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Abstract: Based on the principle of reparametrization invariance, the general structure of physically
relevant classical matter systems is illuminated within the Lagrangian framework. In a straight-
forward way, the matter Lagrangian contains background interaction fields, such as a 1-form field
analogous to the electromagnetic vector potential and symmetric tensor for gravity. The geometric
justification of the interaction field Lagrangians for the electromagnetic and gravitational interactions
are emphasized. The generalization to E-dimensional extended objects (p-branes) embedded in a
bulk space M is also discussed within the light of some familiar examples. The concept of fictitious
accelerations due to un-proper time parametrization is introduced, and its implications are discussed.
The framework naturally suggests new classical interaction fields beyond electromagnetism and
gravity. The simplest model with such fields is analyzed and its relevance to dark matter and dark
energy phenomena on large/cosmological scales is inferred. Unusual pathological behavior in the
Newtonian limit is suggested to be a precursor of quantum effects and of inflation-like processes at
microscopic scales.

Keywords: diffeomorphism invariant systems; reparametrization-invariant matter systems; matter
lagrangian; homogeneous singular lagrangians; relativistic particle; string theory; extended objects;
p-branes; interaction fields; classical forces beyond electromagnetism and gravity; generally covariant
theory; gauge symmetries; background free theories
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1. Introduction

Probing and understanding physical reality goes through a classical interface that
shapes our thoughts as classical causality chains. Therefore, understanding the essential
mathematical constructions in classical mechanics and classical field theory is impor-
tant, even though quantum mechanics and quantum field theory are regarded as more
fundamental than their classical counterparts. Two approaches, the Hamiltonian and the
Lagrangian, are very useful in theoretical physics [1–6]. In general, there is a transformation
that relates these two approaches – the Legendre transform [1–4]. For reparametrization-
invariant models, however, there are problems in changing from Lagrangian to the Hamil-
tonian approach [2–5,7,8].

Fiber bundles provide the mathematical framework for classical mechanics, field theory,
and even quantum mechanics when viewed as a classical field theory. Parallel transport,
covariant differentiation, and gauge symmetry are very important structures [9,10] associated
with fiber bundles. When asking: “What structures are important to physics?”, one should
also ask: “Why one fiber bundle should be more ‘physical’ than another?”, “Why does the
‘physical’ base manifold seem to be a four-dimensional Lorentzian manifold?” [11–13], and
“How should one construct an action integral for a given fiber bundle?” [1,6,14–16]. Starting
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with the tangent or cotangent bundle seems natural because these bundles are related to the
notion of a classical point-like matter. Since knowledge is accrued and tested via experiments
that involve classical apparatus, the physically accessible fields should be generated by matter
and should couple to matter as well. Therefore, the matter Lagrangian should contain the
interaction fields, not their derivatives, with which classical matter interacts [17].

In what follows, the principle of reparametrization invariance is illustrated as a guiding
principle in formulating physically relevant models. The symmetry of reparametrization
invariance is a common feature of many important physics models but it has been often treated
as an issue that needs to be resolved to make reasonable predictions within each specific
model. Since any model based on a Lagrangian can be reformulated into an equivalent
reparametrization invariant model [2,18], this symmetry may be signaling an important
fundamental principle. Thus, focusing the discussion on models with Lagrangians that
possess such reparametrization invariance does not restrict the generality of the models
considered but instead provides an important classification of the possible physical systems
and their interactions. In a nutshell, the principle of reparametrization invariance is like the
covariance principle but about the internal coordinates of the physical process under study.

The covariance principle is effectively related to the diffeomorphism symmetry of a
manifold M. In the theory of manifolds, switching from one chart on M to another is
physically equivalent to switching from one observer to another in the spacetime of the
observer M. Thus, coordinate independence of the physical laws and their mathematical
forms when formulated in the manifold framework of M. However, the framework does not
say anything about a specific physical process E until one makes the relevant manifold model.

A physical process E can be viewed as a manifold that consists of the points involved
in the process and their relationships. Thus, processes and their studies can be viewed
as the embedding of manifolds. That is, how should E be embedded in M? For example,
the motion of a point particle is just about the trajectory of a particle as viewed as the
1-dimensional curve in the 4D space-time of the physical observers. Since a process E is
also viewed as a manifold then there are mathematical charts that describe E locally. The
description of the process (embedding E ↪→ M) should not depend on the choice made
for the charts on E. This is an additional symmetry to the covariance principle that things
should not depend on the choice of the observer’s coordinates for M.

Thus, the mathematical framework should also possess diffeomorphisms symmetry
of the manifold E. That is, in the case of point particle, a 1D curve (the trajectory) mapped
into another topologically equivalent 1D curve (but same trajectory) should not change our
understanding and the description of the motion of a point particle. Physically, one talks
about the covariance principle when considering the diffeomorphisms symmetry of a man-
ifold M and about reparametrization invariance when considering the diffeomorphisms
symmetry of the manifold E that is embedded in M.

The current research suggests that reparametrization invariance can be achieved by
using the Lagrangian formulation with Lagrangians that are homogeneous functions of
order one with respect to the velocity. This leads to all the subsequent results that justify
only electromagnetic and gravitational classical forces at macroscopic scales which is
consistent with experimental observations.

This paper aims to illustrate the possibility that physical reality and observed physical
laws are related to a mathematical construction guided by the principle of reparametrization
invariance for the embedding of manifolds. This principle suggests geometric justification
of the fundamental interaction fields for the classical long-range forces – electromagnetism
and gravity, as well as possible new classical fields. Are there observable consequences of
such fields on microscopic and/or cosmological scales? Are such fields present in nature?
Under what conditions could the relevant reparametrization invariant Lagrangians be
reduced or not with such fields to the known Lagrangians that contain only gravitational
and electromagnetic fields? These are only a few of the far-reaching questions related to
the idea of reparametrization invariance and its correspondence to the observed physical
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laws. One day, hopefully, some of the readers of this paper will be able to address these
questions fully and answer them completely.

In brief, the paper starts with the relativistic particle [7,9,14,19] aiming to illustrate
the main ideas and their generalization to extended objects (p-branes). In answering the
question: “What is the Lagrangian for the classical matter?” the proposed canonical mat-
ter Lagrangian naturally contains background interaction fields, such as a 1-form field
analogous to the electromagnetic vector potential and symmetric tensor that is usually
associated with gravity. The guiding principles needed for the construction of the La-
grangians for the interaction fields are also discussed as an illustration of the uniqueness
of the Lagrangians for the electromagnetic and gravitational fields. The authors consider
this mathematical framework to be a geometric justification of electromagnetism and grav-
ity. The framework presented here seems to be able to go beyond the Feynman’s proof
of the Maxwell and Lorentz equations that justify electromagnetism from a few simple
fundamental principles [20,21].

In Section 2, the Lagrangian for a relativistic particle is given as an example of a
reparametrization-invariant action. Section 3 contains arguments in favor of first-order
homogeneous Lagrangians; in Section 3.1 are listed some of the good and lesser prop-
erties of such models; in Section 3.2 the canonical form of the first-order homogeneous
Lagrangians is justified; and in Section 3.3 the canonical structure of a reparametriza-
tion invariant Lagrangian for an extended object (p-brane) embedded in a bulk space
M is shown to lead to some familiar Lagrangians, such as the relativistic point particle
in an electromagnetic field, the string theory Lagrangian, and the Dirac–Nambu–Goto
Lagrangian. The outlined systems are based on first-order homogeneous Lagrangians in
the velocity/generalized velocity to achieve reparametrization invariance along with the
usual general covariance. Section 4 discusses the physical implication of such Lagrangians,
in particular, in Section 4.1 the possibility of classical forces beyond electromagnetism and
gravity is studied for the simplest possible Lagrangian system with symmetric fields Sn
with n > 2, while in Section 4.2 the notion of proper time is shown to be mostly related
to the gravitational term (n = 2) of the matter Lagrangian, while in Section 4.3 the conse-
quence of utilizing un-proper time parametrization of a non-reparametrization-invariant
action is illustrated. Section 5 justifies the field Lagrangians relevant for the interaction
fields, in particular, the uniqueness of the Lagrangian for electromagnetism, as well as
the uniqueness of the Hilbert–Einstein action integral for gravity. The conclusions and
discussions are given in Section 6 followed by Section 7, which contains relevant theorems
framed as problems and exercises.

2. The Relativistic Particle Lagrangian

It is well known that localized particles move with a finite 3D speed. In an extended
configuration space (4D space-time), when the time is added as a coordinate (x0 = ct),
particles move with a constant 4-velocity (v · v = constant). The 4-velocity is constant due to
the definition vµ = dxµ/dτ that uses the invariance of the proper-time (τ) mathematically
defined via the symmetric tensor gµν (dτ2 = gµνdxµdxv). Physically the proper-time (τ)
is associated with the passing of time measured by a co-moving clock that is at rest with
respect to the particle during its motion. In this case, the action integral for a massive
relativistic particle has a nice geometrical meaning: It is the time-elapsed along the particle
trajectory [9]:

S1 =
∫

dτL1(x, v) =
∫

dτ
√

gµνvµvν, (1)√
gµνvµvν → 1 ⇒ S1 =

∫
dτ.

However, for massless particles, such as photons, the length of the 4-velocity is
zero (gµνvµvν = 0). Thus, one has to use a different Lagrangian to avoid problems due
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to division by zero when evaluating the Euler–Lagrange equations. In this case, the
appropriate “good” action is [9]:

S2 =
∫

L2(x, v)dτ =
∫

gµνvµvνdτ. (2)

Notice that the Euler–Lagrange equations obtained from S1 and S2 are equivalent, and
both are equivalent to the geodesic equation as well:

d
dτ

~v = D~v~v = vβ∇β~v = 0, (3)

vβ

(
∂vα

∂xβ
+ Γα

γβvγ

)
= 0.

In General Relativity (GR), the Levi–Civita connection ∇β, with Christoffel symbols
Γα

βγ = gαρ
(

gρβ,γ + gργ,β − gβγ,ρ
)
/2, preserves the length of the vectors (∇g(~v,~v) = 0) [9].

Therefore, these equivalences are not surprising because the Lagrangians in (1) and (2)
are functions of the preserved arc length g(~v,~v) = ~v2. In principle, however, the parallel
transport for an arbitrary connection ∇β does not have to preserve the length of a general
vector [9,10]. This is clearly seen when metric tensor is velocity dependent and thus the
usual argument will not apply [22].

Remarkably, however, going beyond length preserving parallel transport may still
hold such equivalence. For example, the Weyl’s integrable geometry does have such equiv-
alence between what one expects to be the generalized geodesic equation and the equation
derived from an appropriate Lagrangian [23]. Weyl’s integrable geometry provides a
framework that is likely to be relevant to physics [24]. It is based on the original Weyl’s
gauge symmetry idea where the length of a vector may depend on the gauge choice as well
as upon infinitesimal local displacements. In Weyl’s integrable geometry, however, this
freedom is constrained to constructions where the length of a vector does not change upon
a transport along a closed loop. In such geometry, one finds that only an action that is built
upon a co-scalar of order (−1) results in trajectory restricting equations of motion that do
correspond to the generalized geodesic equation [23] while any other choices built upon
co-scalar length l of order n 6= −1 results in the statement that dl is a closed one-form, that
is, a perfect deferential (d(dl) = 0). In Weyl’s geometry terminology a scalar, vector, and a
general tensor object Yµ...ν is a co-tensor of order n when Ỹµ...ν = βn Yµ...ν upon the gauge
change of the metric tensor g̃µν = β2 gµν. Thus, the line element dτ defined as usual to be
dτ2 = gµνdxµ dxν is a co-scalar of order (+1), then the co-tangent vector with components
vµ = dxµ/dτ is seen as a co-vector of order (−1). The mathematical framework developed
in [23] practically shows that the only reasonable choice of action for a massive particle,
within the Weyl’s integrable geometry framework, is given by the action integral (1).

The equivalence between S1 and S2 is very robust. Since L2 is a homogeneous function
of order 2 with respect to ~v, the corresponding Hamiltonian function (h = v∂L/∂v− L)
is equal to its Lagrangian (h(x, v) = L2(x, v)). As long as there is no explicit proper-time
dependence then L2 is conserved, and so is the length of ~v. Any parameter independent
homogeneous Lagrangian in~v (Ln(x, βv) = βnLn(x, v)) of order n 6= 1 is conserved because
h = (n− 1)Ln. When dL/dτ = 0, then one can show that the Euler–Lagrange equations
for L and L̃ = f (L) are equivalent under certain minor restrictions on f (see Section 4.3
for more details). This is an interesting type of equivalence that applies to homogeneous
Lagrangians. It is different from the usual equivalence L → L̃ = L + dΛ/dτ or the more
general equivalence discussed in [25]. Any solution of the Euler–Lagrange equation for
L̃ = Lα, α 6= 1 would conserve L = L1 since h̃ = (α− 1)Lα is conserved. All these solutions
are solutions of the Euler–Lagrange equation for L as well; thus Lα ⊂ L in the sense of their
set of solutions. In general, conservation of L1 is not guaranteed since L1 → L1 + dΛ/dτ
is also a first-order homogeneous Lagrangian in the velocities that is equivalent to L1.
This suggests that there could be a choice of Λ, a “gauge fixing”, such that L1 + dΛ/dτ is
conserved even if L1 is not. However, whenever L1 is conserved, then the corresponding
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equations would also be related to the geodesic Equation (3) as well. Relevant examples
will be discussed in the next paragraphs but before doing so, hands-on readers may benefit
more if they do the first four problems of the exercises in Section 7.

The simplest example is the case L1(x, v) = m
√

gµνvµvν and L2(x, v) = m
2 gµνvµvν.

Notice that the details of the mass multiplier are actually irrelevant in this case since
the corresponding Euler–Lagrange Equation (4) is insensitive to its value. The mass m,
however, comes into the picture as integral of the motion as soon as we consider the relevant
energy-momentum dispersion relation pν pν = m2. For L2 the geometric linear momentum
(pν = mgµνvµ) and the generalized linear momentum (πµ = ∂L2/∂vµ) coincide. While

in the case of L1, the generalized linear momentum π′µ = ∂L1/∂vµ =
mgµνvµ

√
gµνvµvν

differs

from the geometric one by a factor m
L1

= 1/
√

gµνvµvν. The two linear momenta can be
made the same if this factor is forced to be equal to one, that is, to use the usual choice of
proper-time parametrization that results in gµνvµvν = 1. This however, is only possible for
massive particle m 6= 0 while for massless particles it is clearly a contradiction with their
null-geodesic equation gµνvµvν = 0. Thus, for m 6= 0 the two Lagrangians are equivalent
as long as one recognizes the use of the proper-time parametrization. However, there is a
slight nuance here, based on the reparametrization invariance of S1 one can see the choice of
proper-time parametrization as a matter of convenience that results in gµνvµvν = 1, while
for L2 this is a matter of “physics” content since S2 does not possess reparametrization
invariance. Thus, a “clever” choice of parametrization that reflects the physical reality
has to be imposed. After all, it is still the same proper-time parametrization but it is
justified after looking at the Hamiltonian function for L2 and recognizing that such choice
of parametrization would show explicitly that the Hamiltonian function corresponds to an
integral of motion. If one uses arbitrary un-proper parametrization then one is likely to
come across factious acceleration as discussed in Section 4.3.

As stated already, the mass multiplier is irrelevant as seen from the corresponding
Euler–Lagrange Equation (4) and therefore one can consider S2 only with L2(x, v) =
gµνvµvν and use pν pν = m2 as a way of assessing the mass of a particle. This is particularly
useful for particles that follow the null-geodesic equation gµνvµvν = 0 while the treatment
of S1 is more complicated [9]. The problem with S1 steams from the fact that now the
generalized momentum π′µ is ill defined and cannot be easily made equal to the geometric
momentum pµ. Nevertheless, if one keeps track of the factor

√
gµνvµvν when analyzing

S1 one can see that the corresponding Euler–Lagrange equations are the same as those for
S2 if one imposes the condition gµνvµvν = constant. Thus, in this example S1 and S2 are
equivalent as long as gµνvµvν is an integral of the motion. This condition is easily seen to
be valid for S2 due to the fact that the Hamiltonian function for L2 is equal to L2. Thus
any solution related to L2 will correspond to a solution for L1 that satisfies, in this case a
supplemental condition, gµνvµvν = constant. Therefore, solutions for L1 that do not satisfy
this “physical” condition will be un-physical since they will not be solutions related to L2.
In this respect L2 ⊂ L1.

The “physical” assumption gµνvµvν = constant is a key ingredient of the parallel
transport considerations in Einstein General Relativity (GR), which seems to be obeyed
by nature. After all, studying processes out there in the universe, especially these that
are particularly far from our labs, can be easily understood if this condition was satisfied
and thus resulting in the corresponding geodesic Equation (3). However, the past few
decades of studies on far away galaxies and the universe as a whole have brought some
puzzling results that have been attributed to dark matter and dark energy phenomena that
have not be confirmed in our local laboratories. It is often commonly expected that dark
matter and dark energy are probably a new kind of particles and/or fields that have not
yet been experimentally discovered, but perhaps various upcoming efforts [26] to address
current discordances present between the different cosmological probes could result in the
detection of new interaction fields that may even be relevant to phenomenon of inflation.
Very recent research results, literally just submitted for publication by the authors, in effort
to understand the Scale Invariant Vacuum (SIV) theory [24,27–29] and its limitations has
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resulted in encouraging connections with standard models of inflation[30]. Interestingly,
these dark phenomena may be illuminated and could be understood quite well within the
Integrable Weyl geometry paradigm that deviates from the standard Einstein GR parallel
transport considerations [27,29]. The Integrable Weyl geometry does allow for departing
from gµνvµvν = constant. Thus, it provides a framework with a larger set of solutions,
those solutions to L1 that are not part of the L2 space of solutions, to be explored for a better
understanding of nature.

In the above example, the mass multiplier m in the Lagrangian was not relevant for
the equations of motion (4) but the mass was showing up as an integral of the motion
via the relevant energy-momentum dispersion relation pν pν = m2. This is usually the
rest-mass of a particle. In general, however, when there are additional interactions, say
electromagnetic, then the mass term in the Lagrangian is playing the role of a coupling
constant to the gravitational field but it can also manifest itself as a Lagrange multiplier.

Indeed, if one starts with the re-parametrization invariant Lagrangian L = qAαvα +

m
√

gαβ(x)vαvβ, which is usually interpreted as the relativistic Lagrangian of a massive
particle due to the mass parameter m. The mass here is actually a coupling constant to
the gravitational field gαβ, just like the charge q is playing the role of coupling constant to
the electromagnetic vector potential Aα. By utilizing the reparametrization invariance and

defining the proper time τ such that: dτ =
√

gαβdxαdxβ ⇒
√

gαβvαvβ = 1, then one can

effectively consider L = qAαvα + (m + χ)
√

gαβvαvβ − χ as our model Lagrangian. Here

χ is a Lagrange multiplier to enforce
√

gαβvαvβ = 1 that breaks the reparametrization

invariance explicitly. Then one can write it as L = qAαvα + (m + χ)
gαβvαvβ√

gαβvαvβ
− χ and

using
√

gαβvαvβ = 1 one arrives at L = qAαvα + (m + χ)gαβvαvβ − χ. One can deduce

a specific value for χ (χ = −m/2) by requiring that L = qAαvα + m
√

gαβ(x)vαvβ and

L = qAαvα + (m + χ)gαβvαvβ − χ produce the same Euler–Lagrange equations under the

constraint
√

gαβvαvβ = 1. Then, by dropping the overall constant term, this finally results

in the familiar equivalent Lagrangian: L = qAαvα + m
2 gαβvαvβ where τ has the usual mean-

ing of proper-time parametrization such that
√

gαβvαvβ = 1. This quadratic Lagrangian is
often considered as more convenient to work with [9] due to a variety of unpleasant prop-
erties of the original re-parametrization invariant Lagrangian. In particular, Lagrangians
quadratic in the velocity are preferred since the corresponding Hamiltonian function is
quadratic in the momentum and apparently is non-zero. However, if one is to keep track of
all the manipulations above, then one would notice that the apparently quadratic Hamil-
tonian H = m

2 gαβvαvβ + χ is identically zero when utilizing gαβvαvβ = 1 and χ = −m/2.
The next section is devoted to the justification of why the original re-parametrization
invariant Lagrangian may be more relevant for understanding the physical reality despite
its unpleasant properties. The importance of such re-parametrization invariant Lagrangian
as a way of adding metric structure to an affine space has been emphasized previously by
Randers in his paper “On an Asymmetrical Metric in the Four-Space of General Relativity”
along the various connections to the treatment of gravity and electromagnetism within a
similar framework [22].

3. Homogeneous Lagrangians

Suppose one does not know classical physics, which is mainly concerned with trajec-
tories of point particles in some space M but is told that can derive it from a variational
principle if the right action integral S =

∫
Ldτ is used. By following the above example,

one would wonder: “Should the smallest ‘time distance’ be the guiding principle?” when
constructing L. If yes, “How should it be defined for other field theory models?” It seems
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that a reparametrization-invariant theory can provide us with a metric-like structure [7,22],
and thus, a possible link between field models and geometric models [31].

In the example of the relativistic particle (Section 2 above), the Lagrangian and the
trajectory parameterization have a geometrical meaning. In general, however, parame-
terization of a trajectory is quite arbitrary for any observer. If there is the smallest time
interval that sets space-time scale, then this would imply a discrete space-time structure
since there may not be any events in the smallest time interval. The Planck scale is often
considered to be such a special scale [32]. Leaving aside recent hints for quantum space-
time from loop quantum gravity and other theories, one should ask: “Should there be any
preferred trajectory parameterization in a smooth 4D space-time?” and “Are we not free to
choose the standard of distance (time, using natural units c = 1)?” If so, then one should
have a smooth continuous manifold and our theory should not depend on the choice of
parameterization.

If one examines the Euler–Lagrange equations carefully:

d
dτ

(
∂L
∂vα

)
=

∂L
∂xα

, (4)

one would notice that any homogeneous Lagrangian of order n (L(x, α~v) = αnL(x,~v))
provides a reparametrization invariance of the equations under the transformations τ →
τ/α,~v→ α~v. As a side remark, notice that for homogeneous Lagrangian in x, the Euler–
Lagrange equations possess scale invariance upon rescaling of the coordinates x. In general,
such symmetries are related to the freedom of choosing a system of units by the laboratory
observer. However, the symmetry is often broken due to the natural scales relevant to the
specific process under study. Next, note that the action integral S involves an integration
that is a natural structure for orientable manifolds (M) with an n-form of the volume. Since
a trajectory is a one-dimensional object, then what one is looking at is an embedding:

φ : R1 → M. (5)

This means that the map φ pushes forward the tangential space φ∗ : T(R1) = R1 →
T(M), and pulls back the cotangent space φ∗ : T∗(R1) = R1 ← T∗(M). Thus, a 1-form
ω on M that is in T∗(M) (ω = Aµ(x)dxµ) will be pulled back on R1 (φ∗(ω)) and there
it should be proportional to the volume form on R1 (φ∗(ω) = Aµ(x)(dxµ/dτ)dτ ∼ dτ),
allowing one to integrate

∫
φ∗(ω):∫

φ∗(ω) =
∫

Ldτ =
∫

Aµ(x)vµdτ.

Therefore, by selecting a 1-form ω = Aµ(x)dxµ on M and using L = Aµ(x)vµ one
is actually solving for the embedding φ : R1 → M using a chart on M with coordinates
x : M→ Rn.

The Lagrangian obtained this way is first-order homogeneous in the velocity v with
very simple dynamics. The corresponding Euler–Lagrange equation is Fνµvµ = 0 where
F is a 2-form (F = dA); in electrodynamics, this is the Faraday’s tensor. If one relaxes
the assumption that L is a pulled back 1-form and assume that it is just a homogeneous
Lagrangian of order one, then one finds a reparametrization-invariant theory that has an
important physics-related dynamics.

3.1. Pros and Cons of Homogeneous Lagrangians of First Order

Although most of the features listed below are more or less self-evident, it is important
to compile a list of properties of the first-order homogeneous Lagrangians in the velocity ~v.

Some of the good properties of a theory with a first-order homogeneous Lagrangian are:

(1) First of all, the action S =
∫

L(x, dx
dτ )dτ is a reparametrization invariant. Thus, there is

no fictitious acceleration due to un-proper time parametrization (see Section 4.3);
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(2) For any Lagrangian L(t, xi, dxi

dt ) one can construct a reparametrization-invariant La-
grangian by enlarging the space from xi : i = 1, . . . , n to an extended space-time
xµ : µ = 0, 1, . . . , n, x0 = t [2,18]: L(t, xi, dxi

dt ) → L(xµ, dxµ

dx0 )
dx0

dτ . The Euler–Lagrange
equations for these two Lagrangians are equivalent as long as v0 = dt/dτ is well
behaved and τ is also a reasonable “time”-parametrization choice;

(3) Parameterization-independent path-integral quantization is possible since the action
S is reparametrization invariant;

(4) The reparametrization invariance may help in dealing with singularities [33];

(5) It is easily generalized to extended objects (p-branes) that is the subject of Section 3.3.

The list of trouble-making properties in a theory with a first-order homogeneous
Lagrangian includes:

(1) There are constraints among the Euler–Lagrange equations [2] since det
(

∂2L
∂vα∂vβ

)
= 0;

(2) It follows that the Legendre transformation (T(M) ↔ T∗(M)), which exchanges
velocity and momentum coordinates (x, v)↔ (x, p), is problematic [4];

(3) There is a problem with the canonical quantization approach since the Hamiltonian
function is identically ZERO (h ≡ 0) [5].

Constraints among the equations of motion are not an insurmountable problem since
there are procedures for quantizing such theories [5,34–37]. For example, instead of using
h ≡ 0 one can use some of the constraint equations available, or a conserved quantity, as
Hamiltonian for the quantization procedure [5]. Changing coordinates (x, v)↔ (x, p) seems
to be difficult but it may be resolved in some special cases by using the assumption that
a gauge Λ has been chosen so that L → L + dΛ

dτ = L̃ = const. The above-mentioned
quantization difficulties would not be discussed since they are outside of the scope of this
paper. A new approach that turns the problem h ≡ 0 into a virtue and naturally leads
to a Dirac-like equation is under investigation and the subject of a forthcoming paper, for
some preliminary details see [38,39]. Currently the new quantization approach has resulted
in interesting connections and new view points at some of the key properties of physical
systems [18,40]. Even though the connection to quantum physics is beyond the scope of
the current paper, we would like to point out that the results in [18,40] concerned with the
consistent quantization of re-parametrization invariance systems, provide a new viewpoint on
the choice of the Hamiltonian constraint and the meaning of process parametrization within
a chosen quantization frame. In particular, it is shown that the positivity of the rest energy
is related to the requirement of normalizability of the states by utilizing the Hamiltonian
constraint into a quantum constrain (ĤΨ = 0). In this respect, the results in [18,40] are
reproducing the familiar quantum results where the constraint eliminates the ghost states and
the ordinary mass shell constraint is related to the Klein–Gordon equation [41,42].

3.2. Canonical Form of the First-Order Homogeneous Lagrangians

Hopefully, by now the reader is puzzled, and is wondering along the following line
of thinking: “What is the general mathematical expression for first-order homogeneous
functions?” In this section, the notion of the canonical form of the first-order homogeneous
Lagrangian and why such a form may be a useful mathematical expression from a physics
point of view is justified.

First, note that any symmetric tensor of rank n (Sα1α2 ...αn = S[α1α2 ...αn ], where [α1α2 . . . αn]
is an arbitrary permutation of the indexes) defines a homogeneous function of order n
(Sn(~v, . . . ,~v) = Sα1α2 ...αn vα1 . . . .vαn ) in the velocity v. The symmetric tensor of rank two is
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denoted by gαβ. Using this notation, the canonical form of the first-order homogeneous
Lagrangian is defined as:

L(~x,~v) =
∞

∑
n=1

n
√

Sn(~v, . . . ,~v) = (6)

= Aαvα +
√

gαβvαvβ + . . . + m
√

Sm(~v, . . . ,~v).

Whatever is the Lagrangian for the matter, it should involve interaction fields that
couple with the velocity ~v to a scalar. Thus, the matter Lagrangian Lmatter(~x,~v; Fields Ψ)
would depend also on the interaction fields. When the matter action is combined with
the action (

∫
L[Ψ]dV) for the interaction fields Ψ, then one obtains a full background inde-

pendent theory. Then, the corresponding Euler–Lagrange equations contain “dynamical
derivatives” on the left-hand side and sources on the right-hand side:

∂γ

(
δL

δ(∂γΨ)

)
=

δL
δΨ

+
∂Lmatter

∂Ψ
.

There are many ways to write first-order homogeneous functions [7]. For example,

one can consider the following expression L(~x,~v) =
(
hαβvαvβ

)(
gαβvαvβ

)−1/2 where h and
g are seemingly different symmetric tensors. However, each one of these fields (h and g)
has the same source type (∼ vαvβ):

∂L
∂hαβ

=
L(~x,~v)

hγρvγvρ vαvβ,
∂L

∂gαβ
=

L(~x,~v)
gγρvγvρ vαvβ.

Theories with two metrics have been studied before [43,44]. However, at this stage
of our discussion, it seems unclear why the same source type should produce different
interaction fields.

Some other relevant examples come from the field of Finsler spacetime geometry
and its applications to physics [45,46], in particular the work of Bogoslovsky seems to be
culminating in an experimentally testable framework [47,48]. In his approach, Bogoslovsky
is utilizing a Lagrangian ∼ f0(~n,~v)b

√
1− v2/c2 that has an explicit isotropy breaking

effect ~n due to a conformal factor f0(~n,~v) based on zeroth-order homogeneous function
f0 in the velocity of a particle ~v. The power b is a parameter that at b = 0 results in the
usual “gravity”-like interaction while when b = 1, then the system seems to be more
involved in an “electromagnetic”-like interaction. Using a standard gravity-like interaction
along with a zeroth-order homogeneous function is an alternative mathematical approach,
L = f0(x, v)

√
gµνvµvν, since one expects gravity to always be present. Furthermore, such

functional form for L(x, v) has a good justification based on the Ehlers–Pirani–Schild
axiomatic approach to Finsler geometry along with some additional requirements on
the functional form of f0 [46]. Unfortunately, besides the Bogoslovsky case where the
isometry breaking field ~n and its consequences are well studied, the approach based on
L = f0(x, v)

√
gµνvµvν is not yet helpful in understanding the general structure of f0,

the meaning of the interaction fields, which will be involved in its content, and their
classification. Even more, it is not clear if electromagnetic phenomenon could be described
appropriately with such particular Lagrangian.

The advantage of the canonical form of the first-order homogeneous Lagrangian (6)
is that each interaction field, which is associated with a symmetric tensor, has a unique
matter source that is a monomial in the velocities:

∂L
∂Sα1α2 ...αn

=
1
n
(Sn(~v, . . . ,~v))

1−n
n vα1 . . . .vαn . (7)

Therefore, the canonical form (6) is a natural choice for further discussion of the first-
order homogeneous Lagrangians. Moreover, if one embraces the principle of one-to-one
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correspondence between an interaction field and its source, then the canonical form of the
first-order homogeneous Lagrangian (6) via (7) justifies, from the mathematical point of
view, the presence of the electromagnetic and gravitational fields in nature.

If one could devise a unique procedure to express any first-order homogeneous func-
tion in the canonical form above by using only the first two terms, then this could be
viewed as a mathematical explanation of the unique physical reality of only two funda-
mental classical interactions – the electromagnetic and gravitational interactions. The first
suggestion for such a procedure is given in problem 11 of the exercises in Section 7. When
applied to a Lagrangians that contain only electromagnetism and gravity only (n = 1 & 2),
then the procedure recovers the original Lagrangian. For other Lagrangians it can produce
effective electromagnetism and gravity-only Lagrangian. However, the equivalence or the
specific accuracy of the approximation to the original equations of motion is not yet clear.

Following the Randers and Finsler path one could formally split a general reparametriza-
tion invariant model based on first-order homogeneous Lagrangian L(x, v) into elec-
tromagnetic and gravitational-like interactions as an even and odd part of L(x, v) =
L(−)(x, v) + L(+)(x, v). Where L(±)(x, v) = (L(x, v) ± L(x,−v))/2. Electromagnetic ef-
fects are then related to qAµ(x,~v/c) := ∂L(−)(x, v)/∂vµ where the electromagnetic (E&M)
four-vector potential has velocity dependence only on the special 3D velocity ~v = d~x/dt;
thus, it is homogeneous function of order zero. Example of such velocity dependent E&M
fields and its importance has been discussed by Carlip [49]. Next the gravitational effects
could now be related to the even part of the Lagrangian by considering the corresponding
Finslerian metric m2gµν(x, v) := ∂2L(+)(x, v)2/∂vµ∂vν that is expecting to be a homoge-
neous function of order zero in the velocity and thus to have dependence only on the special
3D velocity ~v = d~x/dt as well. Again the velocity dependent gravitational potentials are
essential to the understanding of the relation to retarded potentials and so on [49]. This is a
simple justification of why there are only gravity and electromagnetism on a classical level
where the test particles are probing the fields far from their sources. However, there are
further details to be worked out, like the equations satisfied by these classical fields, and as
to what level this procedure actually reproduces the original Lagrangian i.e., see exercise 11.
The answers to all these questions however depend on the specific Lagrangian to be studied.
An alternative is to study the canonical form (6) were the fields are velocity independent.

Thus, it is important to investigate the additional higher-order terms and their rele-
vance to our physical reality. However, before entering into such a discussion, which is the
focus of Section 4, it will be interesting to touch upon the geometric description behind the
principle of reparametrization invariance. In this respect, the next subsection will discuss
examples of the relevant Lagrangians that provide an illustration of the power of that
principle in the justification of important Lagrangian-based models such as relativistic
point particle, strings, and p-branes in theoretical and mathematical physics.

3.3. E-dimensional Extended Objects

At the beginning of the current section, the classical mechanics of a point-like particle
has been discussed as a mathematical problem concerned with the embedding φ : R1 → M
(5). The map φ provides the description of the trajectory (the word line) of the particle in
the target space M. The actual coordinate realization of the map φ depends on the choice of
the Lagrangian L and the interaction fields in M due to the other objects that are already in
M. According to the canonical form of the first-order homogeneous Lagrangians (6), a point
particle would interact with electromagnetic-like vector field Aµ(x) and gravitation-like
(symmetric rank 2 tensor) field gµν(x), as well as with other possible classical long-range
fields (7) that are described via rank n > 2 symmetric tensors Sα1α2 ...αn(x).

These interaction fields can be viewed as an embedding of higher-dimensional objects.
For example, Aµ(x) may be viewed as an embedding of M into space with the same
dimension m, for electromagnetism, it is 4D space into another 4D space. For gravity, it
is about 4D space into a 10D space since there are 10 independent entries in a symmetric
4× 4 matrix gµν(x). However, one does not have to consider only the interaction fields for
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a point particle. One can consider a more general extended object called p-brane. In this
sense, the classical mechanics of a point-like particle that has been discussed as a problem
concerned with the embedding φ : R1 → M is actually a 0-brane that is a one-dimensional
object. Although time is kept in mind as an extra dimension, one should not insist on any
special structure associated with a time flow. For this reason there will be no 0-label(s),
which usually singles out the time component(s), in this section.

Let us think of an extended object as a manifold E with dimension, denoted also by
E, dim E = E = p + 1 where p = 0, 1, 2, . . . . In this respect, one has to solve for φ : E→ M
such that some action integral is minimized. From this point of view, one is dealing with
the mechanics of a p-brane. In other words, how is this E-dimensional extended object,
which is representing the “trajectory” of a p-brane, submerged in M, and what are the
relevant interaction fields? By using the coordinate charts on M (x : M → Rm), one can
think of this as a field theory over the E-manifold with a local fiber Rm. Thus the field ~φ is
such that:

~φ : φα = xα ◦ φ : E→ M→ Rm. (8)

Following the relativistic point particle discussion after Equation (5), but this time
using the pullback φ∗ of the embedding map φ in (8), one considers the space of the E-forms
over the manifold M, denoted by ΛE(M) with dimension D = (m

E) =
m!

E!(m−E)! . In a specific

coordinate basis a general element Ω in ΛE(M) has the form Ω = Ωα1 ...αE dxα1 ∧ dxα2 ∧
· · · ∧ dxαE . Since m ≥ E for such an embedding then there are D linearly independent E-
forms in ΛE(M). Let us use an arbitrary label Γ = 1, 2, . . . , D to index the different E-forms
over M; thus, ΩΓ = ΩΓ

α1 ...αE
dxα1 ∧ dxα2 ∧ · · · ∧ dxαE are total of D linearly independent

E-forms in ΛE(M).
Next, let us introduce “generalized velocity vectors” with components ωΓ :

ωΓ =
ΩΓ

dz
= ΩΓ

α1 ...αE

∂(xα1 xα2 . . . xαE)

∂(z1z2 . . . zE)
, (9)

dz = dz1 ∧ dz2 ∧ · · · ∧ dzE.

In the above expression (9), ∂(xα1 xα2 ...xαE )
∂(z1z2 ...zE)

stands for the Jacobian of the transforma-
tion from coordinates {xα} over the manifold M to coordinates {za} over the embedded
manifold E. The Jacobians provide a natural basis for the corresponding space. Note
that Γ in the above expression is a place holder for a particularly interesting vector in
that space or a specific coordinate. For example, if these ΩΓ forms are taken to be the
Jacobians, then we will use the short hand notation YΓ = ∂(xα1 xα2 ...xαE )

∂(z1z2 ...zE)
with Γ being the

integer valued labeling function of the anti-symmetric ordered set, e.g., lexicographically,
{{α1, α2 . . . αE} : αi ∈ {1, . . . , m}} corresponding to an element there; therefore, with val-
ues in the range {1, . . . , D}. Thus, while ΩΓ stands for a particularly interesting vector in
that space ΛE(M), its coordinates, in that space, then are ΩΓ

α1 ...αE
. The general ΩΓ becomes

YΓ when the coordinates are the corresponding Kronecker-delta functions: ΩΓ
α1 ...αE

= δΓ,α.
In the case (8) the pull-back of an E-form ΩΓ must be proportional to the volume

dz = dz1 ∧ dz2 ∧ · · · ∧ dzE over the manifold E, just as in the corresponding discussion
after Equation (5):

φ∗
(

ΩΓ
)

= ωΓdz1 ∧ dz2 ∧ · · · ∧ dzE =

= ΩΓ
α1 ...αE

∂(xα1 xα2 . . . xαE)

∂(z1z2 . . . zE)
dz1 ∧ dz2 ∧ · · · ∧ dzE.
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Therefore, it is suitable for integration over the E-manifold. Thus, the action for the
embedding φ is:

S[φ] =
∫

E
L
(
~φ, ω

)
dz =

∫
E

φ∗(Ω) =
∫

E
AΓ(~φ)ω

Γdz.

This is a homogeneous function in ω and is reparametrization (diffeomorphism)
invariant with respect to the diffeomorphisms of the E-manifold. If one relaxes the linearity
L(~φ, ω) = φ∗(Ω) = AΓ(~φ)ω

Γ in ω, then the canonical expression for the first-order
homogeneous Lagrangian gives:

L
(
~φ, ω

)
=

∞

∑
n=1

n
√

Sn(ω, . . . , ω) = (10)

= AΓωΓ +
√

gΓ1Γ2 ωΓ1 ωΓ2 + . . . m
√

Sm(ω, . . . , ω).

At this point, there is a strong analogy between the relativistic point particle and a
general p-brane. However, there is a difference in the number of components. In particular,
~x,~v, and ~φ = ~x ◦ φ have the same number of components (m = dim(M)), however, the
“generalized velocity” ω has a bigger number of components D = (m

E) ≥ m that are related
to the Jacobians (9) [50]. The linearly independent general elements of this space are labeled
with the index Γ to allow index contraction with a relevant interaction field AΓ, gΓ1Γ2 , or
Sn

Γ1 ...Γn
.

Some specific examples of p-brane theories correspond to the following familiar
Lagrangians in theoretical and mathematical physics:

• The Lagrangian for a 0-brane (relativistic point particle in an electromagnetic field,
dim E = 1 and ωΓ → vα = dxα

dτ ) is:

L
(
~φ, ω

)
= AΓωΓ +

√
gΓ1Γ2 ωΓ1 ωΓ2 → L(~x,~v)

L(~x,~v) = qAαvα + m
√

gαβvαvβ;

• The Lagrangian for a 1-brane (strings, dim E = 2) [5] is:

L
(

xα, ∂ixβ
)
=
√

YαβYαβ,

using the notation:

ωΓ → Yαβ =
∂(xα, xβ)

∂(τ, σ)
= det

(
∂τxα ∂σxα

∂τxβ ∂σxβ

)
=

= ∂τxα∂σxβ − ∂σxα∂τxβ.

In this case, the index Γ for labeling the components of the generalized velocity vector
ωΓ corresponds to the set of pairs {α, β} out of m elements. For example, for m = 4
this will be 4!/2!2 = 6 not 4 like for the standard velocity vector in M;

• The Lagrangian for a general p-brane has the Dirac-Nambu-Goto term (DNG) [51]:

L
(

xα, ∂Exβ
)
=
√

YΓYΓ.

Notice that most of the Lagrangians above, except for the relativistic particle, are
restricted only to gravity-like interactions. In the case of the charged relativistic particle,
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the electromagnetic interaction is very important. The corresponding interaction term for
p-branes is known as a Wess–Zumino term [52].

The above discussion can be viewed as a justification of important class of model
Lagrangian systems via the principle of reparametrization invariance when applied to the
mechanics of point particle as well as to the mechanics of extended objects. The principle
leads naturally to important, well-known, and studied electromagnetic-like (n = 1) and
gravity-like (n = 2) interaction terms. However, the framework also suggests new possible
fields (n > 2). Thus, it is important to investigate the additional higher-order terms and
their relevance to our physical reality.

4. Classical Forces Beyond Electromagnetism and Gravity

So far, the focus of the paper has been to justify and encourage the study of models
based on first-order homogeneous Lagrangians by emphasizing their general properties,
their potential to provide a mathematical justification of the observed macroscopic physical
reality, and along the way, to set the stage for the study of diffeomorphism invariant
mechanics of extended objects by following the close analogy with the relativistic point
particle. Consequently, it is important to understand these new terms in the canonical
expression of the first-order homogeneous Lagrangians (6). In this respect, this section
discusses the implications of such interaction terms beyond electromagnetism and gravity
as given by (6).

Before we go into more detail on this exploration, it should be pointed out that the
results which follow are somewhat similar, in the sense that such behavior is unusual for
a standard classical particle, to what has been observed in the a la Bogoslovsky studies.
In particular, in the Bogoslovsky’s model the mass dependent terms in the corresponding
energy-momentum dispersion relation receive additional parameter b-dependence due
to the presence of the specific conformal factor, in this respect one should probably talk,
for example, about renormalization of the kinematical mass. Another effect observed
is the presence of zero momentum even when the velocity is zero [45,48]. The work of
Bogoslovsky will not be considered in any further details since the focus of the current study
is on a different mathematical structure of the first-order homogeneous Lagrangians than
the one studied by Bogoslovsky. In this respect the purpose of this section is to emphasize
the unusual behavior when going beyond standard gravity and electromagnetism, that is
pure Sn type interactions with n > 2 rather than confirming or comparing the details of
such unusual effects.

Let us begin our journey by recognizing that one can circumvent the linear dependence,
(det( ∂2L

∂vα∂vβ ) = 0) due to the reparametrization symmetry, of the equations of motion

derived from L = n
√

Sn(~v, . . . ,~v) by adding an extra set of equations ( dL
dτ = 0). This way

the equations of motion derived from L = n
√

Sn(~v, . . . ,~v) and dL
dτ = 0 are equivalent to the

equations of motion derived from L = Sn(~v, . . . ,~v). This is similar to the discussion at the
end of Section 2. As noticed before, this is a specific choice of parametrization such that
gαβ(x)vαvβ is constant.

If one focuses on a specific nth-term of re-parametrization invariant Lagrangian (6),
that is, L = (Sn(v))

1/n in the parametrization gauge Sn(v) = const then the equations of
motion are:

Sn/α/β
dvβ

dτ
= Sn,α − Sn/α,βvβ. (11)

Here Sn,α denotes partial derivative with respect to xα when Sn/α indicates partial
derivative with respect to vα. From this expression, it is clear that n = 2 is a model that
results in velocity independent symmetric tensor Sn/α/β(v) that can be associated with
the metric tensor. Usually, such a metric tensor is assumed invertible and therefore the
differential equations can be written in the form acceleration as a function of velocity
and position. However, in general, the left-hand side Sn/α/β(v) goes as vn−2 while the
right-hand side as vn which will result in the general behavior that the acceleration grows
as v2 at most. This is consistent with the known velocity dependence of the equation of the
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geodesics as well as the equation of the geodesic deviations. The growth is not usually an
issue since there is a limitation on the magnitude v < c due to the finite propagation speed.
Thus, for a suitably chosen units, c = 1 one should have |vα| ≤ 1. However, if n > 2 and if
the maximum speed limit 1 is reached along one coordinate, then there could be issues for
keeping the system at rest with respect to another coordinate direction since a term like
1/vn−2 will grow towards infinity when v → 0. For homogeneous, isotropic, and static
Sn background field, with invertible symmetric tensor Sn/α/β(v), a particle described by
(11) should be moving with a constant non-zero speed in all directions, in order to avoid
infinite acceleration effects.

4.1. Simplest Pure Sn(v) Lagrangian Systems

To further illustrate our point above and to gain a better understanding of the Sn(v)
terms, let us consider the simplest possible pure Sn(v) Lagrangian systems by assuming:

• Curvilinear coordinate system such that: Sn(v) = f (t, r, w, u) where w = dx0/dτ and
u = dr/dτ;

• Static fields, that is: Sn(v) = f (r, w, u);

• Inertial coordinate system in the sense of Newtonian like space and time separation,
that is: St...tr...r = 0 except for St...t and Sr...r components.

Thus, the expression for Sn(v) takes upon the following form:

Sn(r, w, u) = ψ(r)wn + φ(r)un. (12)

Notice that here the symbols u and w are used to denote the spatial r and time-like
velocity coordinates instead of the previously used symbol v. Later in the discussion, this
symbol v will be used to denote the spatial speed in the Newtonian limit using coordinate-
time parametrization v = dr/dt. This way the corresponding equations of motion for
L = Sn(r, w, u) are:

du
dτ

= − u2φ′(r)
(n− 1)φ(r)

+
1

un−2
wnψ′(r)

n(n− 1)φ(r)
, (13)

dw
dτ

= − wuψ′(r)
(n− 1)ψ(r)

. (14)

One can recognize the connection of the fields ψ(r) and φ(r) to the energy and linear
momentum of a particle by looking at the generalized momentum: pα = ∂L

∂vα . In particular,
ψ(r) is related to the energy of the particle E = p0 = ∂L

∂w , especially when considering
τ = x0 = ct in co-moving frame u/w = v/c ≈ 0 using coordinate-time parametrization
where w = 1. In this respect, if the energy of the particle is conserved then ψ(r) = constant
and therefore ψ′(r) = 0. The “radial” acceleration at macroscopic scales is then:

ar =
dv
dt

= − v2φ′(r)
(n− 1)φ(r)

. (15)

Here, the speed of light c, the maximum speed of propagation cancels out and u =
dr/d(ct) = v/c is related to the spatial speed v. If n = 2 and φ(r) = br then one recovers
the usual kinematical expression for the normal acceleration of a particle moving in a
circular orbit (an = v2/r).

In general, however, depending on the specifics of the model and details of φ(r)
one may obtain deviations from the flat space or the metric model for gravity. Such new
models and forces could be relevant at large/cosmological scales where the dark-matter
problem manifests itself in the deviation of the kinematical acceleration from the anticipated
gravitational acceleration in galaxies and clusters of galaxies. Depending on the sign of
φ′(r)/φ(r) this term could be “dissipative” in the sense that the system will settle at v = 0
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after a sufficiently long time if the sign of φ′(r)/φ(r) is positive. If the sign is negative
then one has “repulsive gravity” that could be relevant to the dark-energy problem since
the system will have an unstable v = 0 configuration. Any further speculations about
this equation are poorly justified without any underlining theory that predicts φ(r) and
compares it to experimental observations.

At the microscopic scale, however, one may have ψ′(r) 6= 0. This could suggest that the
energy p0 may not be conserved due to the interaction of the particle with the environment;
thus, it may be subject to energy exchange. However, p0 should nevertheless be conserved
since the model under consideration has no explicit coordinate-time dependence. This can
be illustrated using the equation for w (14). The equation can be rewritten in a form that
makes it easy to be integrated and to see the conservation of the energy p0:

d ln(w) = − 1
(n− 1)

d ln(ψ)⇒

ψ(r)wn−1 = constant = p0/n (16)

The corresponding generalized linear momentum then will be:

pr = nφ(r)un−1 =
φ(r)
ψ(r)

p0

(v
c

)n−1
(17)

This shows that the model considered does not have the Bogoslovsky non-zero rest
momentum behavior and the effects due to Sn fields on the velocity-momentum relation
seems to be non-linear and highly “relativistic”.

Looking back at the first Equation (13) for u, when n = 2 the spatial force has two

parts, one is velocity independent force proportional to ∝ p2
0ψ′(r)

23ψ(r)2φ(r) , and the other part

could be “dissipative” if the sign of φ′(r)/φ(r) is positive or “repulsive gravity” if the sign
of φ′(r)/φ(r) is negative as discussed earlier.

For n > 2 the physics interpretation of the equation of motion (13) leads to unusual
behavior:

(n− 1)
w2

du
dτ

= −v2φ′(r)
c2φ(r)

+
cn−2

vn−2
ψ′(r)
nφ(r)

. (18)

It seems that an observer cannot detect a particle to be in complete rest (u/w =
v/c = 0) for a finite time interval ∆t. If the speed of a particle was zero (v = 0) at some
moment then the particle should have an infinite acceleration du/dτ at that moment since
du/dτ ∝ w2v2−n → ∞. Thus, the particle will instantaneously leave the state v = 0 for a
non-zero velocity state rather than staying in the zero velocity state. Depending on the
details of the fields ψ′(r) and φ′(r) there may not be a zero external force configuration for
such a particle in general. Nevertheless, specific fields ψ′(r) and φ′(r) may allow for zero
acceleration state du/dτ = 0 and non-zero spatial velocity state u/w = v/c 6= 0:

vn =
cnψ′(r)
nφ′(r)

.

However, such state would imply that the observer cannot be in the co-moving frame
of the particle anymore since the coordinate time t will not be synchronized with the
“proper-time” τ of the particle dw/dτ 6= 0 and thus w = dx0/dτ 6= constant.

The above-discussed pathology is strikingly similar to the manner in which quantum
mechanical particles behave: Particles cannot be localized with speed as close to zero as
one wishes to; even more, the conservation of energy needs to be amended due to external
fields (16). Therefore, such terms with n > 2 may play important role in the understanding
of the mechanism behind the inflation driven early stage of the universe, as well as in the
derivation of the Dirac equation containing fundamental sub-atomic interactions beyond
electromagnetism and gravity (for preliminary discussion see [38,39,53]). It should be noted
that such pathological behavior may be attributed to radiation-reaction or the problem of
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self-force (see i.e., Abraham–Lorentz and Abraham–Lorentz–Dirac forces [54,55]) which
is resolved in quantum electrodynamics via renormalization that requires adding higher
order counter-terms to the Lagrangian [56].

Not being able to observe a particle at rest seems somewhat in contradiction to our
classical physics reality. However, the more appropriate Lagrangian should take into
account that “empty space” has Minkowski geometry:

L = m
√

ηαβvαvβ + κ n
√

Sn(~v, . . . ,~v).

Here ηαβ = (1,−1, . . . ,−1) is the Lorentz invariant metric tensor. For Lagrangians
that contain gravity (S2(v) term) the problem for spatial velocity limit v→ 0 does not exist
as discussed above for the case n = 2. In the non-relativistic limit (v/c→ 0), the present
model of pure Sn interaction in Minkowski spacetime results in an acceleration dv

dτ that is

the same up to O(v2) terms for L = const parametrization as well as for
√

ηαβvαvβ = const
parametrization. Thus the non-relativistic limit cannot distinguish these two choices of
parametrization.

4.2. Choice of Proper Time Parametrization

It was mentioned earlier that for parameter independent homogeneous Lagrangians
of order α, one has h = (α− 1)L and thus dL/dλ = 0 except for α = 1 that singles out
first-order homogeneous Lagrangians. When working with re-parametrization invariant
Lagrangian model, one can choose parametrization so that Ldλ = dτ or effectively thinking
of L(x, v) = const. This brings the homogeneous Lagrangians of first order back in the
family dL/dλ = 0.

This appears to be the choice of parametrization to be made λ→ τ if the structure of L

is not known. However, it seems that
√

gαβvαvβ = const is preferred [22] as physically more
relevant due to its connection to the lifetime of unstable elementary particles. Especially,
due to the lack of experimental evidence that the lifetime of charged elementary particles is
affected by the presence of electromagnetic fields. This can be related to the observation that
for any Lagrangian of the form L = vµ Aµ(x, v), where x is space-time coordinate and v is a
world-line velocity vector (4-vector for 3+1 space-time), one can define a velocity dependent
symmetric tensor gαβ(x, v) = 1

2 (Aα/β(x, v) + Aβ/α(x, v)) where Aβ/α(x, v) denotes partial
derivative with respect to vα of Aβ(x, v). Then one can show that d

dλ

(
vαgαβ(x, v)vβ

)
= 0

along the trajectory determined by the Euler–Lagrange equation for L = vµ Aµ(x, v) – just
like the usual geodesic equation of motion as in the discussion presented in Section 2. This
symmetric tensor gαβ(x, v) does not depend on the velocity independent electromagnetic
vector potential Aµ(x) and thus the length of the vector as calculated with gαβ(x, v) is
not affected by the presence of electromagnetic interaction. Therefore, a proper time

parametrization that coincides with the traditional definition: dτ =
√

gαβ(x, v)dxαdxβ can
be introduced.

The name of this special choice of τ parametrization derives from the fact that it is
generally covariant and thus independent of the observer’s coordinate system and can be
interpreted as the passing of time measured in the rest frame of the system under study.
Therefore, it is often of the form dτ =

√
g00(t)dt and thus can be integrated along the

laboratory coordinate time t. The laboratory coordinate time t is up to the observer at rest as
part of the laboratory measuring tools for various processes. Unfortunately, for first-order
homogeneous Lagrangians, one has vαgαβ(x, v)vβ = 0 because Aµ(x, v) is a homogeneous
function of zero degree and thus vβ Aµ/β(x, v) = 0. This seems to make it difficult to

define the proper time parametrization in the usual way: dτ =
√

gαβ(x, v)dxαdxβ for such
first-order homogeneous Lagrangians L = vµ Aµ(x, v).

In this respect, for first-order homogeneous Lagrangians in the velocity, it is not clear

if one has to choose “proper time” parametrization so that L = const, or
√

gαβvαvβ = const,
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or L−Aµ(x)vµ = const. The choice L−Aµ(x)vµ = const may very well be a suitable choice
since the weak and the strong forces do have an effect on the lifetime of elementary particles;
for example, neutrons are unstable in free space but stable within nuclei. In connection
to this, note that the other terms beyond gravity (Sn with n > 2) are seemingly related
to the internal degrees of freedom of the elementary particles. This should become more
clear once a non-commutative quantization (v→ γ) is applied to the re-parametrization
invariant Lagrangian, which will be discussed elsewhere (for some preliminary results
see [38,53]). Unfortunately, it is not clear how to extract the Aµ(x)vµ component of any
first-order homogeneous Lagrangian L mathematically, which is applicable to a physically
relevant process, that is not assuming electromagnetic interaction a priory. Mathematically,
one can extract Aµ(x) from first-order homogeneous Lagrangian L by considering Aµ(x) =
L(x, v)/µ = pµ at vα → 0; however, physically v0 should never be zero. Nevertheless, in the
case of the Simplest Pure Sn(v) Lagrangian Systems discussed in the previous subsection,
one can define “proper time” parametrization under certain conditions.

Based on the general discussion after Equation (11) and on the specific example
Equation (13), the condition for reasonable parametrization such as “proper time” for
Sn(v) is surprisingly restrictive. It demands n = 2 so that the laboratory clock could be at
rest with respect to the particle studied. If n > 2 there is this pathological behavior that
moves the particle “instantaneously” away from the rest frame of the clock. Thus, only
n = 2 allows for a rest frame within the model Lagrangians discussed. Then by using the
conservation of p0 (16) one has: 2ψ(r)cdt = p0dτ where almost everything is a constant (c
and p0) and ψ(r) seems to be related to the gravitational potential at the location r where
the particle is. In conclusion, it seems that “proper time” parametrization is only possible
for n = 2 systems based on the analyses of the Simplest Pure Sn(v) Lagrangian Systems
and the discussion above. Thus, gravity is essential for the notion of the “proper time”
parametrization and no other Simple Sn(v) Lagrangian System provides an alternative
parametrization that makes sense as the passing of time in the rest frame of a particle.

To conclude this section, one may naively extrapolate the scale at which such new
forces may be dominant. Considering that electromagnetic forces are relevant at an atomic
and molecular scale when gravity is dominating the solar system and at galactic and
cosmological scales, then one may deduce that terms beyond gravity may be relevant at
galactic and intergalactic scales. Along this line of reasoning, a possible determination of
the structure of such forces from the velocity distribution of stars in galaxies is an interesting
possibility. In this respect, such forces can be of relevance to the dark matter and dark
energy cosmology problems. The pathological dv/dτ → ∞ when v→ 0, behavior of pure
Sn for n > 2 interactions could also be of relevance to inflation models. Finally, as already
mentioned, such terms are essential for bringing in fields beyond the electromagnetic fields
into the Dirac equation when considering the quantization of the first-order homogeneous
Lagrangians in the velocity.

4.3. Fictitious Accelerations in Un-Proper Time Parametrization

In the previous section, we discussed the concept of proper time parametrization.
The coordinate time is evidently another choice of time parametrization. In general, if the
action is reparametrization invariant then one should be able to use any choice of time
parametrization for a process. However, if the action is not reparametrization invariant
then one may find a puzzling phenomenon due to the choice of time parametrization for
a process. The presence of a fictitious acceleration in un-proper time parametrization of
non-reparametrization invariant action is the topic of the current section.

In the framework of Special and General Relativity, Carlip derived that retardation
effects resulting from velocity dependent field potentials give rise to forces that are linear
(for electromagnetism) and quadratic (for gravity) extrapolations pointing towards the
instantaneous source location [49]. Note that this remarkable result is about the force on a
test particle that does not alter (by definition) the overall field produced by the source.
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The superposition of fields is a hallmark of the Maxwell equations for electromag-
netism, however, this is not the case for gravity. Therefore, the overall gravitational field of
a large realistic gravitationally bound system is somewhat more complicated. However, for
a realistic two body system, the superposition of two or more fields does not represent the
correct gravitational field needed to assess the motion of the bodies. Within the classical
Lagrangian approach, the simplest option that may show some superposition-like proper-
ties could be based on the familiar quadratic Lagrangian L2(x, v) = gµνvµvν. For a point
particle at point xµ

0 in the space-time such Lagrangian can clearly exhibit superposition up
to a leading order term due to N sources that are far from each other so that:

gµν = ηµν +
N

∑
i=1

gµν
i (x0; xi, vi), gµν

i (x0; xi, vi) =
2Gmi
(r(vi))3 σ

µ
i σν

i . (19)

In the above equation we follow Carlip’s notation where r(vi) is the velocity dependent
distance that is covariant. The subscripts i > 0 is reserved for the point sources, while
i = 0 or no subscript is reserved for the test particle location. Note that no superscripts
for xi and vi indicate the position and velocity four-vectors in 4D space-time. Finally,
due to the linearity of the Euler–Lagrange equations of motion derived from the action
A2 =

∫
L2(x, v)dt with respect to the corresponding Lagrangian it follows that there will

be a superposition of the gravitational fields. Notice that the coordinate time of the test
particle x0

0 = ct is naturally the time parameter to describe the evolution within the action
integral. The above setup has a potential to agree with Carlip’s derivations in [49].

Now, let us consider the case when there are two bodies with a significant deviation
from the test-particle idea. In this case, one may want to start with the construction above
for the metric field, since it may stand the chance of almost linear superposition when the
bodies are sufficiently far apart. However, in the setting up of the action A =

∫
L(x, v)dτ

one has to decide on what would be the meaning of the time-like parameter τ. For example,
in the case of the Planet-Moon system, should the time be the Planet time or the Moon time
or the center of mass time? And if we choose the center of mass, would the center of mass
point-like potential be a good enough approximation of the true gravitational field? In a
true general relativistic approach the choice of coordinate system is irrelevant but this path
is long and difficult to walk. Instead, let us consider an equivalent Lagrangian formulation
that has reparametrization invariant action: A1 =

∫
L1(x, v)dτ =

∫ √
L2(x, v)dτ. Note

that now the linear superposition of gravitational fields is most likely violated. Since this is
parametrization independent, we can consider τ to be any coordinate time we desire. Such
expression for the gravitational part of the Lagrangian is a standard choice in Special and
General Relativity along with the condition gµνvµvν = ±1, where the choice ± depends
on the choice of the metric signature. This choice means that the proper-time τ of the test
particle has been chosen as the overall time parameter. As a result one has L̇ = 0 along the
path of the test particle and the equations of motion derived from A2 or A1 are the same.
What happens if one relaxes this choice (L̇ = 0)?

If one derives the Euler-Lagrange equations, one would find that the equations derived
from the action: A f =

∫
f (L(x, v))dt are:

dpµ

dt
= ∂µL− f ′′

f ′
L̇pµ, pµ =

∂L
∂vµ ⇒

dpµ

dt
= ∂µL +

L̇
2L

pµ, when f (L) =
√

L. (20)

From the above expressions one can see that if the time parameter is such that L̇ = 0
then the extra term in the right-hand-side will vanish for any reasonable action A f . Thus,
all such Euler–Lagrange equations will be equivalent. While this is highly desirable, one is
very likely to use unsuitable time parameter and/or metric field due to deviation of nature
from our ideal abstract model and their inability to account for everything. Thus, L̇ 6= 0 is
a very likely situation resulting in a fictitious force.

For deviations from Einstein GR based on the Integrable Weyl geometry, in particular
the Scale Invariant Vacuum (SIV) theory [24], one often considers a metric gµν = λ−2gµν

GR
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along with a metric connection κµ = −∂µ ln λ. In SIV, one has λ(t) ∝ t−1 (only time
dependence) and in the weak field limit of homogenous and isotropic space one has
usually an extra acceleration: κ0~v = ~v/t, where t is the cosmic time since the Big Bang [28].
If we adopt the same view about our model metric gµν in L, then we have:

dvµ

dt
= ∂µL + κ0vµ, when L = gµνvµvν. (21)

Thus, one can see the appearance of fictitious force that enhances the motion of a
particle that acts as a non-conservative force. Such fictitious force seems to be reflecting
the deviation of our models from the true reality. There could be a lot of things coming
into interaction with our gravitating system as well as internal changes such as tidal effects
that transfer rotational energy into internal energy and so on. In this respect the force is
dissipative-like, since mechanical energy is transferred into internal energy of the system.
This should not affect the overall gravitational field but our inability of utilizing the true
proper time parametrization for the description of the system will bring in an apparent
violation of the usual conservation laws. Thus, the use of un-proper (un-proper seems
better name than improper, since any time parametrization should be ok, but only in
proper time parametrization one will see clearly the conservation of familiar quantities)
time parametrization results in extra fictitious terms.

To understand better the effect consider the original generalized momentum case (22)
and L = λ−2LGR with d(LGR)/dt = 0, which results in:

dpµ

dt
= ∂µL + κ0 pµ, where κ0 = −λ̇/λ. (22)

If we utilize the usual expectation for our model Lagrangian L that leads to the usual
energy and momentum conservation (∂tL = 0 and ∂φL = 0), that is, absence of explicit
time and angle φ dependence for our model Lagrangian L. Then the corresponding energy,
given by the quadratic Hamiltonian (h ∝ pµvµ − L = gµνvµvν) and angular momentum
(J) conservation equations are modified and result in the following new expressions:

dh
dt

=
d(λ−2LGR)

dt
= 2κ0h ⇒ ḣ

h
= 2κ0, (23)

dJ
dt

= ∂φL + κ0 J = κ0 J ⇒ J̇
J
= κ0. (24)

The practical meaning of the new results is the possibility to observe non-conservation
effects ḣ 6= 0 and J̇ 6= 0 when our experiment reaches accuracy resulting in fractional
uncertainty compatible to κ0δt at high time resolution. Even though the expressions
above are written as derivatives these are actually very small effects that accumulate over
an extended period of observational data. These non-conservation effects are usually
buried in much bigger fluctuations of the corresponding quantities as seen in actual
astronomical observations that are usually explained by tidal effects and similar dissipative
processes. Recent research results suggest possible new viewpoint for understanding and
probably explaining puzzling measurement results within the Solar System – the paper is
in preparation by the authors and in collaboration with Prof. M. Krizek. The main point
here is the presence of such effects due to un-proper time parametrization of a process
along with non-reparametriosation invariant action for that process.

5. The Background Fields and Their Lagrangians

The uniqueness of the interaction fields and their source types has been essential for
the selection of the matter Lagrangian (10). The first two terms in the Lagrangian are easily
identified as electromagnetic and gravitational interaction. The other terms describe new
classical forces. It is not yet clear if these new terms are actually present in nature or not,
so one shall not engage them actively in the following discussion but our aim is to start
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preparing the stage for such research and discussions. At this point, one has a theory with
background fields since the equations for the interaction fields are not known. To complete
the theory, one needs to introduce actions for these interaction fields.

One way to write the action integrals for the interaction fields Sn in (10) follows the
case of the p-brane discussion. There, one has been solving for φ : E→ M by selecting a
Lagrangian that is more than a pull-back of an E-form over the manifold M. In a similar
way, one may view Sn as an M-brane field theory, where Sn : M → Sn M and Sn M is the
fiber of symmetric tensors of rank n over M. This approach, however, cannot terminate
itself since new interaction fields would be generated as in the case of φ : E→ M.

Another way assumes that AΓ is an n-form. Thus, one may use the structure of the
external algebra Λ(T∗M) over M to construct objects proportional to the volume form over
M. For any n-form (A) objects proportional to the volume form ΩVol can be constructed
by using operations in Λ(T∗M), such as the external derivative d, external multiplication
∧, and the Hodge dual ∗. For example, A ∧ ∗A and dA ∧ ∗dA are forms proportional to
the volume form ΩVol.

The next important ingredient comes from the symmetry in the matter equation. That
is, if there is a transformation A→ A′ that leaves the matter equations unchanged, then
there is no way to distinguish A and A′ by experiments and measurements via the matter
that is obeying these equations. Thus the action for the field A should obey the same
symmetry (gauge symmetry) as those found in the equations of motion for the matter.

5.1. Justifying the Electromagnetic Action

Let us consider now the matter equation for 4D electromagnetic interaction which is
d~v/dτ = F ·~v where F is the 2-form obtained by differentiation of the 1-form A (F = dA),
and the gauge symmetry for A is A→ A′ = A + d f since the external differential operator
d obeys d2 = 0. The reasonable terms, which can result in the volume form ΩVol for the
field Lagrangian L(A) of a 1-form field A, are then: A ∧ ∗A, dA ∧ dA, and dA ∧ ∗dA
and of course A ∧ A ∧ A ∧ A. The first and last terms do not conform with the gauge
symmetry A → A′ = A + d f and the second term (dA ∧ dA) is a boundary term since
dA ∧ dA = d(A ∧ dA) that gives

∫
M d(A ∧ dA) = A ∧ dA at the boundary of M; this

term is interesting in the quantum Hall effect. Therefore, one is left with a unique action
for fields based on a one-form A = Aµ(x)dxµ that respects the gauge symmetry of the
corresponding Euler–Lagrange equations of motion for matter: A→ A′ = A + d f – this is
exactly the electromagnetic field generated by moving charges jµ = ρvµ and described by
the standard action:

S[A] =
∫

M
dA ∧ ∗dA + Aµ jµ =

∫
M

F ∧ ∗F + Aµ jµ.

Note that if F was considered as a fundamental field rather than A then in 4D one
can also consider the term F ∧ F. However, as soon as one recognizes that F = dA then
this becomes the boundary term (dA ∧ dA) discussed above. Furthermore, once F = dA
is recognized as a two-form and expressed in the coordinate basis Fµνdxµ ∧ dxν then one
can also consider a gauge invariant term of the form: Fµνdxµ ∧ dxν ∧ ∗(dxµ ∧ dxν) as
part of the action. However, such a term is zero due to permutation symmetry since
Wνµ = Wµν = dxµ ∧ dxν ∧ ∗(dxµ ∧ dxν) ∝ ηµµηννdx0 ∧ dx1 ∧ dx2 ∧ dx3; thus, the anti-
symmetric F and the symmetric W contract to zero (FµνWµν = 0).

5.2. Justifying the Einstein–Hilbert–Cartan Action

For our next example, let us look at the terms related to the matter equations that
involve gravity. There are two possible choices of matter equation. The first one is the
geodesic equation d~v/dτ = ~v · Γ · ~v where Γ is considered as a connection 1-form that
transforms in the usual way Γ→ Γ + ∂g under coordinate transformations by the group
element g. This type of transformation, however, is not a “good” symmetry since restricting
the gauge transformation Γ → Γ + Σ to transformations Σ = ∂g such that ~v · Σ ·~v = 0,
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would mean to select a subset of coordinate systems, inertial systems, for which the action
S is well defined and satisfies S[Γ] = S[Γ + Σ]. Selecting a specific class of coordinate
systems for the description of a physical phenomenon is not desirable, so this option shall
not be explored any further.

In general, the Euler–Lagrange equations assume a background observer who defines
the coordinate system. For electromagnetism, this is acceptable since neutral particles are
such privileged observers. In gravity, however, there is no such observer, and the equation
for matter should be relational. Such an equation then is the equation of the geodesic
deviation: d2~ξ/dτ2 = R(v, v) ·~ξ, where R is a Lie algebra (TM) valued curvature 2-form
R = dΓ + [Γ, Γ]. A general curvature 2-form is denoted by F →

(
Fαβ

)i
j. Here, α and β are

related to the tangential space (TM) of the base manifold M. The i and j are related to
the fiber structure of the bundle over M where the connection (Γα)

i
j that defines

(
Fαβ

)i
j is

given. Clearly, the Riemann curvature tensor R is a very special curvature because all of
its indices are of the TM type. For that reason, it is possible to contract the fiber degree of
freedom with the base manifold degree of freedom (indices). Thus, an action linear in R
is possible. In general, one needs to consider a quadratic action (Fi

αβj ∧ ∗F
j
αβi), i.e., trace of

F ∧ ∗F.
Using the symmetries of the Riemann curvature tensor R (Rαβ,γρ = −Rβα,γρ =

−Rαβ,ργ = Rγρ,αβ), one has two possible expressions that can be proportional to the
volume form Ω. The first expression is possible in all dimensions and can be denoted
by R∗, which means that a Hodge dual operation has been applied to the second pair of
indices (Rαβ,∗(γρ)). The R∗ action seems to be related to the Cartan–Einstein action for
gravitation S[R] =

∫
Rαβ ∧ ∗(dxα ∧ dxβ) [57]. The other expression is only possible in a

four-dimensional space-time and involves full anti-symmetrization of R (Rα[β,γ]ρ)) denoted
by R∧. However, the fully anti-symmetric tensor R∧ is identically zero due to symmetry
considerations related to the permutation group [58]. Since the symmetries of the equation
of the geodesic deviation are encoded in the Riemann curvature tensor R, then once again
one arrives at the unique Einstein–Hilbert–Cartan action for gravity based on R.

6. Conclusions and Discussion

In conclusion, the discussion in this paper showed the potency of the principle of
reparametrization invariance when realized via the canonical-form of the first-order ho-
mogeneous Lagrangians in the velocity or generalized velocity by using the principle of
one-to-one correspondence between an interaction field and its source to justify the funda-
mental interaction fields for the classical long-range forces via the geometrical concepts of
embedding of manifolds as well as the natural differential structures over manifolds. In
summary, the structure of the matter Lagrangian (L) for extended objects, and in particular
the point particle, have been discussed. Imposing reparametrization invariance of the
Lagrangian based action S =

∫
E L(x, ω) naturally leads to a first-order homogeneous

Lagrangian. In its canonical form, the Lagrangian L contains electromagnetic and grav-
itational interactions, as well as interactions that are not yet experimentally discovered
but may be detected as a result of various efforts to address current discordances present
between the different cosmological probes [26].

The fields Aµ(x) and gµν(x) associated with n = 1 and n = 2 homogeneous La-
grangians built from monomials in the velocities Sn(v, . . . , v) are clearly related to elec-
tromagnetic and gravitational interactions. Especially, if one recognizes that the gauge
symmetry of these interaction fields are encoded in the 2-forms F and R that naturally
appear in the corresponding equations of motion – the Euler–Lagrange equation that
corresponds to the Lorentz force d~v/dτ = qF~v for charged particles and the equation of
the geodesic deviations for massive particles d2~ξ/dτ2 = R(v, v)~ξ.

If one extrapolates from the strengths of the two known classical long-range interac-
tions, then it is natural to expect that the new terms in L should be important, if present in
nature at all, at big cosmological scales, such as those relevant to the dynamics of galactic
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and galactic clusters. Thus, perhaps relevant to the dark matter and dark energy phenom-
ena [26]. Furthermore, the pathological behavior (18) discussed for the simplest model
of Sn(v, . . . v) fields when n > 2, may be relevant to the inflation processes in the early
universe [26]. At microscopic scales such n > 2, fields may be useful in justifying the
interactions in the standard model of elementary particles upon suitable quantization that
recovers the Dirac equation but with additional interactions beyond electromagnetism and
gravitation.

If one is going to study the new interaction fields Sn(v, . . . v), n > 2, then the guiding
principles for writing field Lagrangians, as discussed in the examples of electromagnetism
and gravity (Section 5), may be a useful starting point. Furthermore, it may be useful
to apply the outlined constructions to gravity by considering it as a 3-brane in a 10-
dimensional target space (gαβ : M→ S2M) and to compare it with the 10D supergravity.

If such Sn(v, . . . v) related forces are not present in nature then one needs to understand
why nature is not taking advantage of such possibilities. The choice of the canonical
Lagrangian is based on the assumption of one-to-one correspondence between interaction
fields and the type of sources. If one can show that any first-order homogeneous function
can be written in the canonical form proposed, then this would be a significant step towards
our understanding of the fundamental interactions in nature, especially if one can show
that only n = 1 and n = 2 effective terms are needed. Note that an equivalent expression
can be considered as well: L = Aα(~x,~v)vα. This expression is simpler and is concerned
with the structure of the homogeneous functions of order zero Aα(~x,~v). In any case,
understanding the structure of the homogeneous functions of any order seems to be an
important mathematical problem with significant implications for physics.

7. Examples and Exercises

1. Show that gµνvµvν = constant along the trajectory of a particle is a necessary and
sufficient condition for Euler–Lagrange equations corresponding to S1 (1) and S2 (2)
to be equivalent to each other and to the geodesic equation (3). In the traditional case
of velocity independent metric see [22];

2. Show that for any Lagrangian L(x, v) that is a homogeneous function in the veloc-

ity ~v of order n 6= 1 the corresponding Hamiltonian function h = vα
(

∂L
∂vα

)
− L is

proportional to the Lagrangian, that is, h = (n− 1)L;

3. Show that any time independent Lagrangian L(~x,~v), which is a homogeneous func-
tion in velocity ~v of order n 6= 1, is an integral of the motion with respect to the
corresponding Euler–Lagrange equations for L;

4. Consider a Lagrangian that is a constant of the motion; that is, dL/dτ = 0. Show that
any solution of the Euler–Lagrange equations for L is also a solution for L̃ = f (L)
under certain minor and reasonable requirements on f , such as L̃ = f (L) 6= 0 and
L̃′ = f ′ 6= 0;

5. Show that if v0 = dt/dτ is well behaved (v0 6= 0 over the duration of the pro-
cess studied) then the Euler–Lagrange equations for the reparametrization-invariant
Lagrangian L(xµ, vµ) = L(xµ, vi/v0)v0, where i = 1, . . . , n, µ = 0, 1, . . . , n and
x0 = t, vi = dxi/dτ, v0 = dt/dτ, are equivalent to the Euler–Lagrange equations
for coordinate-time parametrization (τ = t) choice for L(t, xi, dxi/dt). Hint: Use
that L(xµ, vi/v0) is a zero-order homogeneous function with respect to vµ and no-
tice the relationship between the Hamiltonian function h for the initial Lagrangian
L(t, xi, dxi/dt) and the generalized momentum p0 = ∂L/∂v0 for the reparametrization-
invariant Lagrangian L(xµ, vµ) = L(xµ, vi/v0)v0;

6. Show that ∑β vβ ∂2L
∂vα∂vβ = 0 if L is first-order homogeneous Lagrangian. Thus,

det
(

∂2L
∂vα∂vβ

)
= 0, since in an extended space-time one usually expects v0 6= 0’
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7. Consider the constraint
√

gαβvαvβ = 1 implemented via a Lagrangian multiplier χ

in the Lagrangian L = qAαvα + (m + χ)gαβvαvβ − χ. Show that the value of χ is

required to be χ = −m/2 if L = qAαvα + m
√

gαβ(x)vαvβ and L = qAαvα + (m +

χ)gαβvαvβ − χ are to result in the same Euler–Lagrange equations;

8. Show that the function Sn(r, w, u) defined in Equation (12) is an integral of motion for
the equations given by (13) and (14);

9. Consider theLagrangian L = m
√

ηαβvαvβ + κ n
√

Sn(~v, . . . ,~v), where ηαβ = (1,−1, . . . ,−1)
is the Lorentz invariant metric tensor. Show that in the non-relativistic limit (v→ 0), the Euler–
Lagrange equations for the acceleration dv

dτ are the same up to O(v2) terms whether L = const

or
√

ηαβvαvβ = const parametrization is imposed. Thus the non-relativistic limit cannot
distinguish these two choices of trajectory parametrization;

10. Show that solutions of the Euler–Lagrange equations for L = vµ Aµ(x, v), where
x is a space-time coordinate and vµ is a world-line velocity vector (4-vector for
3+1 space-time), satisfy d

dλ

(
vαgαβ(x, v)vβ

)
= 0 for the velocity dependent metric

gαβ(x, v) = 1
2 (Aα/β(x, v) + Aβ/α(x, v)) with Aβ/α(x, v) being a partial derivative

with respect to vα of Aβ(x, v);

11. Choose a specific Lagrangian L̃(x, v) that is a homogeneous function of first or-

der in v, then consider the Lagrangian L = vµ Aµ(x) +
√

gαβvαvβ where the fields

gαβ(x) and Aµ(x) are defined via the following expressions: Aµ(x) = 1
2 (L̃(x, v)−

L̃(x,−v))/µ

∣∣∣v=(1,
−→
0 )

and gαβ(x) = 1
4 (L̃(x, v) + L̃(x,−v))2

/α/β

∣∣∣v=(1,
−→
0 )

. Compare the

corresponding Euler–Lagrange equations of motions for L̃ and L. At what order k of
O(vk) are the differences?
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