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Abstract: In this paper, we apply the multi-class supervised machine learning techniques for clas-
sifying the agriculture farm machinery. The classification of farm machinery is important when
performing the automatic authentication of field activity in a remote setup. In the absence of a
sound machine recognition system, there is every possibility of a fraudulent activity taking place. To
address this need, we classify the machinery using five machine learning techniques—K-Nearest
Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and
Gradient Boosting (GB). For training of the model, we use the vibration and tilt of machinery. The
vibration and tilt of machinery are recorded using the accelerometer and gyroscope sensors, respec-
tively. The machinery included the leveler, rotavator and cultivator. The preliminary analysis on
the collected data revealed that the farm machinery (when in operation) showed big variations in
vibration and tilt, but observed similar means. Additionally, the accuracies of vibration-based and
tilt-based classifications of farm machinery show good accuracy when used alone (with vibration
showing slightly better numbers than the tilt). However, the accuracies improve further when both
(the tilt and vibration) are used together. Furthermore, all five machine learning algorithms used
for classification have an accuracy of more than 82%, but random forest was the best performing.
The gradient boosting and random forest show slight over-fitting (about 9%), but both algorithms
produce high testing accuracy. In terms of execution time, the decision tree takes the least time to
train, while the gradient boosting takes the most time.

Keywords: agriculture; farm machinery; remote sensing; machine learning; classification

1. Introduction

As the world is progressing towards the fourth Industrial Revolution [1], the use of
state-of-the-art technologies, including the Internet of Things (IoT) [2], Machine Learning [3]
and Cloud Computing [4], are becoming mainstream. Agriculture contributes a big chunk
to the world economy [5] and modernizing it can drastically increase the production of
farms, thus causing an overall growth in the world economy. Agriculture modernization
requires the use of agriculture machinery to plant, cultivate and harvest the crops.

The use of the right machinery at the right time is important for getting increased
productivity. Typically, the on-field machinery usage is manually supervised and verified
as the usage process and remote sensing is prone to fraudulent activities. There are various
ways a fraudulent activity could take place. For example, a reservation was made, but the
machinery was never used or only a partial activity was performed. Similarly, a reservation
was made for a specific machinery type, but a wrong machinery was used. There is also a
possibility that no machinery was used at all. This is possible as the machines don’t come
with a remote recognition feature (or mounted devices). To mitigate this and remotely
authenticate the use of agriculture machinery, a two-pronged solution is required. First,
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determine the location and work area of the machinery. Second, determine the farm
machinery type used for activity.

The first problem, which requires the determination of the work area, was solved
using the IoT (GPS), convex hull and AI algorithms. The methods for this are already
published in our previous work [6]. The second problem, which is the determination of
machinery type used, is being addressed in this paper. The solution is sought using the
IoT-backed remote sensing and supervised machine learning algorithms.

Machine learning, together with big data, is revolutionizing agriculture and pro-
ducing better results than before. The classification is performed using neural networks,
K-Nearest Neighbor (KNN) and Naïve Bayes classifier [7,8]. It is used in agriculture for
machinery, crop, soil and livestock management [7]. The Support Vector Machine (SVM)
algorithm has been used for soil texture classification and was found to be helpful in the
choosing of crops [9]. Similarly, decision tree was used in performing the classification
for predictive analysis [10]. These methods are also largely used for the classification of
agriculture activities, including harvesting, bed-making, transplantation, walking and
standstill. Moreover, there are studies on the classification of faults in rotating machinery
using the vibration signals [11–13]. Furthermore, IoT and deep learning techniques have
been used for sensing soil temperature, nutrients and humidity, controlling and analyzing
water consumption [14].

To our knowledge, the machine learning algorithms have not been applied to the
recognition of agricultural farm machinery. If applied, we believe that the modeling work
will be useful for improving agricultural field operations and its remote monitoring. We
are interested in developing a robust classification model that can be used to automatically
classify the farm machinery.

Historically, vibration and tilt have been endorsed as important characteristics of
machines [15,16]. This endorsement was further strengthened by our analysis, where we
collected data about the vibration and tilt of machinery from leveler, rotavator, and cultiva-
tor, and observed that all three types of machinery are distinguishable in terms mean and
standard deviation. We discovered that the deviation between the data is because of the
different vibrations and tilt caused by the machinery during usage. More information on
this analysis is given in Section 4.

We apply five supervised machine learning techniques—K-Nearest Neighbor, Support
Vector Machine, Decision Tree, Random Forest and Gradient Boosting. Our experimental
results reveal that all five machine learning techniques have shown good accuracy when
classifying the machinery type on the vibration and tilt alone. The accuracy improves
further when the vibration and tilt are used together for the training of the models. Out
of the five techniques, the Random Forest showed more than 90% accuracy. The Gradient
boosting and random forest show slight over-fitting (about 9%), but both algorithms
produce the highest testing accuracy.

It is also important to compare the models in terms of execution time. We found the
decision tree as the fastest taking the least time to train, while the gradient boosting was
the slowest (taking the most time to train). Since, the models need continuous re-training
to keep up with accuracy and recognize new patterns, we outline a methodology for
re-training of the models.

The rest of the paper is structured as follows—Section 2 describes the related work,
followed by Data Collection and Processing Framework in Section 3. Section 4 identifies
the features required for classification. Section 5 discusses the classification algorithms
in detail. Section 6 prepares the data for model fitting, applies the machine learning
algorithms and evaluates the models and features in terms of accuracy. Section 7 outlines a
mechanism for the deployment of models on the cloud, and its retraining. Discussion and
concluding remarks are presented in Section 8.
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2. Related Work

IoT and machine learning algorithms have been extensively used in agriculture for
automation and analysis [17,18]. Several recent reviews can be found on the use of classifi-
cation in agriculture statistical analysis [19]. Sharma et al. used a smart phone carried by a
farmer and recorded accelerometer data to perform classification of agriculture activities,
including harvesting, bed-making, transplantation, walking and standstill. The classifi-
cation was performed using neural networks, KNN and Naïve Bayes classifiers, where
neural networks was found to be the most accurate [8]. In the same way, different ma-
chine learning methods have been deployed for soil type classification including naïve
bayes, SVM and deep learning [20–22]. Alternatively, Barman et al. used the support
vector machine learning algorithm for soil texture classification. The classification of soil
texture could be helpful when decide to cultivate the crops [9]. The predictive analysis
was performed using the decision tree [10]. Dan et al. used big data analytics to perform
data analysis on agriculture machinery, saving a lot of considerable time and cost [23].
In another study, the machine learning algorithms were applied towards the classification
of faults in rotating machinery using the vibration signals [11–13]. To predict the growth
of plants and crops, Singh et al. have developed a classification system using differential
evolution algorithms [24]. In another work, Zhao et al. used the vision-based classification
approach to navigate the agriculture machinery for efficiency [25]. The deep learning mod-
els are extensively applied towards the precision agriculture on data collected using the
internet of things [26]. While Eleni et al. have developed a cloud middleware approach to
support precision agriculture with massive data generated from IoT [27]. The recent trends
in sensors and IoT were discussed in detail in the review work of Laura and Lorena [28].
Several IoT architectures are developed for smart agriculture [29–31].

Artificial Intelligence (AI) and cloud computing together with big data is revolution-
izing the agriculture sector and producing better results than before. AI in agriculture
is applied on sensors data for machinery, crop, soil, and livestock management [7,32].
Bhavani et al. proposed an IoT-based agriculture system to overcome the economic losses
by predicting and preventing the harmful diseases affecting the farm [10]. In another study,
Waleed et al. showed the application of IoT in calculation of field activity. They found that
GPS could accurately record the field location and the operation time of agriculture ma-
chinery [6]. In a similar study, a yield monitoring system was proposed to efficiently collect
the GPS data and perform operational analysis of the farm machinery [33]. To analyse the
agriculture machinery operational cost, Sopegno et al. have developed a smart web and
mobile platform called AMACA (Agricultural Machine App Cost Analysis). The applica-
tion could be used on own machinery or to hire an agriculture machinery service [34]. Gard
et al. described the use of IoT and deep learning for sensing soil temperature, nutrients
and humidity, controlling and analyzing water consumption [14]. Prathibha et al. used the
temperature and humidity sensors to monitor the agriculture field. The data from sensors
was transferred to farmers mobile for analysis and storage [35]. To fulfill the demand
of high-quality agriculture machinery, Zhang et al. have devised a design of agriculture
machinery service management system that is based on latest IoT and cloud technology. It
consists of a mobile application and a web server for effective monitoring of the system [36].

3. Data Collection, Storage and Processing

In order to perform the model fitting, we need to collect data on the vibration and
tilt of agricultural machinery. The platform that we have developed for the collection of
data and its processing consists of an IoT module, a smartphone application and cloud
modules as shown in Figure 1. The processing of data happens on the cloud supported by
the event-handlers, data-storage units and machine learning modules. We use Amazon
Web Services for cloud services. Details of each of the components are given below.
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Figure 1. The system architecture diagram showing the Internet of Things (IoT) device, intermediate communication gateways, cloud
processing and archival.

3.1. Iot Module and Mobile Application

We use the IoT Module TI CC2650 Sensor Tag developed by Texas Instruments as
shown in Figure 2. The Sensor Tag has a Bluetooth low energy MCU and several sensors are
mounted on it (IR Temperature, Movement 9 axis (accelerometer, gyroscope, magnetometer,
and humidity, etc.). The main features of the IoT module are lower power consumption
with longer battery life from the lithium battery cell, high performance ARM Cortex M3,
complete development system and extreme flexibility for IoT based applications.

Data from movement sensors (accelerometer and gyroscope) from the sensor tag
are used to generate data for the machine learning algorithms (responsible for machinery
classification). The data consist of 16 bits or 2 bytes for each axis (total 12 bytes). The data are
read using a Bluetooth connection with the service provider smartphone app. The service
provider application on the driver’s smart phone integrates the GPS data (longitude,
latitude), date and time with sensors data coming from the IoT module. After integration,
these grouped data in CSV format are sent to the cloud via 3G or 4G/LTE interface in
the smartphone.
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Figure 2. TI MCU CC2650 Sensor tag (a) Top view without cover (b) Top view with cover (c) Size view with power
button visible.

3.2. The Cloud Data Store and Processing

For all the cloud operations (storage, processing and communication), we use the
Amazon Web Services [37]. The smartphone app records the data from agriculture machin-
ery and sends it to the cloud. The API gateway that receives the data is implemented using
the lambda event-driven functions. The cloud has two storage classes—a simple storage
and relational database [38]. The data from sensors are archived in non-relational storage
also known as S3. The relational database (implemented using the RDS) stores the output
of machine learning algorithms [39].

3.3. Machine Learning Modules

The machine learning modules are hosted on the cloud. It implements several classifi-
cation models. The algorithms are run over the IoT data collected using the IoT module.
The machine learning models process the received data and classify it. The classification
results are outputted to the relational storage. More details about the classification models
are given in Section 5.

4. Features Extraction

Before applying any machine learning techniques, it is important to identify the
distinguishing features of the targeted machines. Our analysis shows that the tilt and
vibration of machinery are distinguishing features that can help train our classification
models. We record the vibration and tilt using the IoT device placed on the machinery.
The IoT device contains two sensors that we will use to train our classification model,
(1) 3-Axis accelerometer (2) 3-Axis gyroscope. The accelerometer is used to measure the
vibrations, and the gyroscope tells us about the tilt.

We are using three types of agriculture machinery—leveler, rotavator, and cultiva-
tor. All three machines are tractor-drawn implement, with different uses and operations.
The system could be scaled up and additional machinery could also be used. For now,
we experiment with the above three machinery types only. We place the IoT module on
these three implements and record the data. The data is recorded at the rate of one sample
per second. After recording sufficient data, a subset is used to analyze and visualize the
readings. The sample is visualized using the matplotlib package [40] of python.

In Figure 3, it can be observed that the data for all three types of the machinery
is distinguishable in terms on vibrations in 3-axis. The cultivator and leveler have low
vibrations, while rotavator is having greater vibrations. For accelerometer, the value of 1
can be represented as 9.8 m/s2 and value −1 can be represented as −9.8 m/s2 (negative
sign represents opposite direction), where 9.8 m/s2 is Earth’s gravity. Each reading is taken
in terms of Earth’s gravity. It can be observed that rotavator readings are mostly greater
than 1 or less than −1, while cultivator and leveler are within the same range. The x-axis
readings for the cultivator is observed to be low. However, the y-axis and z-axis readings
are low for leveler compared to the cultivator.
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(a)

(b)

(c)

Figure 3. 3-axis accelerometer data visualized using the line plots. (a) Cultivator (b) Leveler,
and (c) Rotavator.

We now take a look at the mean and standard deviation for the given sample of data
as shown in Table 1. The mean is the average of readings, while the standard deviation
tells us about the spread of data. It can be observed that there is not much of a difference in
the mean for all types of machinery. However, there are variations in standard deviation.
It is much higher for rotavator compared to other machines. The difference between
standard deviation for cultivator and leveler are also significant. This deviation between
the data is because of the different vibrations caused by the machinery. Figure 4 visualizes
these data points on a scatter plot and further establishes this distinguishable relation.
It can be observed that each machinery data points are distinguishable from each other.
The rotavator data shows more spread, while the leveler and cultivator data points are
more compact. Still, the points could be separated from each other.

The analysis shows a clear opportunity for the machine learning algorithms to classify
the farm machinery based on the vibration and tilt. In Section 5, we discuss the classification
algorithms that we use for the classification of agriculture farm machinery.

Table 1. Mean and Standard deviation values of accelerometer readings along the 3-axis.

Machinery
Readings

Mean
(X-axis)

Readings
Standard
Deviation

(X-axis)

Readings
Mean

(Y-axis)

Readings
Standard
Deviation

(Y-axis)

Readings
Mean

(Z-axis)

Readings Standard
Deviation

(Z-axis)

Cultivator 0.072 0.078 0.059 0.179 −1.022 0.320
Leveler 0.065 0.159 −0.139 0.104 −1.015 0.184

Rotavator 0.071 1.057 −0.070 0.851 −1.165 2.146
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(a)

(b)

(c)

Figure 4. Three-axis accelerometer data visualized in a scatter plot for Cultivator, Rotavator, and Lev-
eler. (a) x-axis vs y-axis (b) x-axis vs z-axis, and (c) y-axis vs z-axis.

5. Classification Algorithms

In this paper, we focus on five multi-class supervised classification algorithms—K-
Nearest Neighbor, Support Vector Machine, Decision Tree, Random Forest and Gradient
Boosting. These types of techniques can also be called algorithm adaptation techniques.
Finer details about each algorithm are given as follows.
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5.1. K-Nearest Neighbor (KNN)

K-Nearest Neighbors is a supervised machine learning algorithm [41]. The data points
are trained corresponding to their class label. The point for which the class is to be predicted
calculates the distance with the nearest ‘K’ points, where K could be any number. The dis-
tance is calculated using the Euclidean distance formula. The label for the highest number
of K Nearest points is determined as the predicted class. In agriculture, the KNN algorithm
was found to be very effective for the classification of different grains/grain cultivars.

5.2. Support Vector Machine (SVM)

Support Vector Machine is a supervised learning algorithm that classifies data based
on the separator(s) [42]. The separator(s) is hyperplanes, which distinguishes the data
based on the training class labels. For example, in a two-dimensional space where two
data variables are present, the hyperplane could be a line dividing the plane into two
parts where each class lays on either side of the line. A similar analogy is followed for
higher dimensions where data points are separated by hyperplanes. Essentially, SVM is
about finding hyperplanes that best separates the data classes. The predicted classes in
SVM are made according to the side of the hyperplane where the data point falls. Support
vector machine is a kind of structural risk minimization based learning algorithms. As a
popular machine learning algorithm, SVM has been widely used in many fields, such as
information retrieval and agricultural, for crop and soil classifications [22].

5.3. Decision Tree (DT)

Decision Tree is a supervised learning algorithm primarily used for classifications [43].
The basic intuition behind a decision tree is to map out all possible decision paths in the
form of a tree. It forms a flow chart like tree structure, where each node denotes the test on
attribute, and each branch represents the outcome of the test. The end-node (terminal node)
holds the class label. Every time a class is to be predicted the data features pass through
a certain decision path and class label is predicted at the terminal node. This technique
is capable of dealing with both complete and incomplete data. And is applied into the
classification problem for all kinds of agriculture datasets.

5.4. Random Forest (RF)

Random Forest is a supervised learning algorithm that uses ensemble learning tech-
niques to make a strong classifier based on weak classifiers [44]. This bagging method
is used to train the models, and this is responsible for an increased performance. As the
name suggests random forest is a forest of decision trees, random forest builds multiple
decision trees which work as a weak classifier and results of each weak classifier (decision
tree) is merged together to make a strong classifier, in parallel. Random Forest Random is
widely used in crop classification and has the ability to predict crop yield corresponds to
the current climate and biophysical change [45].

5.5. Gradient Boosting (GB)

Unlike Random Forest (which is a bagging method), the Gradient Boosting is a
supervised learning ensemble method that uses boosting method for training [46]. It uses
weak classifiers to train in a sequential manner rather than in a parallel manner. The output
of first weak classifier is given to the second weak classifier. This way, the mis-classified
data points of the first are improved in the second. The practice is continued till the number
of weak classifiers are made in sequence. The weak classifiers are then merged together
to form a strong classifier. In gradient boosting, the loss function of the weak classifier is
optimized, using a learning rate and the next classifier has a decreased loss. It is widely
used in agriculture for area estimation and irrigation planning [47].
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6. Implementation and Tuning of Models
6.1. Data Preparation
6.1.1. Dataset

Initially, we train and test our models on a dataset of a total of 14,488 data points.
The data are recorded at a frequency of one sample per second. The provided sample
dataset includes 3-axis accelerometer and gyroscope data along with the label for machinery
type as shown in Figure 5. Initially, we train our model for three machines only (cultivator,
leveler and rotavator). However, this system could be expanded and more machines could
be added.

Figure 5. Sample of data collected using IoT module showing 3-axis accelerometer (ax, ay, az) and 3-axis gyroscope (gx,
gy, gz).

6.1.2. Data Pre-Processing and Normalization

The data require pre-processing to make it suitable for model fitting. As the nature of
the data is numerical continuous, we need to normalize each feature. This way, each feature
will be equally represented (having an equal weight). The goal of normalization is to bring
all features to a common scale without affecting their unique patterns [48]. The data are
split into two parts—training-set and testing-set. The training-set is used for training our
machine learning models, while the testing-set is used for evaluation of the trained models.
As a known procedure, we split the data with a 70:30 ratio, with 70% of the data used for
training, and 30% used for testing.

6.2. Implementation and Tuning of Models

To apply classification algorithms to our data, we used an open-source package avail-
able for python called Scikit-learn [49]. Scikit-learn is an all-in-one package for machine
learning, which helps us pre-process our data, implement various machine learning algo-
rithms and evaluate them. We implement five machine learning models and compare them
in terms of accuracy and training time.

6.2.1. Tuning of Models

The Hyperparameters are properties that govern the entire training process. Manually
tuning hyperparameters is a time-consuming process and very hard to keep track of. It
is important to remember the hyperparameters that have been tried and the one that has
not been. Grid Search is an algorithm used to automate the process of finding optimal
hyperparameters of certain machine learning algorithm. Grid Search is given a list of
parameters, which are tested one-by-one and optimal parameters are found. Grid Search
uses cross-validation technique to validate the models in terms of accuracy.

In Table 2, we have applied Grid Search using GridSearchCV function available in
Sklearn. The process involves the tuning of parameters for the chosen ML algorithms.
Starting with KNN, the K-nearest neighbors was tuned, and the best value was found to be
6. For SVM, the best-performing kernel RBF was selected and the hyperparameters C and
Gama were tuned. Both were found to have an optimal value of 1.

For decision tree, we used the Grid Search to specify the depth of a tree. The optimal
accuracy was determined at 15. For Random Forest, the number of estimators (weak
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learners) were tuned, and 50 estimators showed a promising result. The gradient boosted
trees had an optimal depth of 8, and the optimal learning rate was found to be 0.2.

After finding the best parameters, we evaluated each model in terms of accuracy.

Table 2. Tuning hyperparameters of Machine Learning models using GridSearchCV.

Algorithm Parameters Tuned Best Parameters

KNN Number of Nearest Neighbors (K) K = 6

SVM
Kernel

Cost of Misclassification (C)
Kernel Coefficient (Gamma)

Kernel = Radial Basic Function
C = 1

Gamma = 1
Decision Tree Maximum Depth Maximum Depth = 15

Random Forrest Number of Estimators Number of Estimators = 50

Gradient Boosting Learning Rate
Maximum Depth

Learning Rate = 0.2
Maximum Depth = 8

6.2.2. Choosing Best Classification Model

The five classification machine learning algorithms are compared in terms of accuracy
and execution time when trained on the dataset mentioned in Section 6.1. Table 3 and
Figure 6 provides the results, including training and testing accuracy. The figure also shows
the training time for each algorithm. It can be observed that all the algorithms have a
training accuracy of more than 90%. The testing accuracy of Decision Tree, SVM and KNN
is less than 90%. The decision tree model is highly over fitted as the difference between the
training and testing accuracy is the largest. SVM and KNN models have less over fitting
compared to others, but the testing accuracy is not the best that we are getting.

The ensemble learning models, including Gradient Boost and Random Forest have a
very high training accuracy. However, the results are slightly over fitted as the gap between
training and testing accuracy is about 9%. Even though there is slight overfitting, both
gradient boosting and random forest produce highest testing accuracy. In Table 3, the
training time taken for each algorithm is also given. The Decision Tree has the lowest
training time while Gradient Boosting has the highest. The reason for high training time for
gradient boosting is understandable as it uses a sequential approach to train weak classifier
and then make a strong classifier.

SVM has the second highest training time, and the accuracy compared to other
algorithms is not very good either. KNN and Random Forest both have a reasonable
training time. Keeping in view the accuracy as well as the training time, we conclude that
Random Forest is the best-performing algorithm in our case. It is important to note that the
current algorithm’s performances are case variant. We may get different results with these
algorithms trained on another dataset. Therefore, our classification model may require
constant retraining with more data in hand to generalize the classification time to time.

6.2.3. Evaluating Important Features

The proposed research work analyzes the features of gyroscopes and accelerometers
and takes a look at which feature has the most impact on the accuracy of our models.
For this, we trained the algorithms on gyroscope and accelerometer data separately and
then compared the results. This way, we figured out which data feature is the most im-
portant. Tables 3 and 4 provide an overview of how much accelerometer and gyroscope
contribute to the machinery classification accuracy. Each sensor data is trained separately
on the five algorithms. It can be observed in Figure 6, that the testing accuracy for ac-
celerometer on all algorithms is between 82–85%. For gyroscope, shown in Figure 7, it is
significantly low (between 68–72%). It is clearly visible that the 3-axis accelerometer is a
more important feature for classification than the gyroscope. Though, the training time for
the accelerometer is slightly higher compared to the gyroscope.
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Table 3. Training and testing accuracy of tuned models on 3-axis accelerometer data only.

Algorithm Training Accuracy
(Percent)

Testing Accuracy
(Percent)

Training Time
(Seconds)

KNN 87.03 85.02 0.811
SVM 85.36 84.26 2.98

Decision Tree 89.61 82.79 0.088
Random Forrest 99.71 84.44 6.66

Gradient Boosting 99.99 85.09 0.980

87.03 85.36
89.61

99.71 99.99

85.02 84.26 82.79 84.44 85.09

0

20

40

60

80

100

120

KNN SVM Decision Tree Random Forrest Gradient Boosting

Training Accuracy (Percent) Testing Accuracy (Percent)

Figure 6. Comparing algorithms in terms of training and testing accuracy trained on 3-axis accelerometer data only.

Gradient Boosting and Random Forest are both over fitted. For accelerometer, the over
fitting is smaller compared to the gyroscope. The Decision Tree, SVM, and KNN do not
show overfitting for both features. Table 5 and Figure 8 shows that the testing accuracy
increased when gyroscope and accelerometer are used in combination (for classification).
We are getting testing accuracy between 85–92%, which is very good compared to gyroscope
or accelerometer alone.

Table 4. Training and testing accuracy of tuned models on 3-axis gyroscope data only.

Algorithm Training Accuracy
(Percent)

Testing Accuracy
(Percent)

Training Time
(Seconds)

KNN 73.72 71.75 0.917
SVM 72.18 71.54 5.21

Decision Tree 77.24 68.62 0.0781
Random Forrest 96.80 68.41 7.7

Gradient Boosting 99.93 69.79 1.28
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Figure 7. Comparing algorithms in terms of training and testing accuracy trained on 3-axis gyroscope data only.
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Figure 8. Comparing algorithms in terms of training and testing accuracy trained on 3-axis accelerometer and gyro-
scope data.
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Table 5. Training and testing accuracy of tuned models on 3-axis accelerometer and 3-axis gyro-
scope data.

Algorithm Training Accuracy
(Percent)

Testing Accuracy
(Percent)

Training Time
(Seconds)

KNN 91.96 88.58 1.34
SVM 93.15 89.37 4.02

Decision Tree 97.67 85.89 0.113
Random Forrest 99.99 91.74 1.5

Gradient Boosting 100 91.51 11.7

6.2.4. Evaluation on Different Data Set

To further highlight the strength of our classification model, we tested the data col-
lected in a different agriculture field using another set of machines (leveler, rotavator
and cultivator).

It can be observed in Table 6 that our classification model has made correct predictions
for all six datasets. The predictions were right, regardless of the number of data-points.
A low number of data-points also showed good results. However, our assumption is that a
very low number of samples in excess of 100 or less may misclassify, as it might not contain
enough information for the classification model. When the model starts misclassifying
occasionally, we might also need to update our model by retraining it to the variations in
the new datasets.

Table 6. Machinery classification model predictions.

Sample Number of Data Points Original Class Predicted Class

Sample 1 1253 Cultivator Cultivator
Sample 2 264 Cultivator Cultivator
Sample 3 2076 Rotavator Rotavator
Sample 4 779 Rotavator Rotavator
Sample 5 1643 Leveler Leveler
Sample 6 315 Leveler Leveler

7. Deploying and Retraining Classification Model

After evaluating the classification models on a sample dataset, we figured that the
Random Forest is the best performing. Now, the selected model has to be deployed on
the server to make it available as a service. For this, the trained model is stored in a file.
Every time a classification is required, the stored model is used, thus, saving a lot of time
in training the model repeatedly. We invoke the model using an API gateway specifically
implemented for this service. The gateway is backed by lambda function of Amazon Web
Services (AWS).

With time, the deployed model may become outdated and its accuracy may start
decreasing. This may be because it is not used to the new kind of data being given to it.
For this, we need to retrain our model on some new data. The process of retraining is
elaborated in Figure 9.

Model 

Training/Retraining

Testing and 

Validating Model
Deploying ModelSample Data

New Collected Data

Figure 9. Model training, deployment and retraining life cycle.
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8. Discussion and Conclusions

Many of the agriculture field operations are automated to meet the food demands of
rising global population. Automated field operations are good for increasing the overall
field productivity; however, it requires supervision and automated work estimation. There
is a potential risk of fraudulent activities taking place in remote field supervision. It has
been observed that taking advantage of remote setup or the hope of getting increased sub-
sidy from the government or donor organization, often the wrong (or cheaper) machinery
is being used. In some cases, no machinery is used at all. Given the scope of this work,
the focus of discussion is on the classification of agriculture farm machinery.

The classification of farm machinery was performed using the Machine Learning
algorithms. It was observed that the vibration and tilt of machinery are good indicators for
recognizing a machine. The 3-axis accelerometer was used for recording the vibration and
the tilt was recorded using the 3-axis gyroscope. The sensors were connected to the IoT
device mounted on the farm machinery.

We applied five machine learning techniques (K-Nearest Neighbor, Support Vector
Machine, Decision Tree, Random Forest, and Gradient Boosting) on the vibration and tilt of
farm machinery. As was anticipated, the vibration and tilt both showed significant results
in identifying the farm machinery. However, the vibration-based classification showed
better accuracy (82–85%) compared to the tilt-based classification (showing an accuracy of
68–71%). Interestingly, the accuracy improves further when the vibration and tilt are used
together, showing a maximum accuracy of 91%.

We found that out of the five machine learning techniques that we applied towards
the model fitting, Random Forest showed the most accuracy. The Gradient boosting and
Random Forest showed slight over-fitting, but both algorithms produced the highest testing
accuracies. RF uses a multiple weak-classifier to build a strong classifier, and showed great
promise in classification. It is widely used in crop classification and has the ability to
predict crop yield corresponding to the current climate and biophysical changes. In terms
of the execution time taken in training the model, we found that the Decision Tree was the
quickest taking the least time to train. In contrast, the Gradient Boosting was the slowest,
taking the most time to train.

In order to keep up with the accuracy and enable the new recognition of new patterns,
we have developed a system for retraining. The retraining involves the inclusion of new
data in redoing model-fitting.

The model is useful for the remote supervision of agricultural farm machinery and its
authentication. The model alone will not be enough to avoid fraudulent activities and there
is a possibility that the right machinery is used but the machine may be operational at a
location that was not intended. To solve this problem, our model needs to be coupled with
field recognition and area estimation algorithms.

As part of future work, we would like to apply the unsupervised machine learning
techniques and deep learning and apply different implementations of it. Furthermore, it
will be interesting to train our models on a larger set of machines. Additionally, explo-
ration of other features apart from the vibration and tilt that will be worth the review.
More data could be collected, and models could be retrained to further generalize the
classification process.
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