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Abstract: This paper presents a novel approach to the cosmological constant problem by the use
of the Clifford algebras of space Cl3,0 and anti-space Cl0,3 with a particular focus on the paravec-
tor representation, emphasizing the fact that both algebras have a center represented just by two
coordinates. Since the paravector representation allows assigning the scalar element of grade 0 to
the time coordinate, we consider the relativity in such two-dimensional spacetime for a uniformly
accelerated frame with the constant acceleration 3H0c. Using the Rindler coordinate transformations
in two-dimensional spacetime and then applying it to Minkowski coordinates, we obtain the FLRW
metric, which in the case of the Clifford algebra of space Cl3,0 corresponds to the anti-de Sitter (AdS)
flat (k = 0) case, the negative cosmological term and an oscillating model of the universe. The
approach with anti-Euclidean Clifford algebra Cl0,3 leads to the de Sitter model with the positive
cosmological term and the exact form of the scale factor used in modern cosmology.

Keywords: cosmological constant problem; Clifford algebras; Cl(3,0); Cl(0,3); two-dimensional
spacetime; time-volume coordinates; uniform acceleration 3Hc; Rindler coordinates; FLRW metric;
scale factor; AdS and de Sitter models

The problem of the cosmologicalor Λ term is a long standing subject since being the
Einstein’s “biggest blunder”. Nowadays, the cosmological constant is widely used in
the frame of the standard model of cosmology as observational data in the past decades
strongly suggest that our universe has a positive cosmological constant. However, a major
outstanding problem is still that most quantum field theories predict a huge value for the
quantum vacuum [1,2]. Hence, the cosmological constant remained a subject of theoretical
and empirical interest, and the explanation of this small but positive value is an outstanding
theoretical challenge.

The cosmological constant is commonly attributed to a “dark energy” or the density
of the quantum vacuum ΩΛ. The presented approach provides an alternative view on the
nature of the cosmological constant and its appearance in the metric as the cosmological
term without requiring a presence of a “kind of negative energy”. Starting from the Clifford
algebras analysis, which reflects the intrinsic property of spacetime, the model derives the
scale factors used in modern cosmology for the anti-de Sitter(AdS) and de Sitter models by
considering the uniform acceleration in two dimensions given by the center of respective
Clifford algebra. As shown, connecting the model’s constant parameters to a central point
mass leads also to the static forms of the SadS and the SdS metrics for gravitation in the
spherically symmetric case. The cosmological term appears as the relativistic effect due to
the Rindler coordinate transformations. The full correspondence requires the value for
such uniform acceleration to be α = 3H0c.

The paper also refers to the author’s recent work [3], which introduced the unified
two-dimensional spacetime model by conjecture that it consists of time and spatial-volume
coordinates. It introduced a few important parameters, which are used throughout. The pa-
per further formalizes the approach based on the symmetry of underlying Clifford alge-
bras [4–8].

The paper is structured as follows. Section 1 reviews the basic properties of the Pauli
algebra Cl3,0, its paravector representation, the center and the structure of corresponding

Symmetry 2021, 13, 366. https://doi.org/10.3390/sym13030366 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3226-3676
https://doi.org/10.3390/sym13030366
https://doi.org/10.3390/sym13030366
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13030366
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/3/366?type=check_update&version=2


Symmetry 2021, 13, 366 2 of 10

spacetimes given by the quadratic forms. Section 2 gives an outlook on the relativity in
two-dimensional spacetime of the center of algebra Cl3,0 based on the obtained quadratic
form’s invariance. Section 3 applies the result to (1 + 3) spacetime, and using the Rindler
coordinate transformations obtained in the previous section, derives the scale factor of the
FLRW metric. Section 4, along with a brief review of the algebra Cl0,3, quickly re-applies
the approach to Cl0,3. Section 5 aims to align the obtained results with the observed value
of the cosmological deceleration parameter.

Note: The Hubble constant 3H2
0 = c2Λ is a constant. Denoted Clifford algebras Clp,q

and the quaternions H are over the reals.

1. Clifford Algebra of Space Cl3,0

The Pauli algebra Cl3,0(R) describes the structure of Euclidean R3 space. Cl3,0 is eight-
dimensional algebra with the basis that can be given by Pauli matrices as follows:

e0 e1 e2 e3
e123 e23 e13 e12

∣∣∣∣ σ0 σ1 σ2 σ3
iσ0 iσ1 iσ2 iσ3

,

where e0 is scalar, (e1, e2, e3) is a vector, (e23, e13, e12) is a bivector and e123 is a volume
element (tri-vector or multivector of grade 3). The algebra is isomorphic to two-by-two
matrices with complex entries Cl3,0 ∼= Mat(2,C) and has two subalgebras: the even
subalgebra Cl0

3,0
∼= H of quaternions, and the center Cen(Cl3,0) ∼= C, therefore

Cl3,0 ∼= C⊗H , (1)

where a quaternion corresponds to elements of grades 0 and 2. The algebra Cl3,0 has a
unique property. As an algebra of the structure of Euclidean R3 space, it also describes
four-dimensional Minkowski spacetime. It can be understood in two ways. The first is that
Cl3,0 is isomorphic to even subalgebras Cl0

3,1
∼= Cl0

1,3 [4,8]. The second is that Mat(2,C) can
be normalized to SL(2,C) which is the classical spin homomorphism and double-cover of
the proper Lorentz group SO(1, 3)+, and it is also homomorphic with SO(3,C), which is
isomorphic to complexified quaternions H(C).

Such isomorphism of the algebra with 1+3 spacetime allows to consider paravector
representation of Cl3,0 utilized in physics as the algebra of physical space (APS). As a result
that the basis of Cl3,0 precisely corresponds to two copies of 4-dimensional vector spaces, all
eight orthogonal coordinates can be split into two sets of Minkowski and anti-Minkowski
spacetimes, spanned by two 4-vectors given by the upper and lower raw as follows:

x0 x1 x2 x3

x123 x23 x13 x12
, (2)

where xµ = (x0, x1, x2, x3) is the “usual” Minkowski four-vector (x0 is time) or paravector
in the algebra of physical space (APS), and xµ = (x0, x1, x2, x3) = (x123, x23, x13, x12) is its
“anti-Minkowskian” counterpart. Notably, such an anti-Minkowski 4-vector x is built only
from the spatial components of the the 4-vector x. Using the basis of Pauli matrices we
obtain the canonical representation of 4-vectors by the matrices

g = xkσk , g = xk iσk , k = 0, 1, 2, 3 ; g, g ∈ SL(2,C) (3)

with the Einstein convention for summation. Two such vector spaces R1,3 have quadratic
forms with reverse signatures

det(g) = x2
0 − x2

1 − x2
2 − x2

3 , (4)

det(g) = −x2
0 + x2

1 + x2
2 + x2

3 .



Symmetry 2021, 13, 366 3 of 10

Thus, in paravector representation of the algebra Cl3,0, a scalar value or grade 0
element is assigned to the time coordinate of Minkowski spacetime, and the volume
element represents its “anti-Minkowskian” or complexified counterpart.

Another essential feature of this algebra is that it has the center Cen(Cl3,0) ∼= C.
By definition, the center of Clifford algebra consists of elements that commute with all
elements of algebra. In case of Cl3,0, these two elements are given by two basis elements of
grade 0 and 3, i.e., by e0 and e123 [4,7], explicitly

e0 = σ0 =

(
1 0
0 1

)
, e123 = iσ0 =

(
i 0
0 i

)
.

Hence, in the case of paravector representation, the center of Cl3,0 consists of two
coordinates given by time and volume elements that form subalgebra C of Cl3,0. To maintain
the accordance with the previous work [3] we denote these coordinates as t = x0, η = x0 =
x123. The two-dimensional spacetime of Cen(Cl3,0) is spanned by a vector e0t + e123η that
represents a complex number u and its quadratic form are respectively

u = t + iη ∈ C , |u|2 = uu∗ = t2 + η2 , (t, η ∈ R) . (5)

The center of Clifford algebra Cen(Cl3,0) is the subalgebra C, and is a two-dimensional
spacetime of plane.

2. Physical Relativity and Uniform Acceleration in Two Dimensions of Cen(Cl3,0)

Geometry in two dimensions of R2 is trivial from a mathematical point of view as it
represents the Euclidean plane. However, because the coordinate x0 is considered the time
coordinate, the prime interest of physics, in this case, is the relativity of motion in frames
of reference in such spacetime.

As a result that the plane has the quadratic form (5) with the signature (+,+), the in-
variant interval in such spacetime is given by (The physical dimensionality of η is distance
as discussed in the next section).

ds2 = c2dt2 + dη2 . (6)

Hence, to obtain new rules for the coordinate transformations, it is necessary to substi-
tute all hyperbolic functions involved in Lorentz transformations with their trigonometric
counterparts in SO(2). For instance, the coordinate velocity and two-velocity for a moving
frame become

u =
dη

dt
= c tan(β) , u = (c cos(β), c sin(β)) .

It can be noted that the coordinate velocity can be infinite (The coordinate η implies
spatial volume. Even though the case may correspond to super-luminal universe expansion
in the coordinate distance. As discussed later, we can only measure our proper time in a
local frame), however, the proper velocity (measured with the observer’s clock) is limited
by unity.

The Rindler or Kottler–Møller coordinates are an essential type of coordinate transfor-
mation in special relativity [9–11]. These are the coordinate transformations in the case of
the uniformly accelerated frame and are derived by integrating the Lorentz transformations
with initial conditions using the evident relation β =

(
ατ
c
)

where β is the rapidity, α is
the proper uniform acceleration and τ is the observer’s proper time. As a result of the
invariant (6) in the spacetime of Cen(Cl3,0), these differential transformations are given by
the trigonometric counterparts

dt = γdτ = cos
(ατ

c

)
dτ , (7)

dη = v(t)dt = c tan
(ατ

c

)
dt .
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These expressions provide the coordinate transformations between an observer A
located at the center of the spherical volume at rest and the frame B with coordinate η(t)
of the spherically expanding volume moving with velocity u = dV

dt . The integration of
these two with respect to proper time with the initial synchronization of the clocks at the
beginning (t = τ = 0 in η = 0) leads to the Rindler coordinate transformations

t =
c
α

sin
(ατ

c

)
, (8)

and the coordinate distance from the origin of motion in terms of proper time is

η =
c2

α

(
1− cos

(ατ

c

))
= 2η0 sin2

(ατ

2c

)
, η0 =

c2

α
, (9)

where the pre-factor η0 is the Rindler horizon parameter, which has an important role in the
relativity of uniform acceleration. Notably, the expressions demonstrate the significance
of the property of the Rindler transformations in the spacetime of Cen(Cl3,0), which is the
equivalence of the uniform acceleration to the harmonic oscillation of volume coordinate.

3. The Scale Factor and AdS Model for Cl3,0

In the case of spherical symmetry that is considered further, the coordinate η = x123 in
Clifford algebra Cl3,0 clearly represents a spherical volume. Model [3] provided an explicit
form for the relation that preserves physical dimensionality η = VA−1. Since both η(τ)
and V(τ) are variable, the factor A is a constant having the physical dimension of the area.
As the parameter has to be a fixed constant then, without loss of generality, we may connect
it by direct proportionality to a central point mass m, as later shown. Hence, η has the
dimension of length.

The Friedmann–Lemaître–Robertson–Walker (FLRW) is the metric for a comoving
frame with time-dependent spatial component given by the scale factor a(τ). In the flat
case, this is ds2 = −dτ2 + a(τ)2(dR2 + R2dΩ

)
. As the FLRW metric tensor is diagonal,

then the tetrad transformation from the Minkowski to the FLRW metric is given by the
square root of the metric tensor as

hµ
a = diag (1, a, Ra, Ra sin(θ)) with r = Ra , and gµν = hµ

ahν
bnab , (10)

where R is the comoving (fixed) distance, and r is the coordinate distance [12]. In fact,
the tetrad is simply a Jacobian matrix whose determinant defines a volume element dη =
dV = a3 4πR2dR, therefore

a =

(
V
VR

)1/3
, where VR =

4π

3
R3 and V =

4π

3
r3 . (11)

The coordinate η represents the value of the spherical volume V = Aη, and we can
also indicate the point ηR that corresponds to such fixed volume VR = AηR, hence

a =

(
η

ηR

)1/3
. (12)

The substitution of η from (9) results in the scale factor of the FLRW metric

a(τ) =
(

2c2

αηR

)1/3[
sin
(ατ

2c

)]2/3
. (13)

To demonstrate that such a form of the scale factor corresponds to the Schwarzschild–
AdS (SAdS) case, we analyze the recession velocity of a point located at the spherical
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shell. In accordance with (9), consider an expanding spherically symmetric volume and its
derivative with proper time as

V(τ) = A η(τ) = A
c2

α

(
1− cos

(ατ

c

))
, V̇ =

dV
dτ

= A c sin(
ατ

c
) . (14)

Now we may express the derivative V̇ in terms of r:

V̇(r) = ±A c
(

1−
(

1− α

A c2 V
)2
)1/2

= ±A c
(

2α

c2 A
V − α2

c4 A2 V2
)1/2

= ±
(

8πAα

3
r3 − 16π2α2

9c2 r6
)1/2

. (15)

This allows to obtain the recession and free-fall velocities at distance r from the center
of the sphere using the apparent relation for spherical volume element expansion

v(r) =
V̇

4πr2 = ±
(

Aα

6πr
− α2

9c2 r2
)1/2

, α1 > 0 . (16)

Using the ratios of the model, respectively given by (4) and (23) in [3] as

A = β Vm
H0

c
, where Vm := m

(
k

3H2
0

8πG

)−1

, (17)

where k, β are constant parameters of the model, and A is set with direct proportionality to
the central mass. The substitution leads to

v(r) = ±
(

2Gm
r
− Λc2

3
r2
)1/2

, (3H2
0 = c2Λ > 0) (18)

along with the requirements

α = 3H0c ,
3k
2β

= 1 . (19)

In order to eliminate the dependency of the scale factor on a central mass, the model
(From ηR = kηm, which is the definition for an arbitrary R given by (9), and ηm = c

βH0
as

given by (24) in [3].) sets

ηR =
k
β

c
H0

,

therefore, with the use of (19), the scale factor (13) takes the form

a(τ) =
[

sin
(

3
2

H0τ

)]2/3
, (20)

where the pre-factor becomes the unity. Since the form of the scale factor depends only
on the fundamental constants and proper time, it can be considered the intrinsic prop-
erty of space.

Furthermore, the gravitational potential φ = 1
2 v2 for (18) corresponds to the SAdS

gravity with negative cosmological term. The explicit path to the static metric can be given
as follows. The velocity is also v(r) = ȧR, where a(τ) is (13), and ȧ is the derivative with
respect to proper time. With the use of the tetrad

fµ
a =


1 0 0 0

−va−1 a−1 0 0
0 0 a−1 0
0 0 0 a−1

 , (21)
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which is the equivalent of the following coordinates change

dR = −v
dτ

a
+

dr
a

, R =
r
a

, and dτ = dt , (22)

the FLRW metric is transformed into the Gulfstrand–Painlevé (GP) metric [12]. The diago-
nalization of the GP metric tensor leads to its static form [13,14], which in the case of the
obtained velocity (18) is the Schwarzschild–AdS metric. On the correspondence of static
and non-static metrics, see also [15].

Notably, if one takes the derivative in (14) but with coordinate time instead, the re-
sulting expression for v(r) has the same form, but the cosmological term removed Λ = 0.
It implies that the expansion can be measured only in the comoving frame, that is by
an observer attached to the comoving point of the expanding universe, which becomes
apparent, taking into account the transformation of the time coordinate (8). The approach
suggests that we only evaluate and measure our proper time attached to our local frame
of reference, that is, at the point of the expanding universe, but not in coordinate time.
Thus, the coordinate time (8) becomes somewhat abstract and not directly related to our
observations and measurements.

Thereby, Clifford algebra Cl3,0 corresponds to the Schwarzschild–AdS gravity with
the negative cosmological term and naturally requires the oscillatory model of periodic
universe expansion. For instance, from (20) the half-period (from zero to zero) of the
oscillation is

T =
4πc

α
=

4π

3H0
(23)

measured in proper time. The amplitude of such oscillation can also be obtained using the
coordinate distance r = Ra and the explicit form for ηR → R.

4. Clifford Algebra of Anti-Space Cl0,3

The Clifford algebra of “anti-Euclidean” space Cl0,3 is also an eight-dimensional alge-
bra, and is not isomorphic to Cl3,0 (APS). The quadratic form is negatively defined. The al-
gebra is isomorphic to split-biquaternions and is also an algebra of alternions A4 [16,17].
The basis can be given using the quaternion units [7]

e0 e1 e2 e3
e123 e23 e13 e12

∣∣∣∣ (1, 1) (i,−i) (j,−j) (k,−k)
(1,−1) (i, i) (j, j) (k, k)

, (24)

where (a, b) denotes the diagonal two-by-two matrices. The upper raw represents the basis
for the quaternions H, and the lower is its “split-complexification” thereby

Cl0,3 ∼= D⊗H , Cl0,3 ∼= H⊕H . (25)

Contrary to the previous case, there is no trivial correspondence to Minkowski space-
time since quaternions have isometry to the Euclidean space (Early attempts using a
quaternion as the four-vector can be attributed to Minkowski himself, who considered
this as “too narrow and clumsy for the purposes” [18]. Since Silberstein’s time, there have
been many attempts from physicists to map quaternions to 4-vectors. Stephen Hawking’s
proposal [19,20] to introduce imaginary time (t → it) is one of such attempts because
it also indirectly complexifies the quaternion. The impossibility of the direct mapping of
a Minkowski 4-vector to a quaternion originates from the fact that the Lie group SU(2)
requires complexification over C). The upper raw in the basis represents quaternion
h1, and the lower raw is split-complexified quaternion jh2 (a split-complex number is
c = a + jb ∈ D: j2 = 1, j 6= ±1, a, b ∈ R. D = R⊕R, and it is algebra of Cl1,0). As a result
of (25), the algebra Cl0,3 is also H1,1. Hence, an eight-dimensional vector can be written as

h = h1 + jh2 .
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Using the complex conjugate with respect to j, the vector norm is

|h|2 = hh∗ = (h1 + jh2)(h1 − jh2) = |h1|2 − |h2|2 =
x2

0 + x2
1 + x2

2 + x2
3 − x2

123 − x2
23 − x2

13 − x2
12 .

(26)

It gives the sum of two Minkowski paravectors (x0, x23, x13, x12), and (x123, x1, x2, x3)
with reverse signatures, and implies that, for example, the first Minkowski four-vector can
be built from the scalar and three bi-vectors of Cl0,3. However, it must be stressed that such
accordance to Minkowski four-vectors can be considered only in terms of vector space,
but not in terms of algebra. Using such paravector representation, we can also map x0 to
the time coordinate and x123 to a volume as in the previous APS case.

The center of Cl0,3 is D yielding two dimensional (Minkowski) spacetime R1,1. Such
spacetime is spanned by two-vector represented by split-complex number

u = t + jη ∈ D , |u|2 = uu∗ = t2 − η2 , (t, η ∈ R) . (27)

Thus, the spacetime invariant for the Cen(Cl0,3) is

ds2 = c2dt2 − dη2 . (28)

It has signature (+−), which leads to the parameterization with the hyperbolic func-
tions or with the group SO(1, 1). Therefore, the Rindler coordinate transformations (They
are derived by the integration of dt = γdτ and dη = v(t)γdτ, where γ = cosh

(
ατ
c
)

and v(t) = c tanh
(

ατ
c
)
). take its classical form of Minkowski spacetime [9–11] where the

coordinate time is
t =

c
α

sinh
(ατ

c

)
, (29)

and the coordinate distance from the origin of motion is

η =
c2

α

(
cosh

(ατ

c

)
− 1
)
= 2η0 sinh2

(ατ

2c

)
, η0 =

c2

α
, (30)

where the initial synchronization of the clocks at the beginning (t = τ = 0 in η = 0) is
considered. Thus, the approach has the same path as given above in Section 3; repeating it
yields the scale factor of the FLRW metric as

a =
[

sinh
(ατ

2c

)]2/3
, α = 3H0c . (31)

The scale factor coincidences with the one used in the standard cosmology for the
current “dark energy dominated” epoch where it has the following form [21]

a(τ) =
(

Ωm

ΩΛ

)1/3[
sinh

(√
ΩΛ

3
2

H0τ

)]2/3
. (32)

The full correspondence can be seen in the case of Ωm = 1, ΩΛ = 1, though, as shown
in the next section, the model allows using an arbitrary Ωm, though eliminating the
necessity for the value of ΩΛ (or by setting it to the unity).

In the similar way as in Section 3, because of (30), the spherical volume expansion in
the case of Cl0,3 becomes

V(τ) = A η(τ) = A
c2

α

(
cosh

(ατ

c

)
− 1
)

, V̇ =
dV
dτ

= A c sinh
(ατ

c

)
. (33)

Expressing the derivative V̇ in terms of r yields

V̇(r) = ±A c
((

1 +
α

A c2 V
)2
− 1
)1/2

= ±
(

8πAα

3
r3 +

16π2α2

9c2 r6
)1/2

, (34)
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and in the same way as (16) with (17) leads to the recession and free-fall velocities

v(r) =
V̇

4πr2 = ±
(

2Gm
r

+
Λc2

3
r2
)1/2

, (3H2
0 = c2Λ > 0) , (35)

where comparing to (18) the cosmological term has the opposite sign. Using the tetrad (21),
one obtains the static metric of the Schwarzschild–de Sitter.

In contrast with the previous case, the Clifford algebra of anti-space Cl0,3 is different
from Minkowski structure of isomorphic algebras and Lie groups. For instance, it is
isomorphic to even subalgebras Cl0

4,0
∼= Cl0

0,4 [4]. In terms of Lie groups, as per (25),
Cl0,3 corresponds to the group SO(3,D) ∼= SO(3)× SO(3), and it is isomorphic to split-
complexified SU(2). The latter provides the isomorphism of SU(2)× SU(2) ∼= SO(4).

5. Observed Cosmological Model via Measured Deceleration Parameter

By definition, the deceleration parameter is

q0 = − äa
ȧ2 . (36)

The derivatives of the scale factor can be obtained using its relation to the coordinate
acceleration, velocity and coordinate distance: α′ = äR, v = ȧR, r = Ra. In this way,

q0 = − r
v2

d
dr

(
v2

2

)
. (37)

The substitution of (18) leads to

q0 =
Gm + H2

0r3

2Gm− H2
0r3

. (38)

Furthermore, using (35) for the SdS case, and assuming uniformly distributed mass m
within a sphere of radius r with density expressed in terms of the critical density

ΩM =
ρ

ρcr
, ρcr =

3H2
0

8πG

both cases are

SAdS : q0 =
1
2

ΩM + 2
ΩM − 1

, via SdS : q0 =
1
2

ΩM − 2
ΩM + 1

. (39)

Recent observations [22,23] indicate that the value of the deceleration parameter is neg-
ative and is on the order of q0 = −0.6. The given expression for the SdS case of the model
leads to a comparable value for the deceleration parameter by setting ΩM = 0.3 as noted
in [12], which is in accordance with the standard model. Notably, the presented approach
does not use a value of ΩΛ to obtain the comparable result for q0 as per the measurements.

The SAdS case results in q0 < −1 if 0 < ΩM < 1, which is slightly out of range of the
measured value for q0. Thus, the current observations suggest that the Universe expands
according to the SdS model of gravitation.

6. Discussion

The case of Clifford algebra of the physical space Cl3,0 demonstrates conformity to
the anti-de Sitter cosmology and the oscillating scale factor of the FLRW metric. Such a
case appears natural because of the algebra’s native isomorphism to Minkowski spacetime.
For instance, electromagnetism has symmetry with Cl3,0 algebra via a homomorphism
SO(3,C) group, where it can be represented by a complex vector E + iB. The complex
numbers corresponding to time and space volume u = t + iη point to a certain similarity.
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The complex numbers are known to induce both spatial rotations and oscillations. Another
notable property of Cl3,0 is that it allows the quick extrapolation of the results to the
spacetime algebra (STA) using the isomorphism with Cl0

1,3. As an example, for Cl1,3 where
the basis is the Dirac matrices, and the transformation is γµ → γa = γµhµ

a [24]. Hence,
in the case of the FLRW metric (10), it yields γk = aγk, (k = 1, 2, 3).

Nature seems to prefer complex numbers over split-complex numbers; thus, the ap-
plication of the Clifford algebra Cl0,3 to the model possesses certain "unnaturalness."
Nevertheless, since it provides a path to the de Sitter model, which is the basis for modern
observational cosmology, therefore Cl0,3, its isomorphic algebras and related groups, such
as SO(3,D) and SO(4) require further study on their possible relation to gravitation. For in-
stance, the symmetry with the group SO(3,D) suggests that we may consider a similar
split-complex vector, which due to the hyperbolic nature of the split-complex numbers,
does not induce harmonic oscillations.

However, the reviewed model must be switched to the inverse in one case: if Hawk-
ing’s imaginary time [19,20] is a valid concept. Since it would affect the core, precisely the
quadratic form of the algebra’s center, the imaginary time would lead to the fact that the
results (13) and (31) must be interchanged. Since the paravector representation implies the
quadratic forms (4) and (26), and the invariant forms for the center given by (6) and (28),
therefore the transformations which involve a complexification of the time coordinate have
to be further thoroughly studied in the application to the approach.

As noted in Section 3, the approach eliminates the cosmological term by the redefini-
tion of proper time with the coordinate time. The disappearance of the Lambda term from
the cosmological equations has been clearly demonstrated in the integrable Weyl geometry
models such as the Scale Invariant Vacuum theory, and as seen in the MOND, where the
constant of acceleration is also related to cH0. Such correspondences can be a prospective
topic for future research.

7. Conclusions

The Clifford algebras of space Cl3,0 (APS) and anti-Space Cl0,3 have a two-dimensional
center that in paravector representation corresponds to time-volume coordinates. It is
shown that the uniform acceleration in such two-dimensional spacetime induces the FLRW
metric in a comoving frame with the exact expressions for the scale factor. The constant uni-
form acceleration has the value expressed by the fundamental constants α = 3H0c = c

√
3Λ,

thus can be attributed to the intrinsic property of space.
A new feature of the model is that it states the essence of the cosmological expan-

sion due to the uniform acceleration in Clifford coordinates of Cen(Cl3,0), and Cen(Cl0,3).
The case of Clifford algebra of the physical space Cl3,0 demonstrates conformity to the
anti-de Sitter cosmology and the oscillating scale factor of the FLRW metric. Clifford
algebra Cl0,3 leads to the de Sitter model with the positive cosmological term and the exact
form of the scale factor used in modern cosmology.

The approach suggests that the appearance of the cosmological term is due to the rela-
tivistic effect, specifically given by the time coordinate transformations (8) and (29). Hence,
it is attributed to the fact that we only evaluate and measure our proper time attached to
our local comoving frame of reference, that is at the point of the expanding universe.

Moreover, as shown, in the application to a point mass, the uniform acceleration
approach results in expressions (16) and (18) corresponding to the Schwarzschild–AdS and
the SdS metrics for gravitation in the static coordinates. Since the present study is limited
by the spherically symmetric case, a generalization to an arbitrary coordinate system using
the tetrad formalism and Clifford coordinates can be a prospective topic for future research.
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