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Abstract: The accurate segmentation of retinal images is a basic step in screening for retinopathy and
glaucoma. Most existing retinal image segmentation methods have insufficient feature information
extraction. They are susceptible to the impact of the lesion area and poor image quality, resulting
in the poor recovery of contextual information. This also causes the segmentation results of the
model to be noisy and low in accuracy. Therefore, this paper proposes a multi-scale and multi-branch
convolutional neural network model (multi-scale and multi-branch network (MSMB-Net)) for retinal
image segmentation. The model uses atrous convolution with different expansion rates and skip
connections to reduce the loss of feature information. Receiving domains of different sizes captures
global context information. The model fully integrates shallow and deep semantic information and
retains rich spatial information. The network embeds an improved attention mechanism to obtain
more detailed information, which can improve the accuracy of segmentation. Finally, the method of
this paper was validated on the fundus vascular datasets, DRIVE, STARE and CHASE datasets, with
accuracies/F1 of 0.9708/0.8320, 0.9753/0.8469 and 0.9767/0.8190, respectively. The effectiveness of
the method in this paper was further validated on the optic disc visual cup DRISHTI-GS1 dataset
with an accuracy/F1 of 0.9985/0.9770. Experimental results show that, compared with existing
retinal image segmentation methods, our proposed method has good segmentation performance in
all four benchmark tests.

Keywords: retinal image segmentation; convolutional neural network; deep learning

1. Introduction

Retina image detection assists ophthalmologists in diagnosing different eye diseases,
such as diabetic retinopathy, glaucoma, age-related macular degeneration and other dis-
eases [1], among which diabetic retinopathy is the main cause of blindness. The condition
of retinal blood vessels (slope, curvature, neovascularization, etc.) is an important indicator
for diagnosing retinal diseases. The fundus image structure of the diseased retina includes
microaneurysms, hemorrhage and exudates, etc. [2], referring to Figure 1b. In clinical
testing of glaucoma, the vertical cup-to-disk ratio (CDR) is usually calculated to diagnose
whether it is glaucoma [3]. CDR is the vertical cup diameter (VCD) divided by the vertical
disk diameter (VDD). The normal CDR range is from 0.3 to 0.4. If the CDR is larger, it may
indicate glaucoma or other ophthalmic neurological diseases, referring to Figure 1c,d.

Manual detection of ocular diseases is usually a challenging and time-consuming task
for ophthalmologists. The accurate acquisition of information in retinal images is used to
assist ophthalmologists in detecting ocular diseases. Currently, a large number of scholars
have worked on retinal image tissue segmentation. Y. Miao et al. [4] proposed a retinal vessel
extraction method using matched filtering and a local entropy threshold. Kundu et al. [5]
proposed a retinal vessel segmentation method, which creates a proportional space from the
perspective of morphology. Palomera-Perez et al. [6] proposed the segmentation of retinal
vessels based on multi-scale feature extraction and region growth algorithms, but specialized
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knowledge is needed for the setting of vessel seed points and the formulation of termination
rules. In [7–9], the B-COSFIRE filter, the Gabor wavelet and Gaussian filter response are
proposed for retinal vessel segmentation. These traditional machine learning methods do
not have a strong ability to learn features automatically compared to deep learning methods,
and the segmentation accuracy is not high. Jainish et al. [10] proposed a retinal vessel
extraction method based on the maximum entropy EM algorithm. The above literature uses
an unsupervised method for the segmentation of retinal tissue. This method does not require
reference to manual annotation and uses the default rules of blood vessels to specify the
venous regions, since the unsupervised method suffers from the problems of not very good
performance and generality caused by noise and pathological patterns.

(a) Normal Image

Neuroretinal rim

(c) Glaucoma Image

 Optic Disc

Blood Vessel

Haemorrhages

Hard Exudates

Soft Exudates

(b) Retinopathy Image

VDD VCD

(d) Normal Image

Figure 1. (a) Healthy retina image (b) Diabetic retinopathy image with a lot of hemorrhage and exudate (c) Glaucoma
image; the neuroretinal border zone between optic disc and optic cup is relatively narrow (d) Normal retina image; the ratio
of VCD to VDD is small.

In this paper, a supervised learning approach is adopted to solve this problem. Unlike
the unsupervised approach, the supervised approach uses manually annotated data to
train a complex classifier for segmentation. The literature [11] uses neural networks (NN)
for pixel classification, by computing a seven-dimensional vector consisting of grayscale
and invariant moment-based features for pixel representation; however, the computational
cost is high. The literature [12] uses different machine learning methods to mix feature
vectors to classify vascular/non-vascular pixels. To simplify the model and increase effi-
ciency, the number of Gabor features should be minimized. This supervised approach uses
manually labeled features for shallow learning, which makes it difficult to learn deeper
information of the features. We believe that traditional methods require prior knowledge
and preprocessing to extract the feature information of manual annotation. The lack of
expressiveness of the features extracted by such a method and the inability to obtain deeper
feature information will reduce the accuracy of segmentation. The segmentation process is
easily affected by low-quality images and pathological areas. The stronger learning ability
of deep learning-based neural networks can solve this problem well. In [13–15], skipping
fully convolutional neural networks, deep-supervised fully convolutional networks, and
multi-scale convolutional neural network architectures were proposed to achieve seg-
mentation of retinal images. Most of the existing deep learning models continue to be
trained with uniform pixel-level loss, adopting a simultaneous strategy for segmenting
coarse and fine vessels. Yan et al. [16] proposes a three-stage deep learning model, which
divides the vessel segmentation task into three stages: coarse vessel segmentation, fine
vessel segmentation, and vessel fusion. The UNet [17] model uses the idea of skipping
connections instead of directly supervisingt them, and loss backpropagation on high-level
semantic features. This approach ensures that the final recovered feature map incorporates
more low-level features and also allows for the fusion of features at different scales. This
allows for multi-scale prediction and deep supervision, making it possible to recover in-
formation such as edges from the segmentation map more finely. This is one of the main
ideas of this paper. Alom et al. [18] proposed recursive convolutional neural networks and
recursive residual convolutional neural networks. Li et al. [19] proposed IterNet to find
the blurred blood vessel details from the segmented blood vessel image itself instead of
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the original input image. Jin et al. [20] proposed DUNet, which symmetrically stacks a
large number of upsamples with regular convolution so that contextual information can
be captured and propagated to higher resolution layers. This method focuses on local
features of retinal vessels for retinal vessel segmentation. Atli et al [21] proposed Sine-Net,
a network structure that first applies upsampling and then downsampling to capture thin
and thick vessel features, respectively. Wang et al. [22] proposed HAnet, which consists
of three decoder networks: the first decoder network dynamically locates and analyzes
“hard” image regions, while the other two are designed to separate “hard” and “easy”
image regions independently. Retinal blood vessels are in the area. The above methods
need to train a complex classifier to process big data with different characteristics, which
is more time-consuming and computationally expensive. Currently, deep convolutional
neural networks have achieved breakthrough results in medical image analysis. In the deep
learning methods that have been proposed, the continuous downsampling of images leads
to the loss of feature information of a large number of fine blood vessels in retinal images,
which eventually cannot be recovered. When the model is upsampled, some coarse low-
level information is difficult to recover, which also makes the network segmentation less
accurate. Based on all the above, we integrate our own ideas in the encoder and decoder.

The optic disc optic cup is also an important component of the retinal image, and
many existing methods treat optic disc optic cup segmentation separately from vessel seg-
mentation. In this paper, both segmentation tasks are worked on. For the optic disc optic
cup segmentation task, the literature [23] proposed an entropy-based sampling technique
to enhance the convolutional filter, which outperformed the results of uniform sampling.
However, the information extraction capability for edges is insufficient, resulting in weak
network learning capability. The literature [24] proposed the encoder–decoder network
Stack-U-Net, using UNet as the basic block of the cascade network, which is used as the
main model for training. In [25], a recurrent neural network RACE-net was proposed for
the segmentation of optic discs and optic cups. However, just combining multiple different
Unets to deepen the depth and width of the network, does not realize the effective use
of global and local feature information at different levels and stages in the retinal image.
Shah et al. [26] proposed a dynamic clipping neural network optic disc segmentation
method. Yu et al. [27] proposed the ResNet-34 model as the coding layer and U-Net as the
decoding layer for disc and cup segmentation. However, the method of superimposing
the network increases the model parameters and makes model training more difficult.
In [28,29], HANet and CE-Net were proposed for medical image segmentation. However,
this does not consider the interrelationship between the optic discs and optic cups and
separates the segmentation order. Kadambi et al. [30] proposed the adversarial adaptation
framework WGAN, guided by Wasserstein distance, to detect the boundaries of the optic
cup and optic disc. Tabassum et al. [31] proposed CDED-Net, which restores the semantic
information by cyclically executing the encoder to ensure the preservation of the segmenta-
tion boundary of the optic disc. This method avoids the pre-processing and post-processing
steps to achieve joint segmentation of the optic disc cup, but the segmentation effect of
the optic disc is not ideal. In the segmentation task of the optic disc and optic cup, the
existing neural network methods have insufficient learning ability. The network has an
insufficient understanding of local background information and global context information.
It is impossible to accurately distinguish the diseased area, blood vessels and optic cup in
the retinal image, which will cause incorrect segmentation. The feature information of each
layer or stage of the network cannot effectively be used, which results in the low overall
segmentation accuracy of the network. The generalization ability of the model is weak.
The existence of these problems is the main motivation for this research.

This paper proposes a multi-scale and multi-branch convolutional neural network
model to segment retinal vessels and optic cups. The model explores more image-related
information by learning various visual features and hierarchical information of retinal
images. This method has a stronger expressive ability than manual features. The main
contributions of this article are:
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• We propose an effective multi-scale and multi-branch network (MSMB-Net) model
for the automatic segmentation of retinal vessels. The proposed network model is
similarly used for the accurate joint segmentation of optic disc and optic cup;

• MSMB-Net has the following advantages: (a) The multi-scale context information
fusion module uses skip connections and different expansion ratios of atrous con-
volution to improve the model’s full understanding of local context information. It
improves the feature extraction ability of the network structure and maintains the
correlation of features in the receptive field; (b) The multi-branch convolution module
combines convolutions of different receptive field sizes to improve the sensitivity
to global context information; (c) Side-out rebuilding layer aggregates the effective
features of different stages to improve the network learning ability without adding
additional parameters and calculations;

• The network model proposed in this paper is tested on the DRIVE, STARE, CHASE_DB1
and Drishti-GS1 datasets. The proposed MSMB-Net can obtain the most advanced
results, which proves the robustness and effectiveness of the method.

The rest of the organization structure of this article is as follows: Section 2 describes
the multi-scale and multi-branch convolutional neural network model proposed in this
article. Section 3 describes the image datasets, the experimental settings, and the evaluation
metrics. In Section 4, we discuss and compare our experimental results from multiple
aspects. Section 5 is the conclusion.

2. Method
2.1. Network Structure

The MSMB-Net proposed in this paper takes the structure of the encoder and decoder
as the network backbone, as shown in Figure 2. Encoder and decoder structures, in the
traditional sense, are usually single-scale inputs. In order to allow the network to represent
the image features at different scales, we employ multi-scale input as the input form of the
network. MSMB-Net uses side inputs for constructing image pyramids, whose function
is to fuse different levels of image features to improve the segmentation quality of the
network. The side input is divided into four branches. The number of channels in each
branch is three. The image size of each branch is 48 × 48, 24 × 24, 12 × 12 and 6 × 6 pixels,
respectively. A skip connection is adopted between the corresponding encoding layer and
the decoding layer of the network. Its purpose is to merge the low-level feature information
with the high-level feature information. In the encoding path, SMCF is proposed to extract
local context information. This module uses multiple atrous convolutions with different
expansion rates to expand the range of the receptive field without increasing the amount
of calculation. At the bottom of the MSMB-Net, MBCM is proposed for feature recovery.
This module inputs the underlying feature information into five cascaded branches, each
of which is composed of a convolution series with different kernel sizes. Its purpose is
to capture broader and deeper semantic features. This keeps more space relevant. The
decoding path extracts features using two layers of 3× 3 convolution. In the decoder part,
the upsampling of the feature map uses the deconvolution method. In order to improve
the performance of MSMB-Net and to reduce the parameters and computational effort of
the network model, we use SRL to reconstruct the output feature maps of different layers
in the decoding path. The SRL layer aggregates the reconstructed feature maps into 32-
and 64-channel feature maps, respectively, aiming to make full use of the deep and shallow
semantic information while retaining more spatial information. Finally, MSMB-Net applies
channel attention and spatial attention to aggregate the 32-channel and 64-channel feature
maps to enhance the channel mapping and the interdependence of pixels. The extracted
information is related to segmentation, which improves the sensitivity and specificity of
the network.
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Figure 2. Multi-scale and multi-branch network (MSMB-Net) network structure.

2.2. Multi-Scale Context Fusion Module

In the proposed framework, SMCF combines the advantages of DeepLabv3 [32] and
Res-Net [33], as shown in Figure 3. DeepLabv3 and ResNet are two classic and represen-
tative architectures in deep learning. The structure of the DeepLab series uses different
expansion rates to expand the receptive field of the model. Compared with the traditional
convolution operation, the atrous convolution does not increase the number of parameters
and maintains the same feature resolution. In addition, we introduce atrous convolution
to improve the network’s ability to extract image features. Usually, pooling layers or
convolutional layers with stride are used in the network structure for downsampling to
expand the receptive field of the model. However, too many downsampling operations
can cause the loss of feature information, which is not conducive to model learning and
can increase the complexity of upsampling. To alleviate the above problem, let the network
model keep the model receptive field constant or large while reducing the downsampling
operation. We use artrous convolution [34] instead of standard convolution to increase the
perceptual field of the convolution kernel in MSMB-Net. ResNet uses a residual connection
mechanism to avoid the bursting and elimination of gradients, which also accelerates
network convergence. Mathematically, the calculation formula of the atrous convolution
under the two-dimensional signal is (1)

y[i] =
n

∑
k=1

[x[i] + rk]× w[k] (1)

where x[i] is the input signal, w[k] is the kth parameter of the filter, k is the size of the filter,
y[i] is the output signal, and r is the expansion rate. For a convolution filter with a size of
k× k, the size of the obtained expansion filter is kr × kr, where kr = k + (k− 1)× (r− 1).
Therefore, those with a large expansion rate have a large receptive field.

Due to the complex structure of fundus retinal images, large variation in segmentation
target size and low background contrast, the SMCF module is proposed in this paper for
the better segmentation of retinal images with different sizes and to alleviate the problem
of blurred optic disc optic cup boundary segmentation. In this paper, the SMCF module
captures multi-scale features using skip connections and atrous convolution with different
expansion rates. This is used to achieve the precise segmentation of blood vessel edges,
tiny blood vessels, and optic disc cup boundaries. First, use 1× 1 convolution to halve the
number of feature mapping channels of the SMCF module, which can increase the speed
of the model. Then, use the global average pooling layer and four parallel convolutional
layers to capture feature information. The global average pooling layer uses bilinear
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interpolation to obtain image-level global context information [35]. Finally, the features
captured by parallel convolution are merged into the model. Among them, the calculation
of the kth pixel among image-level features is shown in Formulas (2) and (3)

rk =
W

∑
w=0

H

∑
h=0

Rk(w, h)
W × H

, w ∈W, h ∈ H (2)

gapk = GBI(rk) (3)

where, in rk = [r1, r2, ..., rk′ ], k is an input characteristic diagram of the channel num-
ber, w is an input characteristic diagram of the width, h is the input feature high,
gapk = [gap1, gap2, ..., gapk′ ], and GBI(·) is bilinearly upsample.

Conv Conv 

H×W×C H'×W'×C' k=1×1

r = 2 

 k=3×3

r = 4 

k=3×3

r= 6

 k=3×3

H'×W'×5×C'

⊕

Conv 

H'×W'×C'

Global 
Pooling

Conv Kernel=1×1

Feature map

Conv Conv+BN+Relu

BN+Relu

Inflow of feature 

⊕  Feature add

Figure 3. SMCF module structure diagram.

2.3. Multi-Branch Convolution Module

In medical images, the varying size of segmented objects has always been a problem
in segmentation tasks. For example, retinal blood vessels vary in thickness. In this article,
MBCM is proposed to alleviate this problem.

As shown in Figure 4, this mainly relies on combining multiple effective convolution
kernels to detect targets of different sizes. Usually, the convolution of the large receptive
field extracts the large target feature. The convolution of the small receptive field is more
suitable for the recovery of small targets. The MBCM module has five cascaded branches.
In each branch, convolution operations with different kernel sizes will obtain feature
information maps of different sizes. In the last three branches, 1× 1 convolution is used
to correct linear activation, which reduces the dimensionality and computational cost of
weights. Finally, after feature transfer, the feature maps of the five branches are added
to the original feature maps. This obtains a feature map of the same size as the original
feature map.
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Figure 4. MBCM module structure diagram.

2.4. Side-Output Rebuilding Layer

In the decoder part, the feature maps of different channel numbers are aggregated.
In this way, a sufficiently high-resolution image is obtained to restore the features. This
improves the utilization of each layer of channels. Figure 5 details the design of the
Side-output Rebuilding Layer (SRL). In the figure, the symbol C indicates the number of
channels. In this paper, an SRL is proposed to obtain spatial information while aggravating
the deep and shallow semantic information. In the upsampling process, SRL layers are
used instead of the deconvolution or bilinear interpolation methods to reduce the number
of parameters while keeping the some learning capability for the network. Assuming that
the dimension of our input feature map is W × H× (d× d×C), where d is the upsampling
factor, we can obtain the feature map with dimension (W × d) × (H × d) × C by SRL
algorithm. The advantages of SRL as an upsampling method are as follows: (1) Compared
with the deconvolution method, SRL does not add extra parameters and computational
overhead, which can improve the speed of MSMB-Net. Additionally, SRL is learnable, so it
can capture and recover the lost details in downsampling; (2) Compared with the bilinear
interpolation method, the bilinear interpolation for upsampling method is not able to
learn, although it does not need to bring in extra parameters and computational overhead.
This makes it impossible to accurately restore the lost feature information. Therefore, SRL
combines the advantages of both methods.
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Figure 5. Side-output Rebuilding Layer structure diagram.
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First, SRL periodically rearranges the information in the four-layer feature maps (L1,
L2, L3, L4) of the decoded path. The height and width of the feature map are expanded by
upsampling factors (1, 2, 4, 8) to achieve the effect of reducing the number of channels and
increasing the size of the feature map. The implementation process is shown in Algorithm 1.
After the scale reconstruction of the feature map by SRL, the segmentation results and edge
information of the reconstructed feature map are refined using 3× 3 and 1× 1 convolution
operations. The SRL layer mainly performs eight and 16 specific channel convolutions
on the four-layer output feature R of the MSMB-Net decoding path, which generates the
corresponding SRL_32 branch and SRL_64 branch. After the feature map passes through
the SRL, the SRL_32 branch and the SRL_64 branch apply two 3× 3 convolutions and a 1× 1
convolution to refine the feature information of its edges, which means that MSMB-Net
achieve better segmentation accuracy.

Algorithm 1 Side-output Rebuilding Layer
Input:
Feature map:x ∈ RN×h×w×c. Batch of feature maps: N.
Height of the feature map:h. Width of the feature map:w.
Channel c of the feature map:c. Downsampling factor:d.
Output:
Feature map after scale rebuilding: x

′ ∈ RN×(w×d)×(w×d)× c
d×d

1: cout =
c

d×d
2: for i in c do
3: for j in h do
4: for k in w do
5: c

′
= i mod cout

6: h
′
= j× d + cout

d
7: w

′
= k× d + cout mod d

8: x
′
[:, h

′
, w
′
, c
′
] = x[:, j, k, i]

9: end for
10: end for
11: end for

2.5. Attention Module

The attention module was inspired by CBAM [36]. To obtain good segmentation
performance, we embed the proposed attention module into the MSMB-Net. The attention
module can highlight the important regions of fundus images and optic disc visual cups,
filter out the background noise, and solve the information loss problem caused by SRL
reconstruction features. For a given input image, channel attention aims to establish the
correlation between channels. It enhances the specific semantic response ability of the
channel and emphasizes the meaningful parts. As a supplement to channel attention,
spatial attention aims to enhance the expression of their respective features through the
association of any two pixels. In this way, the features in the spatial position generate
attention. The attention mechanism is sensitive to features, which allows the network to
obtain detailed information that needs attention. It effectively selects the features generated
by the SRL module, which suppresses information that is useless for segmentation. This is
very important for decoders without any supervision information.

The attention module proposed in this paper is shown in Figure 6. First, the feature
maps x and y of SRL_32 branch and SRL_64 branch are input to the attention module
through the convolution layer. The corresponding feature vectors are obtained after
global pooling. The gating coefficients α are obtained by sigmoid activation. We used
spatial maximization and spatial averaging for the α× x feature maps. The feature maps
obtained by spatial maximization and spatial averaging are concatenated. The feature
maps obtained by concatenating have interdependent information with x. This allows the
model to efficiently select more detailed information that needs attention. In this way, the



Symmetry 2021, 13, 365 9 of 24

spatial tolerance of the model is improved. Finally, x′′ and y are summed to obtain the final
output feature z, which is used for pixel classification and improves the sensitivity of the
channel features. The experimental results demonstrate that the attention module enables
the MSMB-Net model to achieve higher specificity and accuracy.
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Figure 6. Attention structure diagram.

3. Dataset and Evaluation
3.1. Dataset

The method proposed in this paper was verified on four public datasets: DRIVE [37],
STARE [38], CHASE [39] and Drishti-GS1 [40].

DRIVE dataset consists of 40 retinal fundus blood vessel images. The size of each im-
age is 565× 584. The dataset comes from the Dutch diabetic retinopathy screening program.
Among them, 33 did not show any signs of diabetic retinopathy and seven showed signs
of mild early diabetic retinopathy. (http://www.isi.uu.nl/Research/Databases/DRIVE/
accessed on 24 February 2021);

STARE dataset consists of 20 retinal fundus images. The size of each image is 700× 605.
Among them, there were 10 images of healthy subjects and 10 pathological images with
overlapping blood vessels. (https://cecas.clemson.edu/~ahoover/stare/ accessed on 24
February 2021);

CHASE dataset consists of the left and right eyes of 14 students. The size of each
image is 1280× 960. Compared with DRIVE and STARE, the image has uneven background
illumination, poor contrast of blood vessels and narrow arteries. (https://blogs.kingston.
ac.uk/retinal/chasedb1/ accessed on 24 February 2021);

Drishti-GS1 dataset consists of 101 retinal fundus images, including 31 normal images
and 70 diseased images. Its images vary in size. Each image is manually marked by four
ophthalmologists. The average optic disc and optic cup area are regarded as standard areas.
(https://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php accessed on 24
February 2021).

3.2. Implementation Details

The method in this paper is based on the deep learning open source framework
Pytorch [41], Linux operating system, Intel(R) Xeon(R) Gold 5218 2.30GHz CPU and
Quardro RTX 6000 24G GPU. Its running memory is 187G. In the training phase, the
Adam [42] optimizer was used for gradient descent. The Softmax function was used for
final classification. The learning rate lr was initialized to 0.001, which attenuates the
learning rate through the Plateau [43] method. To prevent the risk of overfitting and to
improve the model performance, a random dynamic extraction of small batches of patches
was taken to train the network. The patch size was 48× 48, the batch initialization was 32,
and the training period was 200. The probability thresholds in the four standard datasets
were set to 0.46, 0.5, 0.48 and 0.3, respectively. The total number of parameters of the model
proposed in this paper is 58.361 MB. The loss function uses a cross-entropy loss function.
This is defined as follows (4)

L(pi, qi) = −
1
n ∑

i
[pi log qi + (1− pi) log (1− qi)] (4)

http://www.isi.uu.nl/Research/Databases/DRIVE/
https://cecas.clemson.edu/~ahoover/stare/
https://blogs.kingston.ac.uk/retinal/chasedb1/
https://blogs.kingston.ac.uk/retinal/chasedb1/
https://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php


Symmetry 2021, 13, 365 10 of 24

where pi represents the real label and qi represents the predicted image.
For DRIVE, we followed the criteria given by the data publisher and used 20 images

for training and 20 images for testing. For CHASE, the method proposed in [44] was used,
which uses 20 images for training, and eight images from four children were selected for
testing. For STARE, the “leave-one-out” method proposed in the literature [45–47] is used,
which uses 19 images for training and the remaining images for iterative testing. For the 101
retinal fundus images of the Drishti-GS1 dataset, 50 images were used and 51 images were
used for testing. In the test phase, each test image of each dataset is extracted sequentially
with image patches in a sliding window of the same size as the training phase.

The preprocessing method in [48] is used in the Drishti-GS1 dataset, which polarizes
the original image to effectively refine the boundary portion of the optic disc view cup. Data
augmentation was performed using the method of optic disc centroid image detection [49]
to extract images of 10 different sizes for training. In the testing phase, only the test image
size of 700× 700 was extracted for testing, and the image was scaled to 512× 512 for input
into the network. Finally, the generated predicted images were filled to the same size as
the original image.

3.3. Performance Evaluation

The influence of F1 score (F1), Accuracy (Acc), Sensitivity (Se), Specificity (Sp) and
ROC curve area on the segmentation results are analyzed by the confusion matrix. Bound-
ary distance localization error (BLE) [50] and F1 score are used to evaluate the performance
of different segmentation methods. This is defined as follows (5)–(10):

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

Sesitivity =
TP

TP + FN
(6)

Speci f icity =
TN

TN + FP
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 score = 2
Precision× Recall
Precision + Recall

(10)

where TP indicates the number of pixels that labeled the vascular pixels correctly, TN
indicates the number of pixels that labeled the background correctly, FP is the number of
pixels that failed to label the vascular pixels correctly, and FN is the number of pixels that
failed to label the background pixels correctly.

Because the F1 score is not suitable for boundary segmentation evaluation, BLE is
used to evaluate the segmentation results of the Drishti-GS1 dataset in this paper. It uses
the average BLE to measure the boundary distance (in pixels) between the boundary
segmentation (Co) of the optic disc region and the ground truth (Cg). BLE is defined as (11)

BLE(Cg, Co) =
1
N

N

∑
n=1

√∣∣∣dθ
g − dθ

o

∣∣∣ (11)

where dθ
g represents the radial Euclidean distance from the predicted boundary point to

the center of mass in the direction θ. dθ
o represents the radial Euclidean distance from the

ground truth boundary point to the center of mass in the direction θ. In the experimental
evaluation, 24 equidistant points are set. The ideal value of BLE is θ.
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4. Experimental Results and Discussion
4.1. Compare the Results of the Improved Model

To analyze the effect of the improvement, we compare the performance of the im-
proved network and the Basic network model. Under the same parameter settings, the
DRIVE, STARE, CHASE and Drishti-GS1 test datasets were used to verify the model. The
effectiveness of the network is verified by combining SMCF, MBCM, SRL and the attention
mechanism module proposed in this paper. In Table 1, SMCF represents the multi-scale
context information fusion module, and MBCM represents the multi-branch convolution
module, SRL represents the side-output rebuilding layer, Att represents the attention mech-
anism module, and MSMB-Net represents SMCF + MBCM + SRL + Att. All bolded data in
the table indicate optimal results.

Table 1 shows the experimental results for the five models on the DRIVE dataset. In
the table, “Basic” stands for U-Net with multiscale input, which is in the form of side
input, as mentioned in the methodology. The results of the Basic experiments show that
the Unet architecture is able to segment the retinal vessels effectively and achieve good
results. By comparing the experimental results of the first row and the second row, it is
found that the F1 score has improved in all three datasets. This shows that SMCF helps
the encoder to partially extract multi-scale, high-level semantic features. The extracted
local context information is conducive to obtaining high-resolution, high-level semantic
feature maps. Comparing the second and third row shows that the SRL proposed in this
paper improves the segmentation effect of retinal blood vessels by expanding the receptive
field of the vascular characteristics in the decoder. The accuracy of STARE and CHASE
datasets has improved. F1 scores have also improved in all three datasets. The fourth
line shows that the proposed MBCM re-encodes the features extracted by SMCF, which
is beneficial to the segmentation result. MBCM uses the convolution of different kernel
sizes to change the combination of features to improve the fracture of small blood vessels
in the segmented image. The proposed MBCM improves the F1 score and sensitivity of the
experiment. Comparing the fifth row with other rows shows that the MSMB-Net network
architecture can segment the retinal fundus blood vessels very well. The experimental
data show that the MSMB-Net segmentation effect is the highest. The F1/Accuracy score
reached 0.8320/0.9708, 0.8469/0.9753 and 0.8190/0.9767 on the DRIVE, STARE and CHASE
datasets. Compared with the Basic network model, the sensitivity was increased by 3.84%,
2.9% and 1.51%, and the specificity was increased 0.11%, 0.51% and 0.09% respectively.The
data format in the table is:mean/standard deviation.

Table 2 shows the experimental results for the five models on the Drishti-GS1 dataset.
As with the experiments on the DRIVE, STARE, and CHASE datasets, we added the SMCF,
MBCM, SRL, and attention modules to MSMB-Net in order to validate their effectiveness.
The data format of BLE in the table is average/standard deviation. Optic stands for
joint optic disc view cup segmentation. In order to further verify the effectiveness of the
MSMB-Net network architecture, experiments were performed on the optic disc cup on
the Drishti-GS1 dataset. When SMCF is used, the segmentation performance of the model
significantly improves. According to the segmentation results of the optic disc and the
optic cup, the F1 score is 0.84% and 1.25% higher than that of the Basic model, while the
BLE decreases by 1.131px and 1.239px. With the addition of SRL, the model integrates
low-level and high-level context information, which can effectively exclude avascular
areas and more accurately segment the boundaries of the optic cup. In the optic disc and
optic cup segmentation results, the F1 scores are improved by 1.37% and 1.65% compared
with Basic. BLE decreased by 1.917px, 2.442px, especially the sensitivity to the optic cup,
which reached 0.9599. The MBCM module further extracts global context information to
obtain high-resolution advanced semantic feature maps, which significantly improves the
segmentation results of the video disc. The F1 score is 1.46% higher than Basic, BLE is
lowered by 2.868px, and the sensitivity is higher than Basic. 2.99%. It can be seen from the
fifth row of the table that MSMB-Net has better results than other models. The F1 score is
1.78% and 3.5% higher than that of Basic, and BLE is significantly reduced by 3.338px and
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6.511px. This shows that the combination of convolutional neural network and attention
has a significant effect on the segmentation of the optic disc and cup. In the segmentation
results of the combined optic disc cup, the F1 score is 1.74% higher than the Basic model.
The sensitivity and specificity are also stronger, which can also explain the effectiveness of
the MSMB model proposed in this paper for optic disc cup segmentation. The data format
in the table is: mean/standard deviation.

4.2. Retinal Vessel Segmentation

To demonstrate the effectiveness of our method in vessel segmentation, we evaluated
our method on four datasets using the previously proposed unsupervised and supervised
methods. Tables 3–5 show the segmentation results on the DRIVE, STARE and CHASE
datasets compared to other methods. In this paper, we mainly use sensitivity, specificity,
accuracy and F1 metric as evaluation metrics. As can be seen from the tables, the segmenta-
tion results of the supervised methods are generally better than those of the unsupervised
methods, and the accuracy and F1 scores of the supervised methods are higher.

On the DRIVE dataset, MSMB-Net achieved good results in terms of specificity,
accuracy and F1 scores. The experimental results are shown in Table 3. The methods
of UNet and R2U-Net will segment blood vessels thicker than real blood vessels, so
the accuracy of segmentation is also lower. When using the Ce-net method to segment
pathological images, the segmentation results will produce a lot of noise. Furthermore,
the lesion area is divided into blood vessels, so the sensitivity of the network is high and
the accuracy is low. IterNet uses weight sharing and skip connections to reprocess the
segmented images, which can find blurred vessel details. In this paper, skip connections
and atrous convolution are used to fully fuse the features of the shallow layer and the deep
layer, and restore the lost small blood vessels. The specificity of the network is improved
and the result of segmentation is more accurate. In terms of F1 score and accuracy, the
performance of MSMB-Net is 1.27% 0.22% higher than that of HAnet.

On the STARE dataset, pathology images segmented with Sine-Net had vascular
segmentation errors. The visually segmented retinal vessels were thicker than the actual
vessels, and thus had low sensitivity and high specificity. The experimental results are
shown in Table 4. The visually segmented retinal vessels were thicker than the actual ves-
sels, and thus had low sensitivity and high specificity. The MSMB-Net method segmented
the background image and blood vessels more accurately, which is closer to the actual
segmentation. The sensitivity of MSMB-Net is 87.6%, which is 3.91% higher than DUNet.
However, the DUNet segmentation result is slightly higher than MSMB-Net in terms of F1
score and accuracy.

In the CHASE dataset, segmentation is difficult because of the uneven background
brightness, poor contrast and wide arteries of the original image. The experimental results
are shown in Table 5. Therefore, the model needs to have a stronger ability to extract feature
information. MSMB-Net is superior to other methods in terms of sensitivity, specificity
and accuracy, with an accuracy that is 1.89% higher than U-Net. R2U-Net up- and down-
sampling loses the characteristics of small blood vessels, and the small receptive field
settings cannot capture large-scale features. Therefore, the network sensitivity is weak.
HAnet has the highest F1 score on this dataset, but it is not as accurate as MSMB-Net.

The local feature information of different ranges is effectively extracted by combining
convolutional kernels of different sizes. The loss of feature information is mitigated using
atrous convolution with different expansion rates. After fusing the feature information
branches, the attention module obtains more useful feature information. This is beneficial to
the final segmentation and effectively improves the segmentation accuracy of small blood
vessels and blood vessel edge information. The comparative analysis of DRIVE, STARE
and CHASE datasets shows that MSMB-Net has better performance and robustness.
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Table 1. Comparison of model changes in DRIVE, STARE and CHASE datasets.

Methods
DRIVE STARE CHASE

F1 Acc Se Sp F1 Acc Se Sp F1 Acc Se Sp

Basic 0.8263/0.0189 0.9707/0.0039 0.7957/0.0519 0.9864/0.0032 0.8307/0.0211 0.9742/0.0044 0.8470/0.0527 0.9848/0.0045 0.8081/ 0.0181 0.9754/0.0038 0.8220/0.0331 0.9857/0.0025
SMCF 0.8280/0.0182 0.9705/ 0.0032 0.8093/0.0518 0.9860/0.0034 0.8317/0.0179 0.9743/0.0040 0.8476/0.0452 0.9848/0.0034 0.8140/ 0.0190 0.9762/0.0036 0.8256/0.0391 0.9863/0.0022

SMCF+SRL 0.8292/0.0156 0.9702/0.0026 0.8240/0.0477 0.9843/0.0039 0.8336/0.0135 0.9747/0.0035 0.8512/0.0311 0.9849/0.0029 0.8150/0.0136 0.9763/ 0.0031 0.8273/0.0344 0.9863/0.0023
SMCF+MBCM+SRL 0.8301/0.0143 0.9704/0.0028 0.8246/0.0487 0.9844/0.0038 0.8341/0.0119 0.9747/0.0032 0.8534/0.0299 0.9847/0.0032 0.8161/0.0168 0.9757/0.0045 0.8465/0.0290 0.9844/0.0020

MSMB-Net (ours) 0.8320/0.0136 0.9708/0.0026 0.8341/0.0471 0.9875/0.0032 0.8469/0.0110 0.9753/0.0034 0.8760/0.0211 0.9899/0.0020 0.8192/0.0165 0.9767/0.0034 0.8371/0.0280 0.9866/0.0020

Table 2. Comparison of model changes on the Drishti-GS1 dataset.

Methods
Disc Cup Optic

F1 Acc Se BLE F1 Acc Se BLE F1 Acc Se Sp

Basic 0.9604/0.101 0.9935/0.003 0.8056/0.125 7.327/6.191 0.8834/0.112 0.9935/0.001 0.9417/0.084 17.528/11.964 0.9596/0.031 0.9968/0.002 0.9766/0.031 0.9974/0.002
SMCF 0.8280/0.072 0.9949/0.002 0.8180/0.110 6.196/5.388 0.8959/0.096 0.9970/0.001 0.9498/0.063 16.289/10.575 0.9687/0.017 0.9979/0.001 0.9775/0.027 0.9985/0.001

SMCF+SRL 0.9741/0.069 0.9952/0.002 0.8114/0.110 5.410/4.871 0.8999/0.109 0.9968/0.001 0.9599/0.056 15.086/11.286 0.9736/0.015 0.9983/0.0009 0.9831/0.021 0.9987/0.001
SMCF+MBCM+SRL 0.9750/0.055 0.9953/0.002 0.8355/0.081 4.459/2.203 0.8995/0.106 0.9969/0.001 0.9558/0.063 13.354/10.111 0.9735/0.011 0.9983/0.0007 0.9833/0.016 0.9988/0.0009

MSMB-Net (ours) 0.9782/0.034 0.9959/0.001 0.8610/0.045 3.989/1.824 0.9184/0.091 0.9975/0.002 0.9560/0.050 11.017/9.240 0.9770/0.011 0.9985/0.0007 0.9862/0.018 0.9992/0.001
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Table 3. Comparison of proposed methods with other methods in the DRIVE dataset.

Type Methods Year Se Sp Acc F1

Unsupervised methods

2nd human expert 0.7743 0.9819 0.9637 0.7889
Miao et al. [4] 2015 0.7481 0.9748 0.9597 -

Kumar et al. [8] 2019 0.7503 0.9717 0.9432 -
Tian et al. [9] 2019 0.8639 0.9690 0.9580 -

Jainish et al. [10] 2020 - - 0.9657 -

Supervised methods

Marín et al. [11] 2010 0.7607 0.9801 0.9452 -
Aslani et al. [12] 2016 0.7545 0.9801 0.9513 -
Feng et al. [13] 2017 0.7811 0.9839 0.9560 -

U-Net [17] 2018 0.7537 0.9820 0.9531 0.8142
R2U-Net [18] 2018 0.7792 0.9813 0.9556 0.8171
IterNet [19] 2019 0.7735 0.9838 0.9573 0.8205
Ce-net [29] 2019 0.8309 - 0.9545 -

Sine-Net [21] 2020 0.8260 0.9824 0.9685 -
HAnet [22] 2020 0.7991 0.9813 0.9581 0.8293

MSMB-Net (ours) 2020 0.8283 0.9864 0.9708 0.8315

Table 4. Comparison of proposed methods with other methods in the STARE dataset.

Type Methods Year Se Sp Acc F1

Unsupervised methods

2nd human expert 0.9017 0.9564 0.9522 0.7417
Miao et al. [4] 2015 0.7298 0.9831 0.9532 -

Azzopardi et al. [7] 2015 0.7716 0.9701 0.9497 -
Jainish et al. [10] 2020 - - 0.9703 -

Supervised methods

Marín et al. [11] 2010 0.6944 0.9819 0.9526 -
Aslani et al. [12] 2016 0.7556 0.9837 0.9605 -

Mo et al. [14] 2017 0.8147 0.9844 0.9674 -
Hu et al. [15] 2018 0.7543 0.9814 0.9632 -

U-Net [17] 2018 0.8270 0.9842 0.9690 0.8373
IterNet [19] 2019 0.7715 0.9886 0.9701 0.8146
DUNet [20] 2019 0.8369 0.9888 0.9773 0.8485

Sine-Net [21] 2020 0.6776 0.9946 0.9711 -
HAnet [22] 2020 0.8186 0.9844 0.9673 0.8379

MSMB-Net (ours) 2020 0.8760 0.9899 0.9753 0.8469

Table 5. Comparison of proposed methods with other methods in the CHASE dataset.

Type Methods Year Se Sp Acc F1

Unsupervised methods
2nd human expert 0.6776 0.9946 0.9711 -
Azzopardi et al. [7] 2015 0.7585 0.9587 0.9387 -

Tian et al. [9] 2019 0.8778 0.9680 0.9601 -

Supervised methods

Mo et al. [14] 2017 0.7661 0.9816 0.9599 -
Yan et al. [16] 2018 0.7641 0.9806 0.9607 -

U-Net [17] 2018 0.8288 0.9701 0.9578 0.7783
R2U-Net [18] 2018 0.7756 0.9820 0.9634 0.7928
IterNet [19] 2019 0.7970 0.9823 0.9655 0.8073
DUNet [20] 2019 0.8155 0.9752 0.9610 0.7883

Sine-Net [21] 2020 0.7856 0.9845 0.9676 -
MSMB-Net (ours) 2020 0.8331 0.9864 0.9767 0.8190

4.3. Optic Disc and Optic Cup Comparison of Different Methods

To illustrate the generalizability of MSMB-Net in the retinal image segmentation
task, we compared our method with others using some existing methods on the Drishti-
GS1 dataset. Tables 6 and 7 show the segmentation performance on the Drishti-GS1
dataset compared to other methods. The sensitivity, specificity and accuracy are not
given in the extensive literature in the tables. As can be seen from the table, our method
performs well in terms of specificity and accuracy. The data format of Dice in the table is:
mean/standard deviation.
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Table 6. Comparison of Disc results of different baseline methods on the Drishti-GS1 dataset.

Methods Year Se Sp Acc Dice BLE

Vessel Bend [51] 2011 - - - 0.9600/0.02 8.93/2.96
Multiview [52] 2012 - - - 0.9600/0.02 8.93/2.96
Superpixel [53] 2013 - - - 0.9500/0.02 9.38/5.75
Graph Cut [54] 2013 - - - 0.9400/0.06 14.74/15.66

U-Net [17] 2015 0.9600 0.9800 0.9700 0.9500 -
Zilly et al. [23] 2015 - - - 0.9470 -

BCRF [50] 2017 - - - 0.9700/0.02 6.61/3.55
Stack-u-net [24] 2018 - - - 0.9700/0.02 6.47/3.51
RACE-net [25] 2018 - - - 0.9700/0.02 6.06/3.84
Shah et al. [26] 2019 - - - 0.9600 -

Yu et al. [27] 2019 - - - 0.9738 -
Ding et al. [28] 2019 - - - 0.9721 -

Ce-net [29] 2019 0.9759 0.9990 - 0.9642 -
WGAN [30] 2020 - - - 0.9540 -

CDED-Net [31] 2020 0.9754 0.9973 - 0.9597 -
MSMB-Net (ours) 2020 0.9610 0.9984 0.9959 0.9782 3.98/1.82

Table 7. Comparison of Cup results of different baseline methods on the Drishti-GS1 dataset.

Methods Year Se Sp Acc Dice BLE

Vessel Bend [51] 2011 - - - 0.7700/0.20 30.51/24.80
Multiview [52] 2012 - - - 0.7900/0.18 25.28/18.00
Superpixel [53] 2013 - - - 0.8000/0.14 22.04/12.57
Graph Cut [54] 2013 - - - 0.7700/0.16 26.70/16.67

U-Net [17] 2015 0.9600 0.9800 0.9700 0.8500/0.10 19.53/13.98
Zilly et al. [23] 2015 - - - 0.8300 -

BCRF [50] 2017 - - - 0.8300/0.15 18.61/13.02
Stack-u-net [24] 2018 - - - 0.8900/0.09 14.39/7.18
RACE-net [25] 2018 - - - 0.8700/0.09 16.13/7.63
Shah et al. [26] 2019 - - - 0.8900 -

Yu et al. [27] 2019 - - - 0.8877 -
Ding et al. [28] 2019 - - - 0.8513 -

Ce-net [29] 2019 0.8819 0.9909 - 0.8818 -
WGAN [30] 2020 - - - 0.8400 -

CDED-Net [31] 2020 0.9567 0.9981 - 0.9240 -
MSMB-Net (ours) 2020 0.9560 0.9983 0.9975 0.9184 13.01/9.24

MSMB-Net achieved the best performance in terms of specificity, accuracy and BLE
evaluation indicators. In addition, the fundus optic disc segmentation also achieved the
best performance on the Dice index. In the segmentation results of the fundus optic cup,
MSMB-Net is 4.84% and 3.12px higher than UNet in Dice and BLE. Stack-u-net widens the
network through two U-Nets, but the parameters of the model increase and the complexity
of the model structure increases. RACE-net uses a recurrent neural network method to
segment the optic disc and the optic cup. There are a large number of shared parameters in
the network structure, which makes the network learning ability insufficient. Although
Ce-net has achieved good results in the segmentation of the optic disc, it does not segment
the optic cup well. CDED-Net eliminates the pre-processing and post-processing to reduce
the calculation cost, and the Dice index of the fundus optic cup segmentation reached 92.4%.
However, in optic disc segmentation, MSMB-Net is 0.11% and 1.85% higher in specificity
and accuracy than CDED-Net. In contrast, the method in this paper is better than other
methodsof optic disc and cup segmentation, which fully proves the generalization ability
and effectiveness of MSMB-Net.

4.4. Different Segmentation Quantitative Analysis of the Results

In order to observe the difference of segmentation results more visually, we com-
pare the segmentation visualization images of each model in the ablation experiment.
The advantages of MSMB-Net can be seen from the visualized images. Figures 7 and 8
show the visualization results of each model for DRIVE, STARE, CHASE and Drishti-GS1
datasets, respectively.
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Figure 7 shows the comparison of the segmentation result images of each model
on the DRIVE, STARE and CHASE datasets. In the figures, (1) shows the visualization
results of random samples from the DRIVE test dataset, (2) shows the visualization results
of random samples from STARE test dataset, and (3) shows the visualization results of
random samples from the CHASE test dataset. The yellow boxes in the figure indicate that
different network models have different effects on the local segmentation regions of the
blood vessels. We can find some broken and mis-segmented vessel segments by zooming in
on the yellow box. At the same time, it is observed that the combination of SMCF modules
has a certain repair effect on the break of small blood vessels than the combination without
these modules. In addition, from the segmentation results, the MSMB-Net model is more
accurate for the segmentation of some small blood vessels.

(1) Visualization of the random samples results for DRIVE test dataset

(2) Visualization of the random samples results for STARE test dataset

Original image  Ground truth a b c d e

(3) Visualization of the random samples results for CHASE test dataset(3) Visualization of the random samples results for CHASE test dataset

(1) Visualization of the random samples results for DRIVE test dataset

(2) Visualization of the random samples results for STARE test dataset

Original image  Ground truth a b c d e

(3) Visualization of the random samples results for CHASE test dataset

Figure 7. Different models at different segmentation results of visualization of the dataset: (a) column is Basic, (b) column is
SMCF, (c) column is SMCF + SRL, (d) column is SMCF + MBCM + SRL, (e) column is MSMB-Net.
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Each row of Figure 8 shows the visualization segmentation results for the optic disc
and optic cup corresponding to each model on the Drishti-GS1 dataset. Since the segmented
images were too small to be easily observed, we zoomed in on the visualization results for
the optic discs and optic cups.The first row of the figure shows the original image of the
optic disc cup along with the corresponding ground truth and the corresponding magnified
image. The second row is the segmentation visualization of the baseline network model
experiment. The third row is the segmentation visualization of the network model, adding
the SMCF module. The fourth row is the segmentation visualization of the network model
joining the SRL layer. The fifth row is the segmentation visualization of the network model,
adding the MBCM module. The sixth row is the segmentation visualization of MSMB-Net.
In addition, we can determine the difference between the different network models by
looking at the magnified edges in the optic disc view cup visualization. Comparing the
partially enlarged images of different module combinations, we can see the effectiveness of
MSMB-Net segmentation. The optic disc cup area is also enlarged and displayed. Through
the enlarged image, it can be seen that the contour of the MSMB-Net model is more
consistent with the real label during the segmentation of the optic disc. Compared with
other combined models, the segmentation contour of the optic cup of the MSMB-Net model
is more accurate and perfect than other models.

(a) (b) (c) (d) (e) (f) (g)

Figure 8. Comparison of segmentation images of each model in the Drishti-GS1 dataset. (a) Original image (b) Segmentation
image of disc (c) Partial segmentation image of disc (d) Segmentation image of cup (e) Partial segmentation image of cup (f)
Segmentation image of optic (g) Partial segmentation image of optic.
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In the following experiments, MSMB-Net is compared with some existing methods
(e.g., UNet, Ce-net). In this paper, the effectiveness of MSMB-Net is illustrated by compar-
ing the visualization of MSMB-Net with the visualization of existing methods.

Figure 9 shows the segmentation visualization of two retinal images on the DRIVE
dataset. The first line is an image of the retina of a diabetic patient. The second line is the
retina image of a normal person. The red box in the figure indicates the local magnification
part, and the difference with other models can be found with the magnified image. We
observe that Unet and Ce-net have unclear and inaccurate segmentation of fine vessels. The
visualization results show that MSMB-Net is effective for the segmentation of small blood
vessels. The small blood vessels segmented by the UNet method are unclear and blurred.
When the Ce-net method is used to segment retinal blood vessels, the segmentation of
small blood vessels is slightly better than UNet. However, it is easy to mistakenly segment
the diseased area into retinal blood vessels, resulting in a poor segmentation effect. In the
method used in this paper, the SMCF module is used to expand the range of the receptive
field and reduce the loss of characteristic information. Therefore, the characteristics of
small blood vessels and lesion areas are better restored, which makes the segmentation
result more accurate.

(a) (b) (c) (d) (e)

Figure 9. Comparison of different segmentation results in the DRIVE dataset. (a) Image (b) Ground truth (c) MSMB-Net (d)
UNet (e) Ce-net.

In the Drishti-GS1 dataset, this paper also provides an experimental comparison of
MSMB-Net with other methods.

Figure 10 shows the results of the visualization comparison of MSMB-Net with other
methods for the same image. The blue part of the figure represents the optic cup and the
green part represents the optic disc. By comparing the blue part and the green part with
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the ground truth in the figure, we can find significant differences in the visualization of
the optic disc and optic cup by different network models, especially in the segmentation
of the edges of the optic disc and optic cup and the accuracy of the segmentation. The
experimental results show that MSMB-Net is more accurate for the boundary segmentation
of the optic disc cup. The result of BCRF segmentation of the optic disc is not ideal.
The boundaries segmented by the Superpixel method are all regular ellipses, while the
segmentation results of the optic disc cup using the Multiview, Graph Cut prior and Vessel
bend methods are inaccurate and the boundaries are chaotic. For the method in this paper,
the MBCM module is used to realize the feature extraction of objects of different sizes,
which makes the boundary segmentation more accurate.

(a) (b) (c) (d) (f)(e) (g) (h)

Figure 10. Compares the segmentation results in the Drishti-GS1 dataset. (a) Original retinal image (b) ground truth (c)
MSMB-Net (d) BCRF [50] (e) Superpixel [53] (f) Multiview [52] (g) Graph Cut prior [54] (h) Vessel bend [51].

4.5. Evaluation of ROC Curve and PR Curve

In this set of experiments, we compared the receiver operating characteristic (ROC)
curves and precision recall (PR) curves for each model on four datasets. On the Drishti-GS1
dataset, we also compared the BLE error statistics for each model.

In Figure 11, the first row is the ROC plot and the second row is the PR plot. The larger
AUC value in the plot indicates the higher efficiency of the model, i.e., the larger area of the
ROC and PR curves. In the figure, (a) indicates the ROC curve and PR curve plot for each
model on the DRIVE dataset, (b) indicates the ROC curve and PR curve plot for each model
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on the STARE dataset, and (c) indicates the ROC curve and PR curve plot for each model
on the CHASE dataset. Experimental results show that MSMB-Net has higher ROC and PR
AUC values than other models. The ROC AUC values on the DRIVE, STARE and CHASE
datasets are 0.9879, 0.9929 and 0.9909, and the PR AUC values are 0.8300, 0.8534 and 0.8399.
Compared with the Basic model, the MSMB-Net model can extract deeper characterization
features, which can better segment background information and offer finer blood vessel
information. It can be found in the figure that the curves of MSMB-Net are all increasing at
a positive rate, which shows that the performance of the proposed method is better than
other combined model methods.

(a) (b) (c)

Figure 11. ROC plots and PR plots for each model on the DRIVE, STARE and CHASE datasets. (a) ROC curve and PR curve
diagram of each model in the DRIVE dataset (b)ROC curve and PR curve diagram of each model in the STARE dataset (c)
ROC curve and PR curve diagram of each model in the CHASE dataset.

Figure 12 shows the comparison result of the BLE error statistical value box plot
of each model in the Drishti-GS1 dataset. The first line is the BLE error statistical value
box plot of the optic disc and the second line is the BLE error statistical value box plot
of the optic cup. Figure depicts the error distribution of the BLE at 15-degree intervals
over 360 degrees in horizontal coordinates, and the average error, median, and maximum
and minimum errors and quadrature boxes for each test image (51 in total) in the same
orientation (24 directions in total) are shown in vertical coordinates. The black horizontal
lines represent the maximum and minimum error, the green horizontal lines represent the
mean error, the orange squares represent the median, and the blue rectangles represent the
quartile box. It can be seen from the figure that the MSMB-Net model has better results than
other models. On the optic disc, the BLE error is reduced by 3.338 pixels compared with the
Basic model. On the optic cup, the BLE error is 6.511 compared with the Basic model. The
pixel variance is small. The influence of the optical cup is significantly improved, which
also shows that the model in this paper is more accurate in segmentation of the optical cup.
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(a) (b) (c) (d) (e)

Figure 12. Box plot of BLE statistical values of each model in the Drishti-GS1 dataset. (a) Basic, (b) SMCF model, (c)
SMCF+SRL, (d) SMCF+MBCM+SRL, (e) MSMB-Net.

Figure 13 shows the ROC curve and the PR curve of each model on the Drishti-GS1
dataset. In the figure, the first row is the ROC plot and the second row is the PR plot.
Column (a) is the ROC curve and PR curve for each model on the Disc; column (b) is the
ROC curve and PR curve for each model on the Cup; column (c) is the ROC curve and
PR curve for each model on the Optic. It can be seen from the figure that the ROC and PR
AUC values of MSMB-Net are higher than the other models. The AUC value of ROC of
the optic disc is 0.9235, and the AUC value of PR is 0.8432. The AUC value of the ROC of
the sight cup is 0.9770, and the AUC value of the PR is 0.9125. The AUC value of ROC of
joint segmentation is 0.9928, and the AUC value of PR is 0.9462. The experimental results
show that the MSMB-Net model can obtain the segmentation results of the optic disc more
accurately and the segmentation performance of the boundary part of the optic cup is
better. The combined segmentation results also show the effectiveness of the MSMB-Net
model for the segmentation of the optic disc.

(a) (b) (c)(a) (b) (c)

Figure 13. ROC curve and PR curve diagram of each model on the Drishti-GS1 dataset. Column (a) is the ROC curve and
PR curve for each model on the Disc, column (b) is the ROC curve and PR curve for each model on the Cup, column (c) is
the ROC curve and PR curve for each model on Optic.
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5. Conclusions

This paper proposes a segmentation network MSMB-Net for retinal images. In MSMB-
Net, the SMCF module integrates parallel atrous convolutions with different expansion
rates and skip connections, which capture more advanced context information and reduce
parameters to improve the speed of the model. Segmentation has the problem of some
features in the image becoming lost and difficult to recover. The MBCM module combines
convolutions of different receptive field sizes to capture finer feature information. The SRL
module fully integrates the shallow feature information and the deep feature information
to recover the lost shallow information. It retains more spatial information. To improve the
segmentation performance of the retinal image of the network model, the attention mech-
anism is embedded in MSMB-Net. Finally, we validated MSMB-Net on DRIVE, STARE
and CHASE datasets. To demonstrate the generality of the network in this paper, we also
performed experimental validation on the DRISHTI-GS1 dataset. The experimental results
show that the proposed method in this paper performs better than some existing methods,
such as UNet, Sine-Net and HAnet, for retinal vessel and optic disc optic cup segmentation.

However, the original image and the segmented image are processed again, which can
improve the segmentation performance of the model. In future work, the paper will apply
appropriate preprocessing and segmentation results in reprocessing methods to improve
the performance of the network model. The model should also be applied to other medical
images to demonstrate its versatility.
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