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Abstract: The development of the mathematical modeling of Casson fluid flow and heat and mass
transfer is presented in this paper. The model is subjected to the following physical parameters:
shrinking parameter, mixed convection, concentration buoyancy ratio parameter, Soret number, and
Dufour number. This model is also subjected to the inclined magnetic field and shrinking sheet at a
certain angle projected from the y- and x-axes, respectively. The MATLAB bvp4c program is the main
mathematical program that was used to obtain the final numerical solutions for the reduced ordinary
differential equations (ODEs). These ODEs originate from the governing partial differential equations
(PDEs), where the transformation can be achieved by applying similarity transformations. The
MATLAB bvp4c program was also implemented to develop stability analysis, where this calculation
was executed to recognize the most stable numerical solution. Numerical graphics were made for the
skin friction coefficient, local Nusselt number, local Sherwood number, velocity profile, temperature
profile, and concentration profile for certain values of the physical parameters. It is found that all the
governed parameters affected the variations of the Casson fluid flow, heat transfer, mass transfer, and
the profiles of velocity, temperature, and concentration. In addition, a stable solution can be applied
to predict the impact of physical parameters on the actual fluid model by using a mathematical fluid
model.

Keywords: mathematical modeling; double-diffusive; casson fluid; exponentially shrinking; stability
analysis; MATLAB bvp4c

1. Introduction

Double-diffusive convection, or double diffusion, is a type of convection in which the
process of transferring heat is induced by the concentration and temperature difference
that occurs within the involved physical systems. The two components (concentration or
temperature gradients) are under the controlling factor of gravitational acceleration, and
they have various rates of diffusion. Double diffusion occurs naturally in lakes, oceans,
solar pounds, and the atmosphere. Furthermore, this type of convection exists in industrial
applications such as crystal growth, chemical manufacturing, energy storage, and food
processing. Pioneering reports of the fundamental concept in double-diffusive convec-
tion have been introduced, especially in natural convection [1–5]. Turner [1] presented
a theoretical report on double diffusion, discussing the aspects of fluid layers and in-
terfaces. Schmitt [2] summarized the application of double-diffusive convection in an
ocean (namely oceanography), especially for a salt finger. The production of crystal from
cooled magma due to double-diffusive convection is described in detail by Huppert and
Sparks [3]. Ostrach [4] described the main role of the driving force in convection fluid
flow, i.e., gravitational force. A comparison between theoretical and experimental reports
on fundamental double-diffusive convection was made by Viskanta et al. [5], and related
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phenomena regarding this type of convection are also discussed. Non-Newtonian fluid is a
fluid with different characteristics in any way from those of Newtonian fluids. These fluids
demonstrate either shear thickening or shear thinning. Shear thinning occurs when the
viscosity of the fluid reduces as the shear rate enhances. On the contrary, shear thickening
occurs when the viscosity of the fluid increases due to the decrement in the shear rate.
One model of non-Newtonian fluid is Casson fluid, where a model of blood flow through
narrow arteries demonstrates Casson fluid behaviors.

There are pioneering works regarding double-diffusive Newtonian fluid convection.
Magnetohydrodynamic double-diffusive mixed convection in a Newtonian fluid, pass-
ing through a linear stretching surface in a porous medium of the Darcian model, was
considered by Bég et al. [6]. Double-diffusive mixed convection Newtonian fluid from an
exponential function of a stretching surface by applying a numerical technique, namely the
Keller box method, was explored by Srinivasacharya and RamReddy [7]. Subsequently,
the problem by Srinivasacharya and RamReddy [7] was extended by Sreenivasulu and
Bhaskar Reddy [8] by adding the effects of viscous dissipation and thermal radiation. A
numerical study of Newtonian fluid flow induced by an exponential permeable stretching
sheet, designed in a three-dimensional model, was presented by Hayat et al. [9]. Their
mathematical model included the impacts of a heat source/sink and a chemical reaction.
Isa et al. [10] developed a stability analysis of dual-numerical solutions, reporting the case
of double-diffusive mixed convection Newtonian fluid flow bounded by an exponentially
shrinking sheet in the presence of the following parameters: Soret, Dufour, mixed convec-
tion, the buoyancy ratio, and shrinking. Hazirah et al. [11] reported the numerical findings
of heat and mass transmission together with the features of Newtonian fluid flow, where
the fluid is bounded by an inclined stretching/shrinking sheet. Roşca et al. [12] selected the
most stable and physically relevant in actual fluid among the dual-numerical solution for
the double-diffusive convection of a Newtonian fluid. The solutions they produced were
under the condition of when the sheet was stretched or shrieked linearly. They also applied
the Lie group symmetry technique to obtain the ordinary differential equations (ODEs).
The similarity between the techniques of Srinivasacharya and RamReddy [7], Sreenivasulu
and Bhaskar Reddy [8], Hayat et al. [9], Isa et al. [10], and Hazirah et al. [11] are as follows:
they used the appropriate term, which is exp(x/2L), in the boundary conditions for the
parts of the concentration and temperature distributions. As a result, the final numerical
findings fulfill the fixed boundary conditions, and this term is accepted to proceed with
the subsequent calculations.

The latest reports on double-diffusive convection in Casson fluid have been published.
The characteristics of double-diffusive mixed convection with the limitations of a chemical
reaction, thermal radiation, the Soret and Dufour parameters, and exponential variation
of the stretching surface were studied by Sharada and Shankar [13]. The description of
double-diffusive three-dimensional magnetohydrodynamics radiating Casson fluid was
reported by Gireesha et al. [14], who used a numerical method, namely the Runge–Kutta–
Fehlberg fourth-fifth-order (RKF45) method. The report provided by Gireesha et al. [14]
considers the restrictions when the fluid is bounded by convective conditions and when the
sheet beyond the fluid is stretched linearly. Kumar et al. [15] performed a numerical finding
(RKF45) to obtain results on the double-diffusive mixed convection of Casson fluid induced
by a sheet stretched in a nonlinear function. The steady magnetohydrodynamics double-
diffusive Casson fluid beyond a permeable surface was explored by Pal and Roy [16]. The
surface they used was stretched or shrieked by a nonlinear variation. They also included
the effects of a chemical reaction, viscous dissipation, Ohmic dissipation, thermophoresis,
and Brownian motion. The unsteady state of mixed convection in Casson fluid due to a
stretched linear sheet was reported by Ullah et al. [17]. They set up boundaries with the
conditions at the boundary, namely slip and convective effects. Das et al. [18] described the
effects of the Soret–Dufour parameter, slip parameter, unsteadiness parameter, porosity
parameter, and a chemical reaction on an unsteady magnetohydrodynamics Casson fluid.
Prasad et al. [19] applied the finite-element method to analyze the unsteady state of Casson
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fluid flow bounded by an accelerated vertical wavy plate. The system [19] was governed
by an inclination angle, chemical reaction, heat generation, and thermal radiation. Triple-
diffusive Casson fluid convection along a horizontal plate saturated with two various salts,
which form three components of diffusion, were solved numerically by Archana et al. [20].
These components are temperature gradient, concentration gradient for the first salt, and
concentration gradient for the second salt. The stagnation point of Casson fluid flow over a
cylinder-covered catalyst layer was studied by Alizadeh et al. [21], subjected to the effect
of the Soret–Dufour parameter and chemical species transfer. Casson nanofluid flow over
a nonlinear inclined stretching sheet was studied by Rafique et al. [22] with the impacts
of convective boundaries, thermal radiations, Brownian motion, and thermophoresis
diffusion. Recently, Lund et al. [23,24] produced multiple numerical solutions on the
mathematical model of Casson fluid by taking into account the additional factors: (1) Stefan
blowing and slip conditions [23] and (2) convective condition and stagnation flow [24].

The convection induced by the transmission of two components simultaneously, mass
and heat, are known as Soret and Dufour effects, respectively. The temperature difference
induces mass transfer (Soret effect), and the concentration difference generates heat transfer
(Dufour effect). From experimental reports, the diffusion components (heat and particles)
become beneficial when these two gradients are very large. Finally, the Soret and Dufour
impacts play a significant role in this type of convection. The boundary layer fluid flow
with the Soret–Dufour parameters has significant contributions to heat insulation, compact
heat exchangers, paper production, drying technology, and catalytic reactors [25]. The
impacts of the Soret–Dufour parameter in double-diffusive mixed convection Newtonian
fluid [6–11] and Casson fluid [13–15,17–21] were published. Furthermore, the study of
Soret–Dufour effects on other types of fluids or for the various forms have been reported.
Khan and Sultan [26] studied Eyring–Powell fluid in a cone by researching the aspects of
double-diffusive convection with Soret–Dufour impacts. They implemented the optimal
homotopy analysis method (OHAM) in their problem. The impact of the Soret–Dufour
parameters on double-diffusive mixed convection in a lid-driven cavity was explained
by Kefayati [27], who used Newtonian and shear-thinning fluids. They used the finite-
difference lattice Boltzmann method (FDLBM) to deal with their numerical problem. The
analytical and numerical solutions to double-diffusive convection in a binary fluid were
obtained by Lagra et al. [28], with the presence of the Soret and Dufour parameters. The
comparison among analytical and numerical solutions in this problem [28] showed good
agreement. Kasmani et al. [29] inspected the presence of Soret–Dufour effects and thermal
radiation on the double-diffusive flow of nanofluid submerged in a permeable wedge.
Their governing equations were solved by the fourth-order Runge–Kutta–Gill method
combined with the shooting and Newton–Raphson methods.

The literature review shows that the stability analysis of the double-diffusive Casson
fluid flow bounded by an exponential function of the shrinking sheet, but the inclination
angles at the magnetic field and shrinking sheet are not yet reported. Previous reports
of stability analysis on numerical results related to boundary layer fluid flow and heat
and mass transfer can be found by the following papers: (1) Casson fluid [23,24] and (2)
nanofluid [30–32]. The effects of the mixed convection parameter, concentration buoyancy
ratio parameter, Soret–Dufour parameters, and shrinking parameter are discussed in detail.
These parameters impact the increment or decrement in the related profiles (velocity,
temperature, and concentration) and physical parameters (skin friction coefficient, local
Nusselt number, and local Sherwood number). In Section 2 of this paper, the mathematical
formulation is presented. The Results and Discussion are presented in Section 3. A
conclusion is presented in the final section, which is Section 4.

2. Methodology
2.1. Problem Formulation

The two-dimensional Cartesian model of electrically conducting viscous and incom-
pressible Casson fluid is considered, and this model is bounded by an exponential function
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of the shrinking sheet with velocity uw. The gravitational acceleration g is applied perpen-
dicularly to the reference horizontal axis, and the shrinking sheet is projected by a certain
angle ε from the same reference axis [11]. The shrinking vector is directed to the center of
the sheet. Furthermore, the constant applied magnetic field B0 is inclined by the inclination
angle δ from the y-axis [33]. The components of velocity in the x- and y-directions are
denoted by u and v, respectively. The temperature and the concentration at the plane are,
namely, Tw and Cw, and the temperature and the concentration at the inviscid fluid are
labeled as T∞ and C∞, respectively. Wall mass suction velocity is presented as vw(x) > 0.
The two-dimensional Cartesian model for the current problem is depicted in Figure 1. The
related governing equations are stated as below:

∂u
∂x

+
∂v
∂y

= 0, (1)

u ∂u
∂x + v ∂u

∂y = υ
(

1 + 1
ω

)
∂2u
∂y2 + gβT(T − T∞) cos(ε) + gβC(C− C∞) cos(ε)

+ σB0
2

ρ sin2(δ) u,
(2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

DKT
CsCP

∂2C
∂y2 , (3)

u
∂C
∂x

+ v
∂C
∂y

= D
∂2C
∂y2 +

DKT
Tm

∂2T
∂y2 , (4)

where υ = µ/ρ is the kinematic viscosity, µ is the viscosity, ρ is the fluid density, ω is the
Casson parameter, βT is the coefficient of thermal expansion, βC is the coefficient of solutal
expansions, B0 is the constant strength of the magnetic field, T is the temperature of the fluid,
C is the concentration of the fluid, α is the thermal diffusivity, D is the solutal diffusivity of
the medium, KT is the thermal diffusion ratio, Cs is the concentration susceptibility, Cp is
the specific heat at constant pressure, and Tm is the mean fluid temperature.
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Figure 1. Schematic diagram of the model problem.

The appropriate boundary conditions are

u = uw(x) = λU0 exp(x/L), v = vw(x),
Tw(x) = T∞ + T0 exp(x/2L), Cw(x) = C∞ + C0 exp(x/2L), at y = 0,
u→ 0, T → T∞, C → C∞ as y→ ∞,

(5)
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where λ < 0 is the shrinking parameter, and L is the length of the sheet. The term exp(x/2L)
in temperature Tw and concentration Cw has been used by previous investigators [7–11],
which are appropriate for our mathematical model, two-dimensional fluid flow, which is
subjected to the Sore–Dufour parameters.

The physical parameters of the skin friction coefficient C f , local Nusselt number Nux,
and local Sherwood number Shx are presented as follows:

C f =

(
µ

ρU02

)(
∂u
∂y

)
, Nux =

(
L

Tw − T∞

)(
−∂T

∂y

)
y=0

, Shx =

(
L

Cw − C∞

)(
−∂C

∂y

)
y=0

, (6)

Introducing new similarity variables:

θ(η) = T−T∞
Tw−T∞

, ϕ(η) = C−C∞
Cw−C∞

, η = y
(

U0
2υL

)1/2
exp(x/2L),

u = U0 exp(x/L) f ′(η), v = −
(

υU0
2L

)1/2
exp(x/2L)[ f (η) + η f ′(η)],

(7)

where η is a boundary layer thickness for the fluid model. The similarity variables u and v
are obtained by performing u = ∂ψ/∂y and v = −∂ψ/∂x, where ψ is the stream function
for exponential velocity at the sheet. This stream function is stated as

ψ(x, y) = (2υLU0)
1/2 exp(x/2L) f (η) (8)

2.2. Method of Solution

Equation (7) is substituted into (2)–(6), and the following equations are obtained:(
1 + 1

ω

)
f ′′′ + f f ′′ − 2( f ′)2 + 2Ri (θ + Nϕ) cos ε

−2H sin2(δ) f ′ = 0,
(9)

1
Pr

θ′′ + f θ′ − f ′θ + Db ϕ′′ = 0, (10)

1
Sc

ϕ′′ + f ϕ′ − f ′ϕ + Sr θ′′ = 0, (11)

f ′(η) = λ, f (η) = S, θ(η) = 1, ϕ(η) = 1 at η = 0,
f ′(η)→ 0, θ(η)→ 0, ϕ(η)→ 0 as η → ∞,

(12)

C f

√
Rex
2 exp

(
−3X

2

)
= f ′′ (0), Nux

√
2

Rex
exp

(
−X

2

)
= −θ′(0),

Shx

√
2

Rex
exp

(
−X

2

)
= −ϕ′(0).

(13)

The parameters involved in this problem are the mixed convection parameter Ri =
Gr/Re2, magnetic field parameter H = σLB0

2 e−x/L/ρU0, thermal Grashof number Gr =
gβT(T0 − T∞)L3 ex/2L/ν2, Reynolds number Re = u0 L ex/L/ν, concentration buoyancy
ratio N = βC (C0 − C∞)/βT (T0 − T∞), Prandtl number Pr = υ/α, Schmidt number
Sc = υ/D, Soret number Sr = DKT(T0 − T∞) /Tmυ(C0 − C∞), Dufour number Db =
DKT (C0 − C∞)/CsCpυ(T0 − T∞), and suction parameter S. The parameter S is defined as
S = (vw(x)/exp(x/2L))×

√
2L/υU0 > 0. Positive Ri indicates the case of aiding flow,

negative Ri for opposing flow, and zero Ri for forced convection flow. Moreover, N can be
positive and negative values together with N = 0 (in the absence of mass transfer).

2.3. Stability Analysis

The unsteady state of governing Equations (2)–(4) is introduced as below, where t
is time. This is a first step for stability analysis: to select a stable and physically reliable
solution.

∂u
∂t + u ∂u

∂x + v ∂u
∂y = υ

(
1 + 1

ω

)
∂2u
∂y2 + gβT(T − T∞) cos(ε)

+ gβC(C− C∞) cos(ε) + σB0
2

ρ sin2(δ) u,
(14)
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∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

DKT
CsCP

∂2C
∂y2 , (15)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= D
∂2C
∂y2 +

DKT
Tm

∂2T
∂y2 , (16)

The boundary conditions and similarity variables in unsteady state are shown as

∂ f
∂η (η, τ) = λ, f (η, τ) = S, θ(η, τ) = 1, ϕ(η, τ) = 1 at η = 0,
∂ f
∂η (η, τ)→ 0, θ(η, τ)→ 0, ϕ(η, τ)→ 0 as η → ∞,

(17)

θ(η, τ) = T−T∞
Tw−T∞

, ϕ(η, τ) = C−C∞
Cw−C∞

,

τ = U0
2L (exp(x/L)) t, η = y

(
U0
2υL

)1/2
exp(x/2L),

u = U0 exp(x/L) ∂
∂η f (η, τ),

v = − η
2L
√

2υLU0 exp(x/2L) ∂
∂η f (η, τ)

− U0
2L2 exp(3x/L)t

√
2υLU0

∂
∂τ f (η, τ)

− 1
2L
√

2υLU0 exp(x/2L) f (η, τ).

(18)

From Equation (18), the dimensionless time variable τ for exponential velocity at
the sheet is presented by τ = (U0/2L) [exp(x/L)] t. In the stability analysis section, the
variable τ is used for all the calculations, and τ is observed to depend on t [34].

The equations introduced by previous investigators [34] for stability analysis are
stated as follows:

f (η, τ) = f0(η) + (exp(−γτ)) F(η, τ),
θ(η, τ) = θ0(η) + (exp(−γτ)) G(η, τ),
ϕ(η, τ) = ϕ0(η) + (exp(−γτ)) J(η, τ),

(19)

where γ denotes an unknown eigenvalue, and F(η, τ), G(η, τ), and J(η, τ) are small relative
to f0(η), θ0(η), and ϕ0(η).

2.4. Method of Solution for Stability Analysis

First, substitute Equation (18) in Equations (14)–(16) to obtain the equations below:(
1 + 1

ω

)
∂3 f
∂η3 + f ∂2 f

∂η2 − 2
(

∂ f
∂η

)2
+ 2Ri cos(ε) θ + 2Ri N cos(ε) ϕ

− ∂2 f
∂η∂τ + 2τ

∂ f
∂τ

∂2 f
∂η2 − 2τ

∂ f
∂η

∂2 f
∂η∂τ − 2H sin2(δ)

∂ f
∂η = 0,

(20)

1
Pr

∂2θ

∂η2 + f
∂θ

∂η
− ∂ f

∂η
θ + Db

∂2 ϕ

∂η2 −
∂θ

∂τ
− 2τ

∂θ

∂τ

∂ f
∂η

+ 2τ
∂ f
∂τ

∂θ

∂η
= 0. (21)

1
Sc

∂2 ϕ

∂η2 + f
∂ϕ

∂η
− ∂ f

∂η
ϕ + Sr

∂2θ

∂η2 −
∂ϕ

∂τ
− 2τ

∂ϕ

∂τ

∂ f
∂η

+ 2τ
∂ f
∂τ

∂ϕ

∂η
= 0. (22)

Next, substitute Equation (19) into Equations (20)–(22), and set τ = 0. As a result, the
following equations are obtained:(

1 + 1
ω

)
F0 ′′′ + f0F0 ′′ + f0 ′′ F0 − 4 f0

′F0
′ + 2Ri cos(ε) (G0 + NJ0 )

+
[
γ− 2H sin2(δ)

]
F0
′ = 0,

(23)

1
Pr

G0
′′ + f0G0

′ + θ0
′F0 − θ0F0

′ − G0 f0
′ + Db J0

′′ + γG0 = 0, (24)

1
Sc

J0
′′ + f0 J0

′ + ϕ0
′ J0 − ϕ0 J0

′ − J0 f0
′ + Sr G0

′′ + γJ0 = 0, (25)
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along with the boundary conditions:

F0
′(η) = 0, F0(η) = 0, G0(η) = 0, J0(η) = 0 at η = 0.

F0
′(η)→ 0, G0(η)→ 0, J0(η)→ 0 as η → ∞.

(26)

By relaxing any one of the boundary conditions in η → ∞, eigenvalues will be
obtained [35]. In this paper, the boundary condition F0

′(∞)→ 0 is relaxed to become
F0 ′′ (0) = 1. Finally, Equations (23)–(26) with the new relaxing boundary condition are
solved in MATLAB.

3. Results and Discussion

Numerical graphics are depicted for the skin friction coefficient C f
√

2Rex exp(−3X/2),

local Nusselt number Nux(2/Rex)
1/2 exp(−X/2), local Sherwood number Shx(2/Rex)

1/2

exp(−X/2), velocity profile f ′(η), temperature profile θ(η), and concentration profile ϕ(η)
for the following physical parameters: shrinking parameter λ, mixed convection Ri, con-
centration buoyancy ratio parameter N, Soret number Sr, and Dufour number Db. The
numerical solutions obtained from this article are dual. They are labeled by the first solu-
tion (solid line) and the second solution (dashed line). In this paper, the following values
are fixed for the entire MATLAB program, unless mentioned otherwise: ω = 2000, S = 2.5,
λ = −0.4, ε = 50◦, δ = 80◦, N = 1.0585, Ri = −0.0212, Sc = 0.5, Pr = 1, H = 0.4946,
Db = 0.1002, and Sr = 1.8004. Moreover, the largest of fluid thickness η = 10 is constantly
used for numerical computations.

3.1. Verification of Numerical Accuracy

The validation of our numerical results obtained from MATLAB bvp4c is performed by
presenting a comparison with the pioneering investigators in the case of the exponentially
stretching sheet [30] and shrinking sheet. The stretching parameter is denoted by λ > 0,
and the shrinking parameter is presented by λ < 0. This comparison is reported for
the wall temperature gradient −θ′(0) values, as shown in Table 1. The formulation of
the wall temperature gradient has been derived by a previous investigator [7]. As a
result, the final formulation is obtained: Nux/

√
Rex = −

√
X/2 θ′(0). Those values

show good agreement with the numerical data reported by Magyari and Keller [36] and
Srinivasacharya and RamReddy [7].

Table 1. Comparison between the wall temperature gradient θ′(0) for ω = 1, 000, 000, Pr = 1, and
H = Ri = Sc = Sr = Db = N = δ = ε = 0.

S λ
Magyari and

Keller [36]
Srinivasacharya and

RamReddy [7] Present

0
1.69550 — — −0.77398

1 −0.59434 −0.59438 −0.59466
0.97609 — — −0.58804

2
0.06350

— —
−1.02075

−0.5 −0.79220
−0.77869 −0.49097

The verification of the MATLAB bvp4c program used in this paper was made by
making an observation for all the profiles: velocity, temperature, and concentration. Both
solutions showed that the instantaneous points at η = 0 and η → ∞ fully satisfy the desired
boundary conditions (Equation (11)). Therefore, this observation assures the accuracy of
the applied numerical method.

3.2. Selection of a Physically Reliable Solution

Although the numerical solutions obtained in this paper are dual, we still have to
choose a solution that is stable and physically reliable. Therefore, the most stable solution
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can be chosen by using a numerical calculation, namely stability analysis. The results that
occurred from the stable solution are predicted to exist in the actual state in fluid, which
can be seen in the variation of profiles and physical parameters. Stability analysis was
performed by calculating the smallest eigenvalues γ, as shown in Table 2. Positive values
of γ indicate that there is an initial decay of disturbance, whereas the negative values of
γ denote an initial growth of disturbance. The positive values denote that the solution
is stable, and it is labeled as the first solution in the MATLAB program. Furthermore,
negative eigenvalues represent the second solution. The second solution is assumed to be
unstable and not physically occur in the actual fluid state.

Table 2. The smallest eigenvalues for different values of the mixed convection and buoyancy ratio
parameters when S = 1.685.

Ri N
Solutions

First Solution Second Solution

−0.01
0.500 0.08814 −0.08963
0.501 0.08498 −0.08636
0.502 0.08170 −0.08297

−0.01002
0.500 0.08394 −0.08529
0.501 0.08060 −0.08185
0.502 0.07712 −0.07826

3.3. Variation in the Profiles of Velocity, Temperature, and Concentration

The profiles due to the control parameters λ, Ri, and N, are visualized in Figures 2–4,
respectively. These profiles are plotted against the distance from the shrinking sheet η.
These profiles show the satisfaction of boundary conditions (Equation (4)) at the points
η = 0 and η → ∞ . The negative vector in velocity acts in an opposite direction to the
reference positive stretching vector, as the sheet reported in this paper is compressed and
influences the fluid flow and the rate of heat transfer and mass. However, the description of
the velocity profile in this paper focuses on the values of velocity. The first solution shows
the uniform decrement in the velocity magnitude due to the distance from the shrinking
sheet η, until the velocity reaches a constant zero value. Therefore, the zero velocity at
the point far from the shrinking sheet denotes there is no fluid movement at this point.
The magnitude of velocity for the second solution increases for small η and reaches the
maximum point. The maximum velocity for the second solution is denoted by the lowest
minimum peak at the velocity profile. Then, the instantaneous velocity of the second
solution decreases until it achieves a zero value. Moreover, all the temperature graphs
show a continuous decrement in the instantaneous temperature for various fluid thickness
η. The graphical representations of concentration show the existence of a maximum peak
at small η. The concentration reaches a certain maximum point, and then it continuously
reduces, and finally the concentration vanishes. As a conclusion, the MATLAB program
declares the uniform variation in these profiles as the first solution, otherwise it is labeled
as the second one. Uniform variation is described as a continuous increment or decrement,
with the minimum existence of a peak.

The velocity in Figure 2 is found to decline with the increasing shrinking parameter
|λ|, and other profiles increase due to the same parameter. This result is shown by the
first solution. However, an opposite nature is visualized in the second solution in Figure 2.
The distribution pattern of the velocity profile, which is influenced by the magnitude of
the shrinking parameter, was published by previous investigators [37–39]. They proved
that the reduction of instantaneous velocity is affected by the shrinking rate at the sheet.
As a conclusion, the higher shrinking parameter increases the compressing rate at the
fluid and causes the fluid velocity to slow down. Besides, Figure 2 also shows that the
concentration and temperature of Casson fluid are enhanced for higher estimation of
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|λ| [31,32]. However, these reports [31,32] used the rate of the stretching/shrinking sheet
λ, instead of the magnitude |λ|.

The first solution in Figure 3 demonstrates that the higher rate of the mixed convection
parameter Ri (lower magnitude in the opposing flow rate) contributes to an increment in
the Casson fluid velocity. Furthermore, the first solution in the profiles of temperature and
concentration becomes smaller when the opposing flow magnitude decreases. These three
profiles in the second solution show a reverse pattern due to the impact of the enhancing
mixed convection parameter. As a conclusion, it is clear from Figure 3 that the velocity
distribution is increased for the increment of Ri. This is because the addition of Ri enhances
the buoyancy ratio, and fluid flow is accelerated. Therefore, the instantaneous velocity
increases. Temperature and concentration decrease with increasing values of Ri. When the
parameter Ri increases, it contributes to the increment of the convection cooling effect. As
a result, the temperature and concentration reduce. On the other hand, the first solution
pattern in Figure 4 illustrates that N reduces the variation of Casson velocity, while there is
an increment in temperature and concentration profiles. Furthermore, an opposite pattern
can be seen in the case of effect N on the profiles of velocity, temperature, and concentration
in the second solution.
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3.4. Variation in the Skin Friction Coefficient, Local Nusselt Number, and Local Sherwood Number

The distribution of the skin friction coefficient C f
√

2Rex exp(−3X/2), for various
values of the shrinking parameter and the Soret and Dufour parameters is presented in
Figure 5. The upper figure represents the first solution, and the lower figure represents the
second solution. The increasing of the shrinking parameter magnitude (λ value tends to
become a negative value) causes the enhancement in the skin friction coefficient in the first
solution. From Figure 5, the series of Db = 0.1 and Sr = 1.8 is fixed as the reference line to
compare the changes in the skin friction coefficient when the values of Sr and Db are varied.
It is noticed that skin friction coefficient declines with increasing Sr and Db for the first
solution. Furthermore, the skin friction coefficient rate increases with the augmentation of
Db and reduction of Sr for the second solution. The graph of the skin friction coefficient
C f
√

2Rex exp(−3X/2) against the concentration buoyancy ratio N for different values of
Ri is shown in Figure 6. In this figure, the magnitude of the opposing flow rate |Ri| is the
main topic of discussion. It is observed that the skin friction coefficient in the first solution
decreases when |Ri| and N increase. The opposing flow rate in Figure 6 is denoted by
|Ri|. The skin friction coefficient becomes smaller because the opposed buoyancy force



Symmetry 2021, 13, 373 11 of 17

reduces the fluid velocity, hence the wall shear stress is also decreased. Furthermore, the
skin friction coefficient in the second solution increases when Ri and N enhance.
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Numerical graphics for the local Nusselt number Nux(2/Rex)
1/2 exp(−X/2) for dif-

ferent rates of the shrinking parameter and Soret and Dufour parameters are depicted
in Figure 7. It is found that the shrinking parameter leads to a drop in the local Nusselt
number in the first solution. However, the Soret and Dufour numbers enhance the rate
of the local Nusselt number. Hence, it is proved that the heat transfer rate located at the
shrinking sheet is augmented. Variations of the opposing flow rate |Ri| and N on the local
Nusselt number are displayed in Figure 8. It is noticed that a rise in |Ri| (opposing flow rate
magnitude) and in the concentration buoyancy ratio rate N result in a decrement in the local
Nusselt number. An enhancement in |Ri|will induce adverse pressure gradient. As a result,
fluid velocity will become slow, and the wall heat transfer rate will be decreased. The graph
of the local Nusselt number of the second solution against the concentration buoyancy
ratio shows the existence of positive Nux(2/Rex)

1/2 exp(−X/2) at small N, and negative
Nux(2/Rex)

1/2 exp(−X/2) at large N. At the positive Nux(2/Rex)
1/2 exp(−X/2) for the

second solution, they are reducing for the implementation of higher opposing flow param-
eter. At the same time, the negative Nux(2/Rex)

1/2 exp(−X/2) in the second solution will
be lowered due to the effect of |Ri|.
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√

2Rex exp(−3X/2), against the shrinking
parameter λ for various values of the Dufour and Soret number for the (a) first solution and (b)
second solution.

The variation of the shrinking parameter, Soret and Dufour numbers on the local Sher-
wood number Shx(2/Rex)

1/2 exp(−X/2) are observed in Figures 9 and 10. The impact of
the shrinking parameter is to lower the rate number of Shx(2/Rex)

1/2 exp(−X/2) in the
first and second solutions, as shown in Figure 9. It is also concluded that the Soret and
Dufour numbers involved in the diminution of Shx(2/Rex)

1/2 exp(−X/2) for the first
solution (for all values of λ) and second solution (when the magnitude of the shrinking
parameter becomes very large). Therefore, the mass transport rate is dropped at the point
of the inclined exponentially shrinking sheet for the fluid flow model. Figure 10 shows
that the higher rate of the concentration buoyancy ratio and opposing flow rate |Ri| cause
the reduction of Shx(2/Rex)

1/2 exp(−X/2) for the first solution. Because the velocity
is decreased when |Ri| is increased, the mass that can be transferred will be lowered
(denoted by a reduced local Sherwood number). The positive and negative regions of
Shx(2/Rex)

1/2 exp(−X/2) in the second solution occur at higher and lower values of N, re-
spectively. The rising of |Ri| generates a decrement in positive Shx(2/Rex)

1/2 exp(−X/2),
and an increment in negative Shx(2/Rex)

1/2 exp(−X/2).
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4. Conclusions

The numerical results of heat and mass transfer in the boundary layer flow of Casson
fluid, which is subjected to the exponential variation of an inclined shrinking sheet and
when the magnetic field is projected at a certain angle, are reported in this paper. The
findings are controlled by the different values of control parameters, as stated in the Results
and Discussion section (Section 3). The foremost conclusions of the current numerical
results, especially in the solution contributing to the actual fluid situation (first solution),
are as follows:

(a) The impact of the shrinking parameter is to increase the temperature and concentra-
tion distributions, together with the skin friction coefficient.

(b) The influence of Soret and Dufour is to decrease the local Nusselt number and local
Sherwood number.

(c) The impact of the mixed convection parameter is to enhance the instantaneous Casson
fluid velocity profile and all the physical parameters.
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