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Abstract: High-precision and high-density three-dimensional point cloud models usually contain
redundant data, which implies extra time and hardware costs in the subsequent data processing
stage. To analyze and extract data more effectively, the point cloud must be simplified before data
processing. Given that point cloud simplification must be sensitive to features to ensure that more
valid information can be saved, in this paper, a new simplification algorithm for scattered point
clouds with feature preservation, which can reduce the amount of data while retaining the features of
data, is proposed. First, the Delaunay neighborhood of the point cloud is constructed, and then the
edge points of the point cloud are extracted by the edge distribution characteristics of the point cloud.
Second, the moving least-square method is used to obtain the normal vector of the point cloud and
the valley ridge points of the model. Then, potential feature points are identified further and retained
on the basis of the discrete gradient idea. Finally, non-feature points are extracted. Experimental
results show that our method can be applied to models with different curvatures and effectively
avoid the hole phenomenon in the simplification process. To further improve the robustness and
anti-noise ability of the method, the neighborhood of the point cloud can be extended to multiple
levels, and a balance between simplification speed and accuracy needs to be found.

Keywords: point cloud simplification; feature extraction; Delaunay neighborhood; moving least
square; discrete gradient

1. Introduction

Three-dimensional (3D) scanning technology has always been the focus of research
on computer vision, reverse engineering, and computer graphics [1]. A point cloud is the
most basic and popular data type collected through 3D scanning technology [2]. With the
development of 3D scanning technology, the accuracy and density of 3D point cloud models
have increased continuously. This study focuses on the scattered data point cloud, which
is distributed irregularly and unordered. However, these 3D point cloud models contain
huge amounts of redundant data. If all point cloud data are processed, the computer
will inevitably consume a large amount of running time and occupy huge storage space,
seriously affecting the efficiency of modeling and rendering. Therefore, on the premise of
ensuring the features of the point cloud model, simplifying the point cloud in the early
stage of point cloud processing is very important and practical.

Currently, the commonly used point cloud simplification methods include the bound-
ing box algorithm [3,4], the uniform grid method [5], the curvature sampling method [6],
the clustering method [7], the triangular grid method [8], etc. [9–12]. However, these
methods have some shortcomings. To make the density of the point cloud more uniform,
some methods ignore local details, which leads to inaccurate reconstruction results. Some
methods, such as the curvature sampling method, can retain the original details of the
point cloud well, but they are computationally intensive and inefficient. Based on this,
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many scholars have studied the simplification of the point cloud and proposed several
algorithms. For a structured point cloud, Markovic et al. [13] proposed a simplified point
cloud method that uses ε-insensitive support vector regression with spline and b-spline
kernels to find the significant points from high curvature areas in scanned lines, thereby
retaining the high level of initial information about the shape and structure of the scanned
object. However, a scattered data point cloud lacks a natural topological connection and
often experiences problems, such as uneven sampling, noise, and missing data. The simpli-
fied point cloud can easily have a bad impact on the appearance, modeling, and accurate
expression of the geometric model. Consequently, feature extraction and retention are
essential when a scattered data point cloud is simplified. For the feature extraction of
a point cloud model, scholars have done a lot of research [14–16]. On this basis, many
scholars have proposed point cloud simplification algorithms with feature preservation.
According to the neighborhood distribution characteristics of the model, some scholars
have proposed K-neighborhood-related simplification methods. Li et al. [17] first used a
k-d tree to segment point cloud data to establish a spatial topology and then combined
the change of the local normal vector and the reserved points as the threshold to simplify
the point cloud in the region. This algorithm prevents holes when the simplification ratio
is extremely high. Ji et al. [18] proposed a new K-neighborhood search method based on
distance and density, and feature points are selected according to their geometric features.
This method is named as the detail feature points simplified algorithm (DFPSA) for a 3D
point cloud. According to the morphological characteristics of the model, some scholars
put forward the simplification method of geometric algebra. Mahdaoui et al. [19] proposed
a point cloud iterative simplification method based on the density function and Shannon
entropy estimation. The algorithm is suitable for different point clouds with different
densities, and the reconstruction effect of the simplified point cloud is near the original
point cloud model. Yuan et al. [20] proposed a simplified algorithm based on conformal
geometric algebra. The spherical tree is used to construct multi-resolution subdivision,
and K-means clustering is used to calculate the minimum boundary sphere, and then
the adaptive point cloud simplification is carried out. Bernard et al. [21] used the asso-
ciated point distribution model to represent the statistical shape model, but due to the
heteroscedasticity of point cloud data, the surface generated using only the reconstruction
method of the probability model will have a certain deviation, resulting in a low-accuracy
curvature calculation value. Some scholars pay attention to the noise variables in the point
cloud model, such as Zhu et al. [22], who proposed a noisy three-dimensional model data
simplification approach. The core idea of this approach is to use the guided filter algorithm,
often used in 2D images, to reposition point cloud data, especially noisy point cloud data,
to enhance the features and geometric details.

Starting from what is already known in this field, a new simplification algorithm for
scattered point clouds with feature preservation is proposed, so that it can simplify the
point cloud and save as much information as possible. Based on the point cloud model’s
own morphological characteristics to divide its characteristics, based on the Delaunay
neighborhood of the point cloud, this paper uses the moving least-square (MLS) method
and discrete gradient ideas to extract the important points in point cloud mode, that is,
feature points, thereby simplifying the point cloud. The experimental results show that
this method can be applied to point cloud models with different shapes, noises, and orders
of magnitude.

The rest of this paper is organized as follows. Section 2 introduces the implementation
of our method and related formulas and describes the acquisition of the Delaunay neigh-
borhood of the point cloud and how to use the MLS method and the discrete gradient to
obtain the feature points of each part of the point cloud. Section 3 elaborates on the experi-
mental results, including the simplified results of our method under different models and
the conclusions after comparison with the other three methods. In the last section, some
conclusions and future work directions are given by observing the experimental results.
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2. Methodology

The core idea of point cloud simplification is to remove a large amount of redundant
data and retain feature data to ensure that the original model can be restored with as
few points as possible. Point cloud features include global and potential features. Global
features include edge and non-edge features. Potential features are the space divided after
global features are extracted.

The flowchart of the proposed point cloud simplification method comprises four
stages, as shown in Figure 1. We assume that P is the original point cloud model, which
can be defined as P = {pi(x,y,z)}, i∈[1, n], where pi is the i-th point and n is the size of P.
The simplified point cloud set is denoted as R. Specifically, after preprocessing the point
cloud, we construct the Delaunay neighborhood of the point cloud P. According to the edge
distribution characteristics of the points, the edge points are judged, which is Step 1 in the
figure. Then, the MLS method is used to calculate the normal vector of the point cloud,
and the valley ridge feature points are extracted according to the maximum curvature
threshold, which is Step 2. Then, according to the discrete gradient, the potential feature
points are further judged and retained, which is Step 3. Finally, in Step 4, the non-feature
points are extracted by the uniform sampling method, and the sampling interval is s.

Symmetry 2021, 13, 399 3 of 15 
 

 

some conclusions and future work directions are given by observing the experimental 

results. 

2. Methodology 

The core idea of point cloud simplification is to remove a large amount of redundant 

data and retain feature data to ensure that the original model can be restored with as few 

points as possible. Point cloud features include global and potential features. Global fea-

tures include edge and non-edge features. Potential features are the space divided after 

global features are extracted. 

The flowchart of the proposed point cloud simplification method comprises four 

stages, as shown in Figure 1. We assume that P is the original point cloud model, which 

can be defined as P = {pi(x,y,z)}, i[1,n], where pi is the i-th point and n is the size of P. The 

simplified point cloud set is denoted as R. Specifically, after preprocessing the point cloud, 

we construct the Delaunay neighborhood of the point cloud P. According to the edge dis-

tribution characteristics of the points, the edge points are judged, which is Step 1 in the 

figure. Then, the MLS method is used to calculate the normal vector of the point cloud, 

and the valley ridge feature points are extracted according to the maximum curvature 

threshold, which is Step 2. Then, according to the discrete gradient, the potential feature 

points are further judged and retained, which is Step 3. Finally, in Step 4, the non-feature 

points are extracted by the uniform sampling method, and the sampling interval is s. 

Data 

pre-processing

Point 

cloud P

Potential

feature points

Non-feature 

points extraction

Simplification 

results R

Valley-ridge 

feature points
MLS

Delaunay 

neighborhood

Discrete gradient

NO

 Distribution 

Characteristics

Edge feature 

points

YES

YES

NO

Step 1

Step 2

Step 3

Step 4

 

Figure 1. Algorithm flowchart. 

2.1. Extraction of the Point Cloud Edge 

Generally, edge point clouds have more features than valley-ridge point clouds. 

Thus, these edge points must be retained in the process of point cloud simplification. 

2.1.1. Delaunay Neighborhood 

The most significant feature of the point cloud model is the lack of topological con-

nections between point data. Therefore, taking the point cloud model as the research ob-

ject, the neighborhood points of the point data should be calculated first. 

For the point cloud model with a uniform sampling density, the k-nearest neighbors 

of a point can be selected to represent its neighborhood. However, the sampling density 

of many point cloud models varies, and the k-nearest neighbors of feature points may be 

located in one side of the area. Thus, the Delaunay neighborhood [23] is adopted in this 

study, that is, the local plane is fitted to point pi in the sphere neighborhood and projected 

to the plane to obtain projection point qi. Then, we perform Delaunay triangulation on 

projection point qi to obtain the Delaunay neighborhood (N
Delaunay 

p ) of point p. As shown in 

Figure 2, the first-order Delaunay neighborhood of p is recorded as N
1Delaunay 

p . 

Figure 1. Algorithm flowchart.

2.1. Extraction of the Point Cloud Edge

Generally, edge point clouds have more features than valley-ridge point clouds. Thus,
these edge points must be retained in the process of point cloud simplification.

2.1.1. Delaunay Neighborhood

The most significant feature of the point cloud model is the lack of topological connec-
tions between point data. Therefore, taking the point cloud model as the research object,
the neighborhood points of the point data should be calculated first.

For the point cloud model with a uniform sampling density, the k-nearest neighbors
of a point can be selected to represent its neighborhood. However, the sampling density
of many point cloud models varies, and the k-nearest neighbors of feature points may be
located in one side of the area. Thus, the Delaunay neighborhood [23] is adopted in this
study, that is, the local plane is fitted to point pi in the sphere neighborhood and projected
to the plane to obtain projection point qi. Then, we perform Delaunay triangulation on
projection point qi to obtain the Delaunay neighborhood (NDelaunay

p ) of point p. As shown

in Figure 2, the first-order Delaunay neighborhood of p is recorded as N1Delaunay
p .
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2.1.2. The Edge Distribution Characteristics

The edge points of the point cloud can be obtained by constructing the Delaunay
neighborhood of the point cloud and combining the edge distribution characteristics of the
point cloud.

As shown in Figure 3, generally, for non-edge points, the points in the neighborhood
are distributed around the point. In addition, for edge points, the points in the neighbor-
hood gather in a certain direction. According to the above rules, we use the edge coefficient
Fp to measure the aggregation degree of the point distribution in the neighborhood of point
p. That is, the unit normal vector composed of a point and its neighbors is superimposed.
After the superposition of non-edge points, it tends to a zero vector in theory, while the edge
point is a non-zero vector, so the boundary points can be quickly and roughly extracted
according to the superposition normal vector. The formula of Fp is shown below:

Fp =
1
D

∣∣∣∣∣∣
D

∑
i=1

→
ppi∣∣∣ →ppi

∣∣∣
∣∣∣∣∣∣, (1)

where pi is the i-th neighborhood point of point p and D is the number of points in the
neighborhood of p. The larger the edge coefficient Fp is, the more non-uniform the point
distribution around point p is, the more detached it is from the point cloud body and has
the characteristics of edge points.
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To improve the adaptability of the algorithm, after calculating the boundary point
index F of the point, if the boundary point index Fp of a point satisfies Equation (2), the
point is judged to be the boundary point.

Fp −mF > 2σF, (2)

where mF is the mean value and F is the standard deviation of Fp.
Edge point clouds have many characteristics of the model, so these points must be

retained in the process of point cloud simplification.

2.2. Determination of Valley-Ridge Feature Points

Valley-ridge and potential feature points are evaluated based on normal vectors. This
section discusses the extraction of valley-ridge feature points. The MLS method [24,25] is
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used to fit the points in the first-order Delaunay neighborhood of point pi to a plane, and
the normal direction of the plane is the normal vector of pi. Given that the direction of the
normal vectors obtained in this manner is uncertain, these normal vectors must be unified.
Unification must be performed according to the direction of the line of sight to ensure the
consistency of the direction of the normal vector. Generally, the origin is regarded as the
viewpoint position, and the line of sight is

→
v = (−x,−y,−z)T. The normal vector of the

point cloud is adjusted, such that
→
v ·→n > 0. Finally, according to the adjusted normal vector,

the Gaussian curvature (kg) and average curvature (kh) of each point are calculated. The

principal curvature, k = kn ±
√

k2
h − kg of the surface can be obtained, and k takes the

larger absolute value as the curvature value. The threshold CT is set. When the absolute
value (|k|) of the principal curvature of a point is larger than CT·mean(sum(|k|)), that
is |k| > CT·mean(sum(|k|)), this point is the valley-ridge point of the model, which is
recorded as V.

2.3. Determination of Potential Feature Points

The previous chapter discusses the extraction of global features. The threshold setting
is large. Thus, only the obvious feature points in the model can be extracted. To avoid
ignoring the potential feature points, we assume that V is the first kind of potential feature
points, and then extract the second kind of potential feature points based on the discrete
gradient from the point cloud in P.

First, we define discrete function fp, which is a feature detection operator at a point.
Then, the discrete gradient at that point is calculated by using the operator. As shown in
Figure 4, θpi is the angle formed by point p and its neighborhood point pi in the principal
direction and can measure the degree of bending of a potential surface at a point. The
principal direction in this work is the direction of eigenvector v0 corresponding to the
minimum eigenvalue of the covariance matrix of a point and its local neighborhood points.
The formula of covariance matrix T is as follows:

T = ∑
pi∈Np

(pi − c)(pi − c)T , (3)

where c = ∑k
i=1pi is the centroid of Np. Np is the Delaunay neighborhood of point p, and

the eigenvalues of covariance matrix T are λ0 < λ1 < λ2.
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Angle θpi can be expressed as

cos θpi =
d2

‖p− pi‖2
, (4)

where ‖p− pi‖ is the Euclidean distance between p and pi and pi is the point in the Delaunay
neighborhood of p. cosθpi decreases monotonously in the interval 0 < pi < 180, that is, the
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larger the value of pi is, the smaller the value of cosθpi is, and the smoother the feature is at
this point; on the contrary, the larger the value of cosθpi is, the sharper the feature at this
point is. Therefore, the local feature detection operator (fp) of point p is defined as

fp =
1
n

n

∑
i=1

cos αpi , (5)

where the larger the value of fp is, the greater the bending degree of the potential surface in
the local neighborhood of point p is.

The discrete gradient (Gi) between points p and pi in its neighborhood is set as

Gp =

∣∣ fp − fpi

∣∣
|p− pi|

, (6)

where p − pi is the shortest path length between points p and pi, which is defined as the
geodesic distance between two points.

According to discrete Morse theory, discrete gradient Gi is used as the criterion to
extract the second type of potential feature points. The specific criterion is

g = {Gi > MGi}, (7)

MGi =
1
n

n

∑
i=1

Gi. (8)

When the above condition is satisfied, the corresponding points in the neighborhood
are selected. Then, according to the number of times (Ui) this point appears as the neigh-
borhood of the first kind of potential feature points, the second kind of potential feature
points are screened and distinguished, that is,

l = {gi > Mgi}, (9)

where Mgi = (Tg × Ui), Tg∈[0, 1] is the threshold value.

3. Experimental and Discussion
3.1. Preparation

MATLAB R2016a was used to program the algorithm. The computer was configured
with a Winl0 system, 3.4 GHz Intel Core i7, 16 G memory, and NVDIA GeForceGtX960M
graphics card. To verify the effectiveness of the proposed point cloud simplification
algorithm, we selected four groups of point cloud data with different characteristics for
simplification analysis. The feature sharpness characteristics of these four data vary, and
their potential surfaces are uneven. The experiment evaluated the method from two
aspects, namely simplification and reconstruction effects, and compared it with the grid-
based, curvature-based simplification methods in Geomagic and feature-preserving [20]
simplification methods.

As shown in Figure 5a,b, the point cloud data of Bunny and Dragon models are all
from the 3D point cloud database established by Stanford University. The Dragon model
has 437,645 points, while the Bunny model has 35,947 points. The point cloud data of the
Mask model are obtained from the 3D measurement system built in our laboratory, and
the measured object is shown in Figure 6a. This system is shown in Figure 6b, consisting
of one projector and four cameras. Group A’s camera model is Manta G-504, with a
2452 × 2056 resolution and a pixel size of 3.45 µm; Group B’s camera model is MER-
500-14GM /CP, with a 2592 × 1944 resolution and a pixel size of 2.2 µm. The lens is
OPT-165M. The projector is DLP Light Crafter 4500. The Mask point cloud model obtained
by Group A’s cameras has 2,194,425 points, and that obtained by Group B’s cameras has
3,367,616 points.
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3.2. Results and Analysis

The simplification of a point cloud requires deleting redundant points and retaining
global and local features as much as possible on the premise of meeting the requirements
of the simplification rate. The formula of simplification rate is as follows:

ρ =
|P− R|

P
, (10)

where ρ is the simplification rate, and the bigger the value is, the more points are deleted,
that is, the greater the simplification degree is; otherwise, fewer points are deleted, that is,
the simplification degree is lower.

When the simplification rate is too low, the appearance and details of the simplified
model and the original model will not be very different. When the simplification rate is too
high, the simplified model is prone to holes after reconstruction. Therefore, we determine
the approximate range of ρ according to the number of the original model point clouds.
The Bunny and Dragon models’ ρ ranges from 20% to 80%, and that of Mask A and Mask
B models ranges from 35% to 90%.

The entire point cloud simplification process of the proposed method is divided
into four stages: edge point detection, valley-ridge feature point estimation, potential
feature point recognition, and non-feature point extraction. Taking the Bunny model as
an example, when ρ = 53%, the point cloud data obtained by each step of our method are
shown in Figure 7. For convenience of distinguishing, the point clouds obtained at different
stages are displayed in different colors. Edge points are purple, valley-ridge points are
green, potential feature points are blue, and non-feature points are red. It can be seen that
valley-ridge feature point estimation and potential feature point recognition complement
each other, obtaining good model details (such as ears, torso, and face), while edge point
detection and non-feature point extraction are good for filling smooth areas (such as the
back). Thus, the final result can be preserved well regardless of the feature (i.e., contour or
detail feature).
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3.2.1. Setting Parameters

At the beginning of the study, we hoped to reduce the influence of artificial parameter
adjustment in the algorithm on point cloud simplification as much as possible, so the
number of artificial thresholds was set as low as possible. According to the introduction in
Section 2, we can know from the formula that the parameters to be adjusted are CT, Tg, and
s. Different parameters have different effects on different types of point clouds. According
to the definition of each threshold, if the value of CT is between 0 to 1, too many points
with inconspicuous valley and ridge features will be stored, which will affect the extraction
of potential feature points, so the value of CT should be greater than 1. An excessively
large CT will also affect the subsequent simplification steps. Depending on the size and
shape of the point cloud model, the upper limit of CT value is also different. After repeated
trials and comparison, the maximum value of CT is about 5, otherwise there are too few
valley-ridge feature points. Tg is a weight coefficient, and generally, its value range is
(0,1). However, depending on the number of original point clouds, the value range is also
different. In the case of a small number of original point clouds, the value of Tg is (0,0.5).
s is the sampling interval of the non-feature point cloud, and its value depends on the
number of feature points retained after the first three steps of simplification and the target
simplification rate of the point cloud. Therefore, in the following discussion, we only focus
on the selection of CT and Tg.

Figure 8 shows the effect of the selection of Ct and Tg values on the final simplified
result of the Bunny model when the non-feature point sampling interval s is fixed at 50.
Each line of images, from left to right, are edge points, valley-ridge points, potential feature
points, non-feature points, the final simplified point cloud model, and its reconstruction
model. It can be seen that the larger the values of Ct and Tg are, the less points are saved.
Each step of our method is interlocking. The selection of valley-ridge points and the
preservation of potential feature points are complementary to each other, and they can
extract the details of the model very well. The appropriate adjusting of the number of
non-feature points can help reshape the entire simplified model. In summary, for a point
cloud model with uniform sampling and distinctive features, Ct and Tg are set to small
values, and s can be selected according to the requirements of the simplification rate. If
there is no special requirement, s can be set to a medium value.

3.2.2. The Self-Adapting Experiment Parameters

Due to the various forms of point cloud data acquisition, there are also many differ-
ences in point cloud models. The method in this paper simplifies the four different types of
models in Figures 5 and 6 to ensure the applicability and feasibility of the method.

The point cloud model of the simplified results at different simplification rates and
the corresponding reconstruction effects are shown in Figure 9, where Figure 9a–d are
Bunny, Dragon, Mask A, and Mask B models, respectively. When ρ = 0, it means that the
corresponding model in Figure 8 is the original model. With an increase in the simplification
rate, the simplified model will lose some texture information and local detail features with
too few point clouds after simplification. For example, when ρ = 71.4%, the ear part of the
Bunny model is slightly missing. However, it can be seen from Table 1 that the maximum
error, average error, and root-mean-square (RMS) error are kept at a small level, indicating
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that the simplified model basically retains the geometric features and contour appearance of
the original model. Therefore, the proposed point cloud simplification algorithm effectively
retains the geometric information in different models, such as the boundary, high curvature
points, and local features.
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3.2.3. Comparison of the Simplification Effect with Other Methods

To further verify the effectiveness of our method, in this chapter, we used the grid-
based, curvature-based simplification methods in Geomagic and feature-preserving [20]
simplification methods to simplify the data of Bunny and Mask A models and compared
the results with our method.

The simplified results are shown in Figure 10. The surface of the Bunny model
has many wrinkles. The geometric details show that the feature points retained by our
method are more continuous and uniform, whereas the other three methods lose a lot
of feature information when the simplification rates are high. Especially for bunny ears,
the difference is most obvious. Because the number of point clouds in the ear part is not
very large, it is easy to have holes and deformations if we do not pay attention to feature
preservation during the simplification process. For the Mask A model with an uneven
feature distribution, the proposed method retains more points in the concave and convex
changes, while the curvature-based simplification method focuses on feature retention
and ignores the extraction of points in the smoother area, resulting in more holes. The
grid-based and the feature-preserving simplification methods retain too many non-feature
points in a few flat regions, which makes the face of Mask A too smooth, but the real face
of Mask A is uneven.
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Table 1. Simplification rate and evaluation of results.

Model Original Points ρ/(%)
Error/(mm)

Maximum Average Root Mean Square (RMS)

Bunny 35,947
17.6 8.904 × 10−3 8 × 10−5 1.95 × 10−4

53 2.1136 × 10−2 2.04 × 10−4 5.96 × 10−4

71.4 6.9928 × 10−2 1.89 × 10−3 3.075 × 10−3

Dragon 437,645
25.1 4.614 × 10−2 3.3 × 10−5 4.69 × 10−4

44.9 4.9589 × 10−2 6.7 × 10−5 4.95 × 10−4

78.0 4.6156 × 10−2 2.63 × 10−4 6.22 × 10−4

Mask A 2,194,425
35.9 5.7673 × 10−2 2.69 × 10−4 1.119 × 10−3

79.8 8.9860 × 10−2 6.58 × 10−4 2.571 × 10−3

89.9 9.8986 × 10−2 9.4 × 10−4 3.797 × 10−3

Mask B 3,367,616
38.7 4.968 × 10−2 9.67 × 10−4 1.936 × 10−3

72.1 8.2321 × 10−2 1.433 × 10−3 2.16 × 10−3

92.8 9.0322 × 10−2 2.647 × 10−3 4.927 × 10−3

The above is the intuitive visual impression of the simplified results obtained by the
four methods. The following is a detailed analysis of the error comparison of the four
methods based on numerical calculation.

Table 2 shows the error comparison between the simplified model and the original
Bunny and Mask A models under different simplification rates of different methods. It
can be seen that the error of our proposed method is the smallest, followed by the feature-
preserving method, and the results of the other two methods are relatively poor. Since
their simplification rates are similar but not exactly the same, it is not easy to observe in
the table, and Figure 10 was drawn to make the numerical comparison more intuitive.

Table 2. Error evaluation of the simplified result of Bunny and Mask A models.

Model Method ρ/(%)
Error/(mm)

Maximum Average RMS

Bunny

Our method
17.6 8.904 × 10−3 8 × 10−5 1.95 × 10−4

53 2.1136 × 10−2 2.04 × 10−4 5.96 × 10−4

71.4 6.9928 × 10−2 1.89 × 10−3 3.075 × 10−3

Grid-based
16.7 1.8284 × 10−2 1.61 × 10−4 3.17 × 10−4

40.3 5.9634 × 10−2 2.42 × 10−4 7.07 × 10−4

69.8 9.9972 × 10−2 3.143 × 10−3 6.789 × 10−3

Curvature-based
20.2 1.7422 × 10−2 1.78 × 10−4 3.16 × 10−4

41.6 4.7625×10−2 2.95 × 10−4 8.65 × 10−4

69.8 9.9776 × 10−2 2.992 × 10−3 5.605 × 10−3

Feature-preserving
[20]

19.6 1.8519 × 10−2 1.31 × 10−4 2.22 × 10−4

40.1 2.4632 × 10−2 3.3 × 10−4 7.41 × 10−4

68.5 7.7979 × 10−2 2.1 × 10−3 3.89 × 10−3

Mask A

Our method
35.9 5.7673 × 10−2 2.69 × 10−4 1.119 × 10−3

79.8 8.9860 × 10−2 6.58 × 10−4 2.571 × 10−3

89.9 9.8986 × 10−2 9.4 × 10−4 3.797 × 10−3

Grid-based
39.4 9.7915 × 10−2 5.11 × 10−4 2.777 × 10−3

69.1 9.8975 × 10−2 1.438 × 10−3 6.856 × 10−3

92.4 9.8648 × 10−2 1.804 × 10−3 7.481 × 10−3

Curvature-based
38 7.54 × 10−2 4.44 × 10−4 1.908 × 10−3

69 9.8968 × 10−2 1.253 × 10−3 6.196 × 10−3

92 9.8648 × 10−2 1.78 × 10−3 7.534 × 10−3

Feature-preserving
[20]

40.6 6.7238 × 10−2 4.65 × 10−4 2.075 × 10−3

67.7 9.3995 × 10−2 7.82 × 10−4 3.591 × 10−3

89.6 9.8656 × 10−2 136.9 × 10−3 5.681 × 10−3
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Figure 10. Simplification results of the grid method: (a) Bunny and (d) Mask A models. Simplification result of the curvature
adaptive method: (b) Bunny and (e) Mask A models. Simplification results of the feature-preserving method [18]: (c) Bunny
and (f) Mask A models.
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It can be seen that Figure 11 shows the error relationship between the simplified model
and the original model under different methods. In the simplification of the Bunny model,
the error results of the four methods are similar when their simplification rate is small, and
our method is slightly better. When the simplification rate increases gradually, the errors of
these four methods all increase, but obviously, the error of our method is much smaller. In
the simplification of the Mask A model, the feature-preserving method and our method
have greater advantages, and our method is better overall. In summary, our method can
detect and extract the features of different point cloud models better, while retaining the
edge points, making the 3D point cloud model more realistic and comprehensive.

Symmetry 2021, 13, 399 14 of 15 
 

 

 
  

(a) (b) (c) 

 
  

(d) (e) (f) 

Figure 11. Simplified error comparison of the Bunny model: (a) maximum error, (b) average error, and (c) RMS error. 

Simplified error comparison of the Mask A model: (d) maximum error, (e) average error, and (f) RMS error. 

4. Conclusions 

To retain as many feature points as possible when removing a large amount of re-

dundant information in high-precision and high-density point clouds, this paper proposes 

a new simplification algorithm for scattered point clouds with feature preservation. The 

simplified method makes full use of the feature information about the original point 

cloud. First, the Delaunay neighborhood of the point cloud is established, and the contour 

of the model is extracted according to the edge distribution characteristics of the point 

cloud. Second, the valley-ridge points are preserved by the curvature using the MLS 

method. Then, according to the discrete gradient idea, the potential feature points are 

found. Finally, the non-feature points are sampled simply and comprehensively. The pro-

posed method has good expansibility and adaptability. For future work, we would like to 

extend the first-order Delaunay neighborhood to a multi-order neighborhood to further 

improve the robustness and anti-noise ability of the algorithm. However, in the discrete 

gradient calculation, the shortest path length between two points is usually taken as the 

approximate geodesic distance, which is time consuming and thus requires further re-

search and optimization to find a balance between simplified speed and accuracy. 

Author Contributions: Conceptualization, Z.Z. and D.Z.; methodology, M.G., Z.Z. and D.Z.; soft-

ware, M.G.; validation, M.G.; formal analysis, M.G.; investigation, M.G.; resources, Z.Z.; data cura-

tion, M.G.; writing—original draft preparation, M.G.; writing—review and editing, M.G., Z.Z. and 

D.Z.; visualization, M.G.; supervision, Z.Z. and D.Z.; project administration, M.G.; funding acquisi-

tion, Z.Z. and D.Z. All authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the National Natural Science Foundation of China 

(61572307). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

Figure 11. Simplified error comparison of the Bunny model: (a) maximum error, (b) average error, and (c) RMS error.
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4. Conclusions

To retain as many feature points as possible when removing a large amount of redun-
dant information in high-precision and high-density point clouds, this paper proposes a
new simplification algorithm for scattered point clouds with feature preservation. The
simplified method makes full use of the feature information about the original point cloud.
First, the Delaunay neighborhood of the point cloud is established, and the contour of the
model is extracted according to the edge distribution characteristics of the point cloud.
Second, the valley-ridge points are preserved by the curvature using the MLS method.
Then, according to the discrete gradient idea, the potential feature points are found. Finally,
the non-feature points are sampled simply and comprehensively. The proposed method
has good expansibility and adaptability. For future work, we would like to extend the
first-order Delaunay neighborhood to a multi-order neighborhood to further improve
the robustness and anti-noise ability of the algorithm. However, in the discrete gradient
calculation, the shortest path length between two points is usually taken as the approxi-
mate geodesic distance, which is time consuming and thus requires further research and
optimization to find a balance between simplified speed and accuracy.
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