prediction approach yields better hourly
consumption prediction results because of the integration of the learning module, as it
continuously monitors and improves the outcome of the prediction module by tuning the
Kalman gain (R) parameter; furthermore, it also proved that the ensemble LSTM-Kalman
model is more robust and can yield superior performance by reducing over-fitting, while
controlling and minimizing the variance of prediction errors caused by the individual
contributing prediction models.

6.3. Feature Importance

For analysis of features and their impact on the output of the prediction model, we
attempted to efficiently portray the features and their corresponding scores based on their
usefulness and impact on the target variable. Feature importance analysis plays a vital part
in the provisioning of data insights, which further facilitates the data analytics’ process
flow such as dimensionality reduction and feature selection so that an improved predictive
model can be built. Feature analysis can help understand data and the model in a more
appropriate way, enhancing the feature selection process such that the number of features
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that are least important are not considered. Figure 17 presents feature importance analysis
using conventional ensemble models.

(a) Feature importance using  RF model (b) Feature importance using  XGBoost model

(c) Feature importance using  AdaBoost model (d) Feature importance using  GB model

Figure 17. Features’ importance analysis using conventional ensemble models.

In the following Figure 17a, RF based feature importance shows that the day of the
year feature is the most important among all the features. While the second highest score
is achieved by the day of the week feature. Figure 17b depicts the proposed feature
importance based on XGBoost; it is evident that the week of the year feature has attained
the highest score and is hence the most impactful feature on the target variable compared to
the other features. While the quarter features have the lowest score and the least importance
among the rest of them. Proposed feature importance based on Adaboost depicts that week
of the year and day of the year are highly important features while day of week holds the
third position based on feature importance score. The GB based feature has similar results
compared to XGBoost features, the week of the year has achieved the highest scores, the
day of the year features achieved the second highest score, and the day of the week has
maintained the third position as in case of XGBoost-features. Overall, the week of the year
was found to be the most influential feature among all eight features.



Symmetry 2021, 13, 405 21 of 26

6.4. Performance Evaluation

This subsection presents an overview of various performance measures employed
in the proposed work; these include MSE, RMSE, MAPE, and R2 score, to evaluate the
performance of the implemented prediction models. Accuracy of electricity consumption
prediction can be determined using various measures. A low error value means more
accurate predictions. Hence, accuracy measures the difference between actual output
and predicted output. Generally, testing and comparing various prediction models and
approaches, using a similar dataset, every accuracy measure will produce different results
and hence different performance. To compare the results with other techniques, mean
absolute error (MAE), mean absolute percentage error (MAPE), R2 score, and root mean
square error (RMSE) are the selected pewrformance evaluation metric used for performance
evaluation of models [55,56].

The scale dependent measure we applied to evaluate our model is MAE and RMSE:

MAE =
n

∑
k=1
|yk − ŷk| (7)

Root mean square error (RMSE) is also a scale dependent accuracy measure; we
applied it depending on squared error:

RMSE =

√
∑n

i=1(Yi − Ŷi)|2
n

(8)

Percentage dependent accuracy measures employ the percentage concept, where 100
is multiplied with prediction error/actual output observation at the time; this measure of
accuracy is scale independent and measures the prediction values independent of the data
set used; hence, we can compare the performance of different methods using this. This
accuracy measure is the most useful and widely used accuracy measure. MAPE is based
on absolute percentage error calculated for each time period. The actual output minus
the predicted value divided by the actual values give the answer. The formula for MAPE
calculation is as follows:

MAPE =
1
n

n

∑
k=1

(yk − ŷk)

yk
(9)

Another evaluation index used by this study is the determination coefficient which mea-
sures the capacity of model to forecast new data similar to the mean square error; it also
shows how well the model fits to data:

R2 Score = 1−
∑(yobs − ypred)

2

∑(yobs − ȳpred)2 (10)

Figure 18 presents comparative analysis of the implemented prediction models in
terms of MAPE and R2 score. It depicts that our ensemble prediction model has achieved
the highest R2 score of 0.966. The prediction error of the proposed approach is small
compared to other models. It is also evident that the performance of ensemble electric
consumption prediction model is up to the mark due to its ability to map temporal cor-
relations and handle long-term dependencies. Hence, our proposed ensemble prediction
approach outperformed all other implemented models and produced relatively better
prediction results because the proposed ensemble prediction model is capable of managing
the bias-variance trade-off so that error could be minimized.
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Figure 18. Performance evaluation in terms of MAPE and R2 Score.

Similarly, Figure 19 shows a comparison between the proposed approach with tradi-
tional ML models. It is evident from the MAPE scores that the proposed ensemble electric
consumption prediction model performed best comparative to traditional machine learn-
ing prediction models. The proposed ensemble prediction approach achieved the highest
accuracy and lowest MAPE, which further supports the effectiveness of the proposed work
in the domain of electric consumption prediction. The proposed ensemble model achieved
a low error in the prediction process compared to the traditional ML models. As evident
from the figure, the lowest MAPE achieved by our proposed work is attributed to the
choice of LSTM as a learner providing better generalization, controllability, and results
along with KF as an optimal solution by capturing temporal dependencies.

Figure 19. MAPE-based comparison of the proposed ensemble approach and traditional ML energy
prediction models.

Table 4 shows accuracy of hourly predictions; the results illustrate that the ensemble
prediction approach outperforms the rest of the solutions. The prediction performance
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of the ensemble prediction approach in terms of MAPE and R2 score is 3.264 and 0.966,
respectively. Due to diversity in human behavior, external weather conditions, and several
other influencing factors, the electric consumption patterns in multi-storied residential
apartments are highly dissimilar; therefore, the trained model behaved differently on the
test set and the probability of prediction error becomes high in this case. Our proposed
ensemble approach has produced more stable results as compared to proposed independent
prediction models based solution approaches. LSTM also achieved satisfactory results with
the lowest MAPE of 4.64 for hourly predictions because load profiling provisions additional
information to the model and significantly. In simpler terms, we can say that the electric
consumption of a particular hour on a particular day depends upon the consumption of
all the previous hours and days in a series. As there is information contained in every
sequence itself, considering information contained in each sequence is imperative for
achieving optimal prediction performance of the model.

Table 4. Performance evaluation of energy prediction models.

Model MAE RMSE MAPE R2 Score

Kalman Filter 740.790 928.770 5.000 0.922
LSTM 557.960 695.552 3.925 0.956
Proposed Model 373.580 487 3.264 0.966

Table 5 shows performance evaluation results of the proposed electricity consumption
prediction model and conventional ensemble models. This study compared the proposed
prediction model with conventional ensemble models to highlight the significance of the
proposed work. The performance of the proposed LSTM-Kalman model is significantly
better comparative to the traditional ensemble models. The conventional XGBoost model
performed relatively accurately to the AdaBoost and gradient boosting (GB). The R2 score
analysis shows that the proposed prediction model accurately predicts short-term energy
loads compared to the conventional ensemble models, such as XGBoost, AdaBoost, and GB.
Hence, our proposed energy prediction model outperformed the conventional ensemble
models.

Table 5. Performance evaluation and comparison of proposed ensemble approach with conventional
ensemble prediction models.

Model MAE RMSE MAPE R2 Score

RF 2095.669 2624.76 15.54 0.089
XGBoost 2083.946 2623.99 15.48 0.090
AdaBoost 2038.337 2683.314 15.80 0.048
GB 2039.429 2640.467 15.50 0.079
Proposed Model 373.580 487 3.264 0.966

Furthermore, the results produced by our ensemble prediction model are compared
and evaluated with traditional ML-based algorithms as shown in Table 6. The comparative
analysis shows that our proposed model has achieved superior performance in terms
of MAPE comparative to classic machine Learning models. The proposed ensemble
approach acquired the lowest MAPE of 3.264, which proves the strength of our ensemble
electricity consumption prediction model for short-term electric consumption forecasting.
The performance of other well established ML models, such as Lasso (L1), Ridge (L2),
Elastic Net, and XGBoost is comparatively low in terms of MAPE, while the performance
of Support Vector Regressor (SVR) in terms of MAPE is not up to the standard compared
to conventional ML models. Hence, comparative analysis in terms of MAPE makes it
obvious that our proposed ensemble approach produced promising results compared to
the conventional ML algorithms.
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Table 6. Performance evaluation and comparison of proposed ensemble approach with conventional
ML-based energy prediction models.

Model MAE RMSE MAPE R2 Score

SVR 2495.188 3197.90 20.14 −0.352
L1 Regularization 2118.817 2701.68 15.68 0.035
L2 Regularization 2103.325 2788.46 16.46 −0.028
Elastic Net 2159.134 2751.16 15.87 −0.0
Proposed Model 373.580 487 3.264 0.966

7. Conclusions

Electrcity consumption prediction model assist policymakers with assessing the im-
pact of future electric consumption and demand and formulate current and future policies
based on that. This paper presented data and predictive analytics modules to forecast short
term electricity consumption based on a time-series dataset acquired from multifamily
residential buildings, South Korea. First, the time-series based analysis module is presented
to highlight hidden insights and characteristics of the energy consumption data to manage
and control energy supply and demands. Second, an ensemble prediction approach is
proposed to integrate LSTM and KF using an aggregated mean based on a real dataset
of electricity consumption acquired from multifamily residential buildings. The main
contribution of our proposed work is to integrate deep learning and a statistical model
for short-term electricity consumption prediction of multifamily residential buildings.
Furthermore, it aims to facilitate stakeholders to devise effective policies for managing
energy supply and demands to mitigate power outages and blackouts; moreover, it en-
sures prevention of resource wastage. Furthermore, the following performance measures
are used to evaluate the overall prediction performance, such as MAE, RMSE, MAPE,
and R2 score. The comparative analysis illustrates that the proposed ensemble electric
consumption prediction model outperformed counterpart models for short-term energy
forecasting. The comparative results justified the hypothesis made in this study that the
sequence-based model, if integrated with a statistical model like the Kalman Filter, yields
better generalization than the non-sequential models.

A future direction would be applying this technique to various other datasets, through
advance feature selection processes, improved data analytic techniques, improving the
input features (weather and holidays features), and applying some feature selection pro-
cess to achieve more accuracy. Furthermore, we will extend this work to forecast daily,
weekly, and monthly energy consumption at apartment, floor, and residential building
levels. Moreover, we will extend our work to develop a city-wise model over different
geographical areas.
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