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Abstract: In the present paper, we examine the quantum entanglement for more general states of
two-qubit system in the context of spin coherent states (SCSs). We consider the concurrence as a
quantifier of entanglement and express it in terms of SCSs. We determine new set of maximally
entangled conditions that provide the maximal amount of entanglement for certain values of the
amplitudes of SCSs for the case of pure states. Finally, we examine the entanglement of a class of
mixed states of the two qubits and provide the range in which the entanglement value is maximal
with respect to the values of the amplitudes of SCSs.
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1. Introduction

Recently, the physical features of the entanglement of quantum states has been recog-
nized as a key resource in different domains of the quantum information processing and
transmission (QIPT). This phenomenon introduces various applications, such as cryptogra-
phy, quantum computation, quantum communication, quantum teleportation, etc. [1–4].
The task of determining the degree of entanglement of the quantum states is significant
for QIPT, and, therefore, numerous entanglement measures have been developed, such as
entanglement of formation [5,6], distillation [7], relative entropy [8], and negativity [9–12].
Several aspects of entanglement have not been explored yet, even if this phenomenon
is well characterized and quantified for a quantum system in a low-dimensional Hilbert
space, namely, a system of two qubits for which Wootters identified the entanglement of
formation [6].

For bipartite systems, the entanglement of pure states is unambiguous. On the contrary,
the entanglement of a mixed state has not been defined well yet because entanglement is
not represented by a linear operator in Hilbert space. In this case, quantifying entanglement
is more complicated when its measures are hard to estimate analytically. The measures
of the entanglement of a mixed state are the average of entanglement of a set of pure
states that represent the mixed state, minimized over all decompositions of the mixed state.
Researchers are preoccupied with finding this minimization. In some instances, several
minimizations may undergo analysis. However, this problem is not solved mathematically
and poses several open questions. Special status of mixed states has to be conferred to
those that, for a given value of the entropy [11], contain the highest entanglement [13,14].
These quantum states can be viewed as generalizations of mixed states of the Bell states;
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the latter have the maximum entanglement of the pure states of two qubits. Ishizaka and
Hiroshima developed the term maximally-entangled mixed states [15] in a strongly linked
setting, namely that of mixed states with two qubits whose quantum entanglement can be
maximized at fixed eigenvalues rather than at fixed entropy as indicated by the density
operator. The quantum entanglement of the mixed states introduced by Ishizaka and
Hiroshima is hard to increase by any unitary transformations. Concerning those states, the
maximality property is obtained under a global unitary operation by considering relative
entropy, entanglement of formation, and negativity [16].

Another significant concept that has received a lot of interest in the theory of quantum
information is the concept of coherent states. These states have been regarded as a math-
ematical tool for describing quantum systems in many branches of physics [15–19]. The
large number of their applications has led to exploring new quantum features of particular
quantum systems for which coherent states are involved. The coherent states were firstly
introduced by Schrödinger in 1926 in the framework of the harmonic oscillators and have
been largely examined in physics [20]. In 1965, these states played a substantial role in
the development of quantum optics by the work of Roy J. Glauber [21], who introduced
an eigenket of the annihilation operator with the property of minimizing the uncertainty
in the conjugate variables. In 1972, Perelomov developed the SCSs that are constructed
from the SU(2) group [22,23]. These states prescribes a large set of quantum systems
with many applications in condensed matter physics, statistical mechanics, and quantum
optics [24–26].

The present paper aims at quantifying the entanglement of more general non-orthogonal
states with two qubits within the SCSs that are important in several tasks of transmitting
and processing of quantum information. For measuring entanglement, we derive the
concurrence and give the requirements of the maximal and minimal entanglement for
mixed and pure states. We determine the families of maximally entangled mixed states
that possess the ultimate entanglement for certain values of the amplitudes of SCSs [27–30].
Those states can benefit the processing of quantum information with noise because they
possess the highest entanglement made possible by a proper choice of the amplitudes
of SCSs.

The paper is organized as follows. In Section 1, we display the entanglement measure
of an arbitrary state of two qubits. In Section 2, we write the entanglement measure in
terms of the amplitudes of SCSs and explore its performance for the cases of more general
non-orthogonal states. Section 3 covers the conclusion.

2. Entanglement of an Arbitrary State of a System of Two Qubits

Generally, the normalized pure state of a system of two qubits is defined on the
computational basis {|00〉, |01〉, |10〉, |11〉} and takes the form of

|Ψ〉 = A|00〉+ B|01〉+ C|10〉+ D|11〉, (1)

with the condition of normalization

|A|2 + |B|2 + |C|2 + |D|2 = 1. (2)

The pure state (1) is an entangled state if it does not take the form of a product of
states of each qubit.

The concurrence of the state |Ψ〉 is defined as [31]

C(Ψ) = 〈Ψ|Ψ†〉 = 2|AD− BC|, (3)

where “ † ” is the “spin-flip” operation, |Ψ†〉 = σy ⊗ σy|Ψ∗〉. Here, |Ψ∗〉 represents the
complex conjugate of |Ψ〉 and σy defines the second Pauli matrix. The concurrence is 0 for
separable states and equals 1 for states with maximal entanglement.
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For the case of mixed states, the system of two qubits is described by a density matrix,
ρ, that can be represented as a statistical mixture of a set of pure states as

ρ = ∑
i

pi|Ψi〉〈Ψi|, (4)

in which |Ψi〉 represents the states of the two qubits with the probabilities pi. The mixed
state ρ is said to be entangled if it cannot be represented as a set of separable pure states,
i.e., ρ 6= ∑i piρ

1
i ⊗ ρ2

i where ρ1,2
i represents the reduced matrices of each qubit.

The concurrence of the mixed state of the two-qubit system was introduced by Woot-
ters and Hill as [8]

C(ρ) = max{E1 − E2 − E3 − E4, 0}, (5)

where Ei represent the square roots in descending order of the eigenvalues of the operator
ρ† = ρ

(
σy ⊗ σy

)
ρ∗
(
σy ⊗ σy

)
in decreasing order. As in the case of pure states, the state ρ is

a separable state when C(ρ) = 0 and it is a maximally entangled state when C(ρ) = 1.
Generally, for a two-qubit mixed state having only two eigenvalues, there is a simpli-

fied expression of Wootters concurrence [7]

ρ = ∑
i
|Ψi〉〈Ψi|

= λ1|λ1〉〈λ1|+ λ2|λ2〉〈λ2|,
(6)

where the pure states corresponding to eigenvalues λ1 and λ2 are given by

|λ1〉 = a1|00〉+ b1|01〉+ c1|10〉+ d1|11〉
|λ2〉 = a2|00〉+ b2|01〉+ c2|10〉+ d2|11〉.

(7)

The concurrence of the state ρ is

C2(ρ) =
(

p2
1C2

1 + p2
2C2

2

)
+

1
2

p1 p2

∣∣∣C′+ − C
′
−

∣∣∣2 − 1
2

p1 p2

∣∣∣∣(C
′
+ − C

′
−

)2
− 4C

′
1C
′
2

∣∣∣∣, (8)

where
Ci =

∣∣∣C′i ∣∣∣ = 2|aidi − bici|, i = 1, 2 (9)

represents the concurrence of the state |λi〉 and

C± =
∣∣∣C′±∣∣∣ = |(a1 ± a2)(d1 ± d2)− (b1 ± b2)(c1 ± c2)| (10)

represents the concurrence of the pure state |λ±〉 = 1/
√

2(|λ1〉 ± |λ2〉). C
′
i and C

′
± repre-

sent the complex concurrences.

3. More General Non-Orthogonal States of Two Qubits in the Context of SCSs

In the present section, we display the states of the two qubits within the coherent
states and explore their entanglement degree.

Let us introduce a more general pure state of the two qubits as

|Ψ〉 = N
[

a|α〉|β〉+ b|α〉|β′〉+ c|α′〉|β〉+ d|α′〉|β′〉
]
, (11)

where N is the normalization factor for which 〈Ψ|Ψ〉 = 1 and |α〉|α〉 = |α〉 ⊗ |α〉 with
|α〉 = 1√

1+|α|2
(|0〉+ α|1〉) being the SCS for a particle with spin-1/2 [32–35]. Substituting
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|α〉, |β〉, |α′〉, |β′〉 into Equation (11), the pure state can be expressed as functions of the
amplitudes of SCSs as

|Ψ〉 = A|00〉+ B|01〉+ C|10〉+ D|11〉, (12)

in which

A = X + Y + Z + T,

B = β(X + Z) + β
′
(Y + T),

C = α(X + Y) + α
′
(Z + T), (13)

D = αβX + αβ
′
Y + α

′
βZ + α

′
β
′
T,

with

X =
aN√

(1 + |α|2)(1 + |β|2)
,

Y =
bN√

(1 + |α|2)
(
1 + |β′ |2

) ,

Z =
cN√(

1 + |α′ |2
)
(1 + |β|2)

, (14)

T =
dN√(

1 + |α′ |2
)(

1 + |β′ |2
) .

Using Equation (3), the concurrence of a two-qubit state in the representation of the
coherent states is given by

C(Ψ) = 2
∣∣∣(XT −YZ)

(
α− α

′)(
β− β

′)∣∣∣. (15)

Then, the pure state (11) is disentangled (i.e., C(Ψ) = 0) if and only if one of the
following is true: XT = YZ, α = α

′
, or β = β

′
. When 2

∣∣∣(XT −YZ)
(

α− α
′
)(

β− β
′
)∣∣∣ = 1,

the concurrence attains its maximal, which corresponds to a pure state with maximum en-
tanglement.

To simplify the issue, we consider the state (11) with the conditions a = −d and b = c
and assume α = β and α

′
= β

′
. The concurrence is simplified to

C(Ψ) =
2N 2(a2 + b2)(α− α

′
)2

(1 + α2)
(

1 + α
′2
) with α, α

′ ∈ R. (16)

where

N =

2a2 + 2b2 +
2
(
b2 − a2)(1 + αα

′
)2

(1 + α2)
(

1 + α
′2
)

− 1

2

. (17)

The concurrence reaches its maximal value when α = −1/α
′

that corresponds to a
maximally entangled state.

In Figures 1 and 2, we show the variation of the concurrence as a function of α with
fixed values of α

′
. The blue dotted line is for α

′
= 0, the red dotted-dashed line is for α

′
= 1,

the black dashed line is for α
′
= 1.5, and the green line is for α

′
= 2. In the figures, we can

observe that the behavior and amount of the concurrence is very sensitive to the values
of the parameters α and α

′
. Interestingly, high values of α

′
with accompanied by small



Symmetry 2021, 13, 386 5 of 9

values of α for which the entanglement is maximal (C = 1). Moreover, the amount of the
entanglement depends on the values of the parameters a and b.
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Figure 1. The variation of the concurrence of the state |Ψ〉 in terms of α with various values of α
′

for
a = b = 1/2. The maximum is attained for αα

′
= −1.
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Figure 2. The variation of the concurrence of the state |Ψ〉 in terms of α with various values of α
′

for
a = 4/7 and b = 3/7. The maximum is attained for αα

′
= −1.

Now, we investigate the degree of entanglement for a mixed state defined as a statis-
tical mixture of more general pure states by exploiting the advantages of the simplified
expression of Wootters concurrence. We consider the following two-qubit mixed state

ρ = ∑
i

pi|Ψi〉〈Ψi|

= p1|Ψ1〉〈Ψ1|+ p2|Ψ2〉〈Ψ2|,

where
|Ψi〉 = Ai|00〉+ Bi|01〉+ Ci|10〉+ Di|11〉, (18)
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with

Ai = Xi + Yi + Zi + Ti,

Bi = βi(Xi + Zi) + β
′
i(Yi + Ti),

Ci = αi(Xi + Yi) + α
′
i(Zi + Ti),

Di = αiβiXi + αiβ
′
iYi + α

′
iβiZi + α

′
iβ
′
iTi,

(19)

where the coefficients Ai, Bi, Ci, and Di can be obtained from Equation (14). Based on the
concurrence formula given by Equation (8), the entanglement of the mixed state ρ can be
quantized in terms of amplitudes of SCSs as

C2(ρ) =
(

p2
1C2

1 + p2
2C2

2

)
+

1
2

p1 p2

∣∣∣C′+ − C
′
−

∣∣∣2 − 1
2

p1 p2

∣∣∣∣(C
′
+ − C

′
−

)2
− 4C

′
1C
′
2

∣∣∣∣, (20)

where
Ci = 2

∣∣∣(XiTi −YiZi)
(

αi − α
′
i

)(
βi − β

′
i

)∣∣∣. (21)

and
C± =

∣∣∣C′±∣∣∣ = |(A1 ± A2)(D1 ± D2)− (B1 ± B2)(C1 ± C2)|. (22)

The concurrence expression depends on Ci and C±. In the limits p1 = 1, p2 = 0
or p1 = 0, p2 = 1, this expression of the concurrence reduces to the definition given by
Equation (3).

We assume the case in which one of the pure states of two qubits is an unentangled
state (i.e., C1 = 0 or C2 = 0). In this way, the concurrence of the mixed state is given in
terms of amplitudes of SCSs and probability as

C2(ρ) = 4N 4
i p2

i

(
a2

i + b2
i

)2

∣∣∣∣∣∣∣∣
(

αi − α
′
i

)(
βi − β

′
i

)
√(

1 + |αi|2
)(

1 +
∣∣α′i∣∣2)(1 + |βi|2

)(
1 +

∣∣β′i∣∣2)
∣∣∣∣∣∣∣∣
2

,

i = 1 for C2 = 0 and i = 2 for C1 = 0.

(23)

Equation (23) illustrates that the state |Ψi〉 and its probability pi have information
about the mixed state’s entanglement. For simplicity, we take into account the case αi = βi
and α

′
i = β

′
i. The concurrence is reduced to

C2(ρ) = 4N 4
i p2

i

(
a2

i + b2
i

)2

(
αi − α

′
i

)4

(
1 + α2

i
)2
(

1 + α
′
i
2
)2 , (24)

where Ni can be obtained from Equation (17). We focus on the study of the concurrence in
terms of the parameters pi, αi and α

′
i.

We distinguish two significant limit cases:

(1) αi = α
′
i, which displays a mixed state with zero entanglement (C(ρ) = 0).

(2) αi = −1/α
′
i, which corresponds to a mixed state defined as a statistical mixture of a

maximally entangled state and a separable state with concurrence C2(ρ) = p2
i .

In Figures 3 and 4, we display the variation of the concurrence of the mixed state in
terms of the amplitudes of SCSs for p = 1/2 and p = 8/10, respectively. In the figures, it is
clear that the control of the amount of the entanglement of the mixed state can be achieved
by an appropriate choice the main physical parameters.
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Figure 3. The variation of the concurrence of the state ρ in terms of αi and α
′

i for pi = 1/2 and
ai = bi = 1/2.

Figure 4. The variation of the concurrence of the state ρ in terms of αi and α
′

i for pi = 8/10 and
ai = bi = 1/2.

These kinds of two-qubit mixed states are a significant set of quantum states [36–38]
that are extensively utilized in QIPT and more recently in the study of quantum discord
phenomenon [39].
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4. Conclusions

In the present research paper, we express the concurrence of more general two-qubit
non-orthogonal states in terms of the amplitudes of SCSs. Then, we examine them and
consider the concurrence that helps define the conditions for maximum and minimum
entanglement. The findings show that the SCSs benefit quantifying and measuring the
degree of entanglement. These states are easy and convenient to use and generate experi-
mentally [40]. Finally, we analyze the concurrence performance as a role of new parameters
for a class of mixed states with two qubits characterized by a statistical mixture of separable
and Bell states, using a simplified manifestation of concurrence in Wootters’ measure of
entanglement. We provide the range in which the entanglement value is maximal with
respect to the amplitudes of SCSs. We define families of maximally entangled mixed
states, namely frontier states that have the highest entanglement for given values of the
amplitudes of SCSs. These states can help process quantum information when having
noise because they have the highest entanglement by a proper choice of the values of
the amplitudes.
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