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Abstract: The ageing population’s problems directly impact countries’ socio-economic structure,
as more resources are required to monitor the aged population’s health. The growth in human
life expectancy is increasing due to medical technologies and nutritional science innovations. The
Internet of Things (IoT) is the connectivity of physical objects called things to the Internet. IoT has
a wide range of health monitoring applications based on biomedical sensing devices to monitor
health conditions. This paper proposes elderly patients’ health monitoring architecture based on an
intelligent task mapping approach for a closed-loop IoT healthcare environment. As a case study, a
health monitoring system was developed based on the proposed architecture for elderly patients’
health monitoring in the home, ambulance, and hospital environment. The system detects and notifies
deteriorating conditions to the authorities based on biomedical sensors for faster interventions.
Wearable biomedical sensors are used for monitoring body temperature, heart rate, blood glucose
level, and patient body position. Threshold and machine learning-based approaches were used to
detect anomalies in the health sensing data. The proposed architecture’s performance analysis is
evaluated in terms of round trip time, reliability, task drop rate, and latency performance metrics.
Performance results show that the proposed architecture of the elderly patient health monitoring can
provide reliable solutions for critical tasks in IoT environments.

Keywords: health monitoring; intelligent task mapping; elderly patients; internet of health care
things; patient activities monitoring

1. Introduction

Medical science innovations and advancements in nutritional science immensely
increase human life expectancy, which raises the ageing population’s problems. Chronic
diseases in elderly patients rise issues which put significant pressure on the health care, and
economy [1] of a country. Thus, the demand for health monitoring resources in hospitals
and health care clinics increases. Health monitoring resources mainly include a hospital
bed, human staff such as doctors and nurses, health monitoring device, and machines [2].
There is a research gap for proposing solutions to reduce this significant pressure on the
health care systems. Elderly patients who are not at high risk can be monitored remotely
from home, whereas patients at risk can be monitored and treated in the hospital to reduce
healthcare systems’ pressure. In general, Patient health monitoring systems are developed
based on the integration of communication and computing technologies. In the literature,
electronic health services-based models were developed for sustainable e-health services to
address the challenges and issues of these systems [3]. In broader-spectrum, these solutions
have common objectives and goals to provide electronic health services. One goal of these
solutions is to monitor and evaluate patient health conditions based on vital signs [4].
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In the literature, IoT-based applications are developed in the domain of smart homes,
smart cities, smart fisheries, smart industries, and smart hospitals, to named a few [5].
Previous studies use IoT as a potential solution to address the significant pressure on
the healthcare management systems [6]. Some of the research studies focused on patient
health monitoring of specific diseases based on vital signs monitoring. A few studies used
IoT-based technologies to develop remote smart health care systems. Survey studies have
been presented listing applications, challenges, and issues of commercial IoT platforms [7].
These survey studies discussed data analysis approaches, comparative analysis of medical
sensing devices but no studies present solutions to develop sustainable e-health services.
A sustainable solution must address and improve issues related to reliability, latency, and
stability to the health monitoring systems.

Previously tasks orchestration mechanism based on the Do It Yourself(DIY) approach
has been proposed for smart home-based thermal comfort applications [8] and mountain
fire detection [9]. Task orchestration mechanism provides task-level management of IoT
services. Task management makes the IoT application flexible and scalable. There are
two approaches when it comes to service-oriented IoT. Service-level orchestration and
Task-level orchestration. Service level orchestration is a familiar research topic and has
been used in many studies. However, the use of a single monolithic service makes them
inflexible, and with the addition of more devices, the application has to do a bulk of rework.
Task orchestration is a more granular approach, and thus in its core, it adds flexibility to
the IoT application. Moreover, the task-level granularity is very scalable, and when more
devices are registered, a very minimal effort is required to assign tasks to newly added
devices [10–12]. Task orchestration inherently deals with resource under-use and over-
use. In case of lack of connectivity, the resource allocation algorithm re-run task mapping
algorithm and finds the next better device to which connection can be established [11], in
case of redundant connection, it uses those devices which are optimally located [10,13].
In healthcare, it is essential to have a scalable system to accommodate new patients in an
emergency; therefore, the task-level approach is the logical candidate for such systems
where the load is not predictable. There are quite a few studies that encourage task
management instead of service management. Tasks level management of services was
proven effective for latency-critical applications.

Task orchestration mechanism is based on a series of steps such as services analysis for
tasks generation, device virtualization management, task mapping, and task deployment
on IoT devices. A task executes a functional unit of the IoT service. Device virtualization
virtualizes IoT devices such as sensors and actuators to virtual objects. Device virtualization
management gives freedom from hardware dependency. Task mapping mechanism is
used for mapping tasks to relevant virtual objects. Task mapping generates pairs of virtual
objects and tasks. These pairs are ordered based on task parameters such that most urgent
tasks are executed first and vice versa. These ordered tasks and virtual objects are used
to create processes for execution on IoT devices. The DIY-based IoT tasks orchestration
mechanism cannot handle critical task applications as the IoT application is designed
manually by the end-user.

This study proposes an intelligent task mapping mechanism to produce optimal task
device operation plans based on an optimization scheme to overcome this drawback of
DIY-based task orchestration. As a case study, the elderly patient health monitoring(EPHM)
architecture is proposed for a closed-loop IoT healthcare environment based on an intelli-
gent task mapping-based task orchestration mechanism. A closed environment for elderly
patient health monitoring provides reliable health monitoring in the home, ambulance,
and hospital environments. This study proposes a multi-objective functions-based intelli-
gent task mapping algorithm to produce optimal device operations plans. The proposed
intelligent task mapping architecture can be used to develop applications for critical task
environments such as smart hospitals, smart industry, and smart transportation. An elderly
patient health monitoring system (E-PHMS) is developed based on the proposed intelligent
tasks mapping-based task orchestration. The system monitors elderly patients based on
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microservices such as patient health monitoring at home, patient health monitoring at
the hospital, and patient health monitoring in an ambulance. These microservices are
organized into functional health units called health tasks. The proposed system uses a
device virtualization mechanism to register health devices’ virtual objects. The proposed
intelligent task mapping algorithm produces an optimal operational plan for these tasks
and health monitoring devices. The system creates processes for the optimal operations
plans and deploys them for execution on health monitoring devices.

A conceptual diagram of the proposed E-PHMS in a closed-loop healthcare envi-
ronment is given in Figure 1. An elderly patient is monitored in three scenarios, smart
home, smart ambulance, and smart hospital. E-PHMS is designed with alarming threshold
profiles to detect and notify anomalies in the vital signs to healthcare authorities. If a
patient outbreak is detected in the smart home, the patient is transferred to a smart ambu-
lance environment and monitored through the proposed E-PHMS. In the smart ambulance,
patient vital signs are continuously monitored and visualized on the hospital’s emergency
dashboard. Once the elderly patient is hospitalized to the intensive care unit (ICU), the
system monitors the vital signs and provides descriptive and predictive analysis on the
patient data. When elderly patients’ health conditions are recovered, they are discharged
and transferred to the smart home and monitored continuously. The system’s data is used
for data analysis, such as anomalous behavior detection and notification.

The rest of the paper is structured as follows. Section 2 highlights significant con-
tributions to health monitoring systems. In Section 3, the materials and methods of the
proposed system are discussed. Experimental results and discussions are presented in
Section 4. Conclusion and future research directions are presented in Section 5.
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Figure 1. Conceptual Procedure of Proposed Closed Loop Healthcare Environment.

2. Related Work

This section highlights significant contributions made to patient health monitoring
systems and architectures. There are many IoT-based healthcare applications developed
to monitor patients health remotely [14]. Health monitoring platforms are developed
based on IoT architectures for monitoring chronic and acute diseases. In the literature,
some studies focus on the integration of IoT in healthcare solutions [15]. These IoT-based
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healthcare systems reduce the costs of treatment for the elderly by developing platforms
and applications to improve healthcare services. Moser et al. proposed a cost-effective
platform to allow a person to monitor their health conditions and prescribe treatment
related to the diseases [16]. Turner et al. proposed a smart device-based platform based on
a microcontroller, HR sensor, and electro pads for doctors and patients to monitor heart rate
to avoid severe health damage [17]. Heart rate and body temperature are essential human
body traits for determining health conditions. A healthy adult person’s normal pulse rate
is between 60 and 100 beats per minute. The average heart rate is 70 beats per minute
for males, and for females, average heartbeats are 75 [18]. Diabetes is a prevalent disease
throughout the globe. According to a health report from the world health organization
(WHO), 422 million people have diabetes, which is increasing day by day [19]. In [20] the
authors’ proposed smart health monitoring platform for determining patients’ health con-
ditions using pulse oximeter (PO) sensor, body temperature (BT) sensor, glucometer (GM)
sensor, body position sensor, electrocardiogram (ECG) and electroencephalogram (EEG)
sensors. The sensing data is used to classify the patient conditions as normal and abnormal.
Penmatsa et al. proposed an abnormality detection platform for heart rate sensing data
for real-time health care assistance of doctors and medical specialists [21]. Studies assume
that by 2025 there will be about 50 to 100 billion devices connected to the Internet [22]. IoT
developers widely use Raspberry Pi and Arduino Uno to deploy IoT applications in the
development stage. In the literature, Raspberry Pi was used for healthcare IoT systems to
monitor respiration rate and rapid pulse detection [23,24]. Arduino Uno-based platforms
were developed to monitor heart problems [20] , abnormality detection [21], diagnosing
of hypothermia [25] and diabetes Mellitus [26]. A field-programmable gate array (FPGA)
is used in IoT-based healthcare monitoring systems due to real-time performance and
multi-sensing data handling [27].

In the literature, many studies attempted to integrate IoT in healthcare monitor-
ing systems for elderly patients due to the growing numbers of the elderly population.
Islam et al. [28] examined several IoT-based health monitoring application for elderly
patients. Several studies proposed evaluation techniques for the efficiency, stability, and
mobility of elderly patients monitoring systems such as Timed Up and Go (TUG). TUG
is used to analyze the time required for different movement segments completion by the
elderly subject. These segments include the time needed to getting up from a chair, walking
for a 3-meter distance, then coming back and sitting again. The subject with higher TUG
indicates a higher risk of falling from a chair. Another similar study presented in [29],
proposed an accurate fall detection system based on wearable sensors. The wearable
sensors, such as kinematic sensors, are used to evaluate the subject’s ability during the
TUG, to provide a more accurate and decisive conviction of a possible fall [30]. According
to a study presented in [31], a fall monitoring system based on a kinematic sensor discover
the most decisive fall situation, which stimulates different fall scenarios. In [32], the authors
proposed an algorithm to detect fall based on different parameters, such as the beginning
stage of the falling subject, shock, aftershock, and posture stage. The authors also analyzed
the changes in an acceleration vector based on these mentioned stages. Giorgi et al. pre-
sented a smartphone-based IoT system to detect the fall of elderly patients. In their study,
a smartwatch act as a gateway to receive sensing data and send an emergency notification
to the cloud once the fall is recognized [33]. Wu falin et al. presented a fall recognition and
locating system based on wearable sensing devices ad Global System for Mobile (GSM).
The authors used a 3D accelerometer(3D AM) sensor and GSM module to recognize and
locate fall [34]. Some existing studies applied gyroscopes and barometers to detect fall and
enhance the performance of the existing methods [35].

In paper [36], the authors presented a practical approach of a remote health monitoring
system to monitor and track vital signs of remote patients using wearable sensors. Wearable
sensors monitor vital signs such as blood pressure(BP), pulse, and count of red blood cells.
The system generates a report based on vital signs and sends the patient’s medication recom-
mendation to health authorities for further evaluation. In [37], the authors developed a health
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monitoring system to detect abnormalities of remote patients, such as the abnormal condition
of ECG and HR. In [38], the authors presented a model to detect abnormalities in remote
patients health conditions, which is used to overcome the critical conditions of the remote
patients by following precautionary measures. This study also investigated security risks as-
sociated with the developed application in treatment support, diagnostic support, and remote
monitoring. Furthermore [39,40], two techniques were proposed to encrypt medical data
for securing data transmission in order to protect sensitive information. In [41], the authors
proposed a cost-efficient approach for treating and monitoring patients through an IoT-driven
health monitoring system. Revolutionized IoT models have been integrated with healthcare
to reduce cost, time, and investment and enhance efficiency and privacy [42]. Patient health
monitoring approaches based on battery-driven sensors are vulnerable to failure and energy
consumption problems. IoT-driven remote monitoring systems frequently gather and send
data to a nearby IoT gateway. The acquired sensing information are examined and monitored
by the end-users or applications through the gateway. In the literature, the most common
gateways used are smartphone or tablet to transmit the healthcare data to a distant physical
resource [43].

IoT-based remote monitoring systems still suffer from different issues, such as relia-
bility and delays [44]. Despite many efforts to make IoT-based health monitoring reliable
and efficient, existing systems imposed a massive transmission load on sensing devices.
These sensing devices have low power because of operating in a long-term mode. Conse-
quently, it increases the energy requirements and decreases the overall system’s efficiency.
Therefore, an optimized solution is needed to overcome the critical issues in the existing
patient health monitoring systems. Applications based on data compression techniques are
widely used to overcome energy consumption requirements. However, data compression
techniques cannot be employed in IoT platforms because they consume energy, influencing
the developed system’s efficiency. In summary of the related studies, there is a need
for an elderly patient health monitoring platform that enables collecting the health data
remotely from elderly patients to monitor their conditions at any time with high reliability
and minimum delay. New elderly patient health monitoring platform should provide
remote monitoring, fall detection, efficient decision support, and timely interventions and
activities monitoring. The elderly patient health monitoring should be performed with
minimum latency, high reliability, and minimum energy consumption. Table 1 provides a
comprehensive summary of existing IoT-based health platforms.

Summary and comparison of health platforms are presented based on sensing re-
sources, notification devices, usage applications, support for edge computing, open-source,
advantages, and disadvantages.
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Table 1. Summary of Existing Health Monitoring Platforms.

Platform Open
Source Edge Computing Sensing Resources Applications Advantages Disadvantages

Personal health monitoring [16] No No BP, body weight (BW), PO, GM,
AM Chronic disease progression alert emergencies using phone and cost

effective No fault tolerance and low reliability

Home health hub internet of things
(H3IoT) [45] Yes No ECG, EMG, EEG, BW, PO, BT,

BP elderly patient health monitoring mobility, simple design,easy to use, and
delay tolerant

No support for emergencies of critical
elderly patients

Heart Rate Monitoring [17] Yes No HR sensor Cardiovascular disease continuous heart monitoring using smart
home Costly and scalability issues

Heart Rate Monitoring Personal IoT
healthcare [46] No No Personal healthcare devices OneM2M-based health monitoring provides effective health monitoring

services byzantine fault-tolerant algorithm

Heart Rate Monitoring Smart health
Platform [20] Yes No BT, HR, AM Heart problem and noise detection provides remote patient monitoring High cost

Abnormality Detection in health
data [21] No No ECG,BT, HR Detecting abnormalities in heart rate Low cost and reducing labour of

performing cardiac tests
use of Bluetooth which is unreliable

most of the time

Technology-enabled care (TEC) [47] No Yes ECG, BP, EEG, PO, IS connected health or
technology-enabled care

Harvesting ambient energy and reduce
power gaps

gel in electrodes cause skin irritation and
require high power consumption

Health and Safety [24] Yes Yes wearable sensors connected health and safety
applications

provide critical tasks due to IoT edge
architecture scalability issues

IoT-based ICU [48] No No ECG, PO, BT, camera Heart problem and fever detection Automatic Detection of risk Situations Costly
health parameter monitoring [25] yes No BT Fever and hypothermia Cost effective and open source scalability issues

m-Health Monitoring [26] No No GM Diabetes mellitus prescription of diet and fitness and
therapeutic services No clinical validation

Intelligent real-time IoT-based
health monitoring system [49] No No ICU wearable sensors connected health or

technology-enabled care spare more time in the efficient decision yet to be deployed, accuracy not tested
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3. Materials and Methods

In this section, the materials and methods used to design the proposed health mon-
itoring system are discussed. The proposed methodology consists of a series of task
orchestration steps, microservices analysis for health-tasks generation, creation of virtual
objects from health devices, intelligent task mapping of health, and health task deployment
on health devices in an IoT environment. Figure 2 presents the flow of the proposed
task orchestration approach using intelligent task mapping to develop E-PHMS. The first
component is the elderly patient health monitoring service, which is analyzed to generate
microservices such as elderly patient health monitoring at home, elderly patient health
monitoring in the ambulance, and elderly patient health monitoring at the hospital.

Closed Loop Health Environment- Services

Monitoring elderly 
patient in hospital

Monitoring elderly 
patient in home

Monitoring elderly 
patient in ambulance

Device Virtualization Tasks Management 

Body temperature 
tasks

Heart Rate tasks

Sugar level tasks Body position Tasks

Body temperature 
Virtual Object

Heart Rate Virtual 
Object

Glucometer Virtual 
Object

Body position Virtual 
Object

Intelligent Task Mapping Module

Tasks virtual pairs Optimization Module

Cumulative Similarity 
index

Health Virtual object list Health Task list

Operations plans

maximize

optimize

Tasks Deployment Module

Device and 
Resources

EndTask Deployment

Deploy
(Process ID, Device ID)

Device operation plan    { Task,  Device, Start Time, End Time }

Figure 2. Proposed Flow of Task Level Management of Elderly Patient Health Monitoring System.
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Health tasks are defined based on the generated task suggestions from the microservice
analyzer component. Health tasks are functional units of health microservices. Health
monitoring devices are the biomedical sensors used for monitoring patients. Health
devices are virtualized into virtual objects using the virtualization module of the system.
Virtual objects are connected to biomedical sensing devices using an attribute of the virtual
objects called Uniform Resource Identifier (URI). Task mapping component map health
tasks on health devices based on the optimal order received from the proposed task
mapping algorithm. The proposed task mapping algorithm uses objective optimizations
based optimization approach to generate optimal devices operations plans. For ease of
understanding the concept, the mapping component visualizes the results task mapping
algorithm in a mapping window, showing a visual connection between virtual objects and
health tasks. Finally, device operations plans are used to create processes for execution on
one or more biomedical sensors. The process of executing a health task on a health device
is called health task deployment.

Six layered architecture for the design of an E-PHMS is presented in Figure 3. IoT
health devices layer is composed of environmental and body area sensors. Examples of
body area sensors are a body temperature sensor, heart rate sensor, accelerometer, and
a glucometer. Example of environmental sensors includes thermal comfort monitoring
sensors and actuators. The Device virtualization (DV) Layer creates virtual objects based on
the health monitoring devices from the IoT health devices layer. The DV layer is managed
by the device virtualization manager(DVM). DVM functionalities include creating virtual
objects and registering the virtual object in the E-PHMS IoT server’s registry. DVM also
provides a mechanism for the visualization of health devices in the E-PHMS dashboard.

Health Tasks 
Layer Body 

temperature 
tasks

Sugar level 
tasks

Health Task n

Body 
position 

tasks

Heart rate 
tasks

Health Services 
Layer

Elderly Patient Health 
Monitoring in Smart 
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Elderly Patient Health 
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Health Tasks

Health 
tasks
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Health 
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profileprofileTask Mapping Layer

Health Task 
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Health Virtual 
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Device 
Virtualization
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BT Sensor HR Sensor
Temp 
Sensor

Body position 

Sensor
Device k

Health Devices
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Module
Optimization Layer

Objective Functions
Max Mindex

Max CSI

Max( Pop functions) Max( CSI )

Glucometer 
Sensor

Figure 3. Intelligent Task Mapping Architecture for Elderly Patient Health Monitoring.
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Micro-operations, also known as health tasks, are assigned to one or more virtual
objects. A virtual object emulates the features and attributes of health monitoring devices.
The health tasks layer provides task-level management of health monitoring microservices.
The tasks Mapping (IM) layer provides a mechanism for generating tasks and virtual
object pairs. The TM layer input health task attributes to task mapping algorithms to
generate optimal ordered pairs of health tasks and virtual objects. The optimization layer
provides optimization schemes to generates these ordered mapped pairs based on optimal
health devices operation plans. Optimal health device operation plans are obtained by
maximizing the objective function results. The ordered task mapping pairs are used to
create processes. These processes are executed on health monitoring devices.

3.1. Mathematical Formulation of Task Mapping Algorithm

In this section, mathematical formulation of objective functions of the intelligent task
mapping scheme is presented. In the later part of the section, the proposed task mapping
scheme is discussed in algorithmic form. The list of symbols used in the formulation of the
objective function is described in Table 2.

Table 2. Summary of Symbols and Notations for the Objective Functions.

Symbol Description Symbol Description

Shealth Health monitoring services Tvacay Idle time of the health device
Htask A health task belonging to Shealth VoList List of Virtual objects

Tasklist Task list of all Htask TVoPairs Tasks and Virtual objects pairs
HVo Health device virtual object CSI Cumulative similarity index

Hdevice Health monitoring IoT device CMindex Cumulative Mindex
P A Process for allocation of set of tasks Pop Operation plan of set of health devices

Tduration Duration of Thealth Mindex Task Device Mapping Index
Tstarttime Start time of Thealth Tf t Finish time of Thealth

Tdtm The cumulative delay time Twc f ts Worst-case finish time of Thealth

In the E-PHMS case study, there are a set of tasks performing health monitoring
operations on health devices. There are two types of tasks, periodic and event-based
tasks. An example of periodic tasks is sensing tasks such as body temperature tasks. An
example of event-driven are tasks that are executed when some event is detected by the
system, such as patient fall detection tasks. Consider the set of health tasks in Shealth
are Htask1, Htask2, Htask3, Htask4, ...Htaskn responsible for health operations on health devices
Hdevice = Hdevice1, Hdevice2, Hdevice3, ...Hdevicen . A health task Htask is a functional unit of the
health monitoring services for performing a unit operation such as monitoring the body
temperature of the elderly patient. For instance, report-body-temperature and get-body
temperature are examples of two distinct unit health tasks. A task can be allocated on one
health virtual object HVo or on a set of health-virtual objects HVo1, HVo2, HVo3, ...HVon .

A health task is an operation performed by a health monitoring device, or in other
words; health device operation is a health task in execution, i.e., Thealth = P. A health task
must be executed based on an optimal mapping index. Before starting the discussion on
the optimization scheme for optimal mapping index, constraints are discussed. Each health
task has attributes such as duration, period, priority, worst case finish time, start time,
finish time, and delayable time. The system sets the priority of the tasks; for example, the
system will prioritize event-driven tasks compared to regular periodic tasks. Each task is
executed on the health device using its related process. A process is created based on one
or more tasks using the priority of a task, task mapping index, and list of devices on which
the process will be executed.

Based on the constraints discussed, the task mapping algorithm computes a function
using optimization objective function which propels the health tasks arrangement in such
a way that maximum task delayable time is achieved. Tasks delayable time is maximized
based on task start and finish time assignment to obtain optimal cumulative Tdtm. Optimal
Tdtm is given by :
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Tdtm =
n

∑
i=0

Twc f ts − Tduration (1)

where Tdtm of cumulative delayable time of arranged tasks list, delayable time of health
task is the time till which health execution can be delayed. Twc f ts and Tduration are the worst-
case finish time and duration of Thealth respectively. For the mathematical presentation
of the task mapping mechanism, examples of body temperature, heart rate, and body
position sensors are taken as elderly patient health monitoring devices. However, the
number of devices can be increased for monitoring more complex situations. Based on
these sensors’ profile descriptions, generated health tasks are given in Table 3. The health
task parameters presented are in milliseconds. Twc f ts, Tduration attributes are the primary
constraint considered; however, some other health task attribute can be considered to
maximize the cumulative delayable time all of tasks arrangement.

Table 3. Health Tasks Parameters.

Task ID Tduration Twc f ts Finish Time Task Delay Tdtm Task Title

1 6 12 10 4 6 Get body Temperature
2 9 15 12 3 6 Report body Temperature
3 16 28 21 5 12 Get Heart rate
4 19 31 23 4 12 Report heart rate
5 9 13 11 2 4 Get position data
6 10 13 11 1 3 Report position data

The next step of the intelligent task mapping mechanism generates possible health
tasks and virtual objects pairs such as get-body-temperature, body temperature sensor,
get-heart-rate, heart rate sensor. The intelligent task mapping approach’s objective is to
find tasks devices pairs list, which leads to a maximum of Mindex. Mindex is the task device
mapping index that finds optimal operation plans of the health monitoring devices. Table 4
presents ordering of health devices operation plan.

Table 4. Ordering of Health Devices Operation Plan.

Pop ∑n
i=0 Tdtm Task Name Tvacay Pop Function

Hdevice1 (OP1, OP4) 18 Get body Temperature

7 0.125

Report heart rate

Hdevice2 (OP3, OP2) 8 Get Heart rate
Report body
Temperature

Hdevice1 (OP4, OP1) 12 Get body Temperature

14 0.06

Report body
Temperature

Hdevice2 (OP2, OP3) 8 Get Heart rate
Get position data

Hdevice1 (OP1, OP4) 7 Get position data

4 0.2

Report position data

Hdevice2 (OP2, OP3) 5
Report body
Temperature

Get position data

Hdevice1 (OP4, OP1) 8 Get Heart rate

12 0.076
Report heart rate

Hdevice2 (OP3, OP2) 5 Get body Temperature
Get position data

Task device mapping index is a function of maximizing the delayable time of device
operations plans. If the task device mapping index is maximum, the delayable time of
device operations plans will be maximum and vice versa. Task device mapping index
(Mindex) is given by :

Mindex = max(Pop f unction) (2)
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where Pop function provides device operation plans to maximize resource use. Table 4
presents ordering of Health Devices Operation Plan. Pop of health devices, Hdevice1, Hdevice2,
Hdevice3, ... Hdevicen is given by: Pop function of health devices is computed as follows.

Pop f unction(Hdevicex , Hdevicey) =
1

1 + Tvacay
(3)

Maximum Mindex means optimal devices operation plan with short idle time and high
delayable time. Table 5 presents task allocations on different health devices and its impact
on cumulative similarity index (CSI). Task allocation based on a maximum Mindex means
that task allocation based on the device operations plans is flexible. The flexibility of the
architecture highlights the reliability factor of the proposed architecture.

Table 5. Task allocation on different Health Devices its impact on CSI.

Task Allocation Mindexi Mindexj CSI

(Hdevice1 , Hdevice2 , Hdevice3 ) 0.4 0.1 0.5
(Hdevice1 , Hdevice3 , Hdevice2 ) 0.2 0.4 0.6
(Hdevice2 , Hdevice1 , Hdevice3 ) 0.1 0.3 0.4
(Hdevice2 , Hdevice3 , Hdevice1 ) 0.5 0.3 0.8
(Hdevice3 , Hdevice1 , Hdevice2 ) 0.5 0.4 0.9
(Hdevice3 , Hdevice2 , Hdevice1 ) 0.4 0.2 0.6

If delayable time is low, then changes in the task mapping plan may make the delayable
time negative, and hence health task will be dropped. The high task drop rate means low
reliability of the system and vice versa. Many literature studies highlight the importance
of reliability and network delay in critical task applications. The group of devices with
a maximum Mindex reside in the same network; thus, delay for a request to devices is
less compared to devices belonging to a different network. Thus, maximum Mindex also
minimizes network latency. The main objective of the intelligent task mapping mechanism
is to find a set of devices that contribute to the highest CSI. The objective function goal is to
maximize CSI. The CSI of a network is given by:

CSI =
n

∑
i=0

(CMindexi
) (4)

Max(CSI) = Max(
n

∑
i=0

(CMindexi
)) (5)

CMindexi
=

n

∑
i=0

k

∑
j=0

(Mindexi
+ Mindexj

) (6)

Based on the CSI equation, the task mapping module’s job is to find device operational
plans within a network to maximize the CSI. Maximum CSI also means a reliable and
efficient plan of devices and tasks arrangement; hence it will lead to a flexible task mapping
plan and the most scalable task orchestration architectures.

The proposed task mapping algorithm uses the optimization scheme mentioned above
for task allocation on devices with optimal cumulative task mapping index CMindexi

. The
algorithm’s input are, list of health tasks and health devices Hdevice. For each health device,
a virtual object is generated; these virtual objects are added to the list of virtual objects.
Next, a greedy approach is used to generate all task virtual object pairs. For each task
pair, maximum delayable time is computed for the execution on the health device. In the
next step, device operation plans for the health devices are calculated. The mapping index
is calculated based on the task mapping pairs and function from a set of health devices
operations plans. This individual mapping index is summed to the cumulative mapping
index. The algorithm (Algorithm 1) uses the cumulative mapping index to compute the
cumulative similarity index. Finally, processes are created for device plans with a maximum
cumulative similarity index. The process is allocated to health monitoring devices.
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Algorithm 1: Task Mapping Algorithm
Result: Task allocation with optimal CMindexi
Input: list of Tasklist and Hdevice
while While item i exists in Hdevice do

Generate virtual object for i;
Add virtual object into VoList;
Generate TVoPairs using greedy approach ;
foreach TVoPairs do

Compute Tdtm ;
Compute Pop function ;

end
Optimize Pop function Compute cumulative Mindex based on optimal Pop ;
Compute CSI based on cumulative Mindex ;
Optimize CSI based on objective function;
Create processes p for devices plans with optimal CSI

Allocate P on Devices ;
end

3.2. Implementation Environment

In this section, the discussion on the implementation environment for the E-PHMS
application development is presented. The E-PHMS application is developed based on the
proposed intelligent task mapping-based task orchestration architecture. The IoT server is
developed on Raspberry PI devices. Three Raspberry PI devices are used for emulating
home, ambulance, and hospital environments. For health sensors, the e-Health sensing
platform was used, which provides support for many health sensors. This toolkit comes
with many biomedical sensing devices. Table 6 presents the implementation environment
of E-PHMS.

Table 6. Implementation Environment of E-PHMS.

Component Description

Operating System Windows 10
Hardware Raspberry PI,e-Health Sensor Platform 2.0
Memory 16 GB
Server MySql and Flask Webserver

Programming language Python
Optimization methods PSO, IPSO and DPSO

IDE Pycharm
CPU Intel i8-2120 CPU @3.30 GHz (4 CPUs)

Libraries Mind Fusion Diagraming, bootstrap, jQuery, NLTK
Resources Heart sensor, body temperature sensor, glucometer sensor, body position sensor

Body temperature, heart rate, body position, and blood glucose level sensors were
used for the case study of E-PHMS. These devices are connected to the IoT servers con-
figured on Raspberry PI devices. The IoT server maintains the registry of these health
sensors after devices’ virtualization into virtual objects. The registry contains information,
including connectivity status and URI of these sensing devices. E-PHMS application was
deployed on a PC server where flask-based web server was configured. E-PHMS applica-
tion is mainly programmed using python language based on the model view controller
paradigm(MVC). The application identifies each sensing device using URI for the deploy-
ment of a health task. The application send HTTP-based request to the IoT server using
the URI of the device, and the IoT server parses the request. The requested operation
is executed on the health device, and the response is sent back to the application in the
form of a JSON object. E-PHMS application parses the JSON object into a user-friendly
HTML-based presentation.

Figure 4 represents the developed health monitoring application using the task com-
position toolkit based on intelligent task mapping. The service analysis menu is used for
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health monitoring services, and the manage tasks menu is used for tasks level management.
Task mapping menu provides task mapping scheme interface. Task scheduling menu visu-
alizes tasks virtual objects ordered pairs using timeline chart. Task allocation represents
task deployment results of elderly patient health monitoring services.

Figure 4. Elderly Patient Health Monitoring Application.

Figure 5 represents health task and microservices generation window that shows the
visualization of the health tasks suggestion based on the microservice analyzer component.
Three microservices of patient health monitoring along with ten health tasks are generated
by the microservice analyzer component using the service description. The automated
suggested tasks and microservices can be saved to the repository or discarded. However,
the application also provides manual addition of tasks and microservices. Health tasks
and microservices are generated based on the description of the services needed by the
health authorities. E-PHMS application uses natural language processing (NLP) library
NLTK. E-PHMS application is scalable to other health microservices and tasks using a
manual approach. Microservice and health task forms are used for manual entry. Apart
from adding new microservices, existing microservices and tasks can be removed or edited
using the E-PHMS application dashboard. The save to repository option is used to save
tasks and microservices permanently in the database. MySql was used as a database server;
however, any alternative database can be used. Manage tasks menu is used for tasks
profile management, whereas manage VOs menu is used for device virtualization and
device profile management. Tasks allocated on devices can be accessed through the "task
allocation" menu. The proposed task mapping algorithm generates devices and health
tasks operations plans for the generated tasks and virtual objects. An optimal device
operation plan results in an optimal ordered list of tasks virtual object pairs. An optimal
devices operation plan is selected for task allocation on the sensing device to maximize the
time until which a task can be delayed and minimize the delay for a task that needs to be
executed first. For task allocation, the system creates processes from the device operation
plan. The process is deployed on the IoT device using the URI. As discussed above, the IoT
server registry contains information on all health sensors and actuators. For example, the
URI of the device contains the ID and a message. IoT server parses this message using the
decoded mechanism to deploy the process on the device.
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Figure 5. Task Level Management of Elderly Patient Health Monitoring Services.

Figure 6 represents anomaly detection using the E-PHMS application. E-PHMS applica-
tion displays the task execution results in a graphical user interface, as shown in the Figure.

Figure 6. Visualization of Anomaly Detection using E-PHMS Application.

For instance, the body temperature, heart rate, body position, and blood glucose level
tasks are visualized in the figure. Once an anomaly is detected in the results from task
execution based on the threshold-based method, it is notified using dialogue alert, alarm, and
call alert. Anomaly detection based on the body temperature data is shown in the figures. The
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dialogue shows the notification of a patient suffering from fever. Anomaly detection based on
the health sensing data is discussed in detail in the results and discussion sections.

3.3. Data Presentation and Assessment

The system is evaluated using two types of subjects data, first with a real test using
30 volunteer subjects wearing the biomedical sensors and performing activities such as
walking, sitting, standing, falling, and jogging. Other performance evaluation tests such as
reliability, round trip time (RTT), and latency were conducted in a simulation environment
for three sets of virtual patients of 30, 50 and 100 users. For the simulation of various
user sets, the Locust load testing tool was used. Pox-based simulation of devices were
used to investigate sensing devices failure effect on the response time. The devices were
power off to induce device failure error. The experiment of 30 subjects has been done in the
Mobile computing laboratory of the computer engineering department of Jeju National
University, Jeju, South Korea. A total of 1440 data instances was recorded for different
activities of these 30 subjects. Heart rate, body temperature, blood glucose level, and body
position was recorded using wearable sensors. Statistical data of 30 subjects sensing data
are presented in Table 7. The average heart rate recorded during the experiment is 73.4.
Heart rate is calculated based on the number of times a heart beats in one minute. A
healthy heart function is to supply the right amount of blood at the right rate for body
activities. For example, running or walking fast will make the heart rate faster. The average
body temperature recorded is 97.1, and the average blood glucose level recorded using a
glucometer sensor is 5.61. Minimum, maximum, average, and standard deviation were
used to statistically analyze the collected data.

Table 7. Statistics of Collected Sensing Data using E-PHMS.

S. No Aggregate Function Heart Rate Body Temperature Blood Blood Glucose Level

1 Minimum(min) 62 96.3 4.00
2 Maximum(max) 89.0 98.5 6.89
3 Standard deviation(sd) 6.947 0.64 0.76
4 Average(avg) 73.4 97.1 5.61

Heart rate, body temperature, and blood glucose level are essential human body
traits to identify normal and abnormal health conditions. Figure 7a represents the average,
minimum, maximum, and standard deviation of heart rate data collected during the
subjects’ activities. Figure 7b represents the average, minimum, maximum, and standard
deviation of blood glucose level data collected during the subjects’ activities.

If an elderly patient has a disease or injury, it will weaken the heart, and the body
organs will not receive enough blood to function normally. A human being’s heart rate gets
progressively slower when a person moves towards adolescence. The normal heart rate,
body temperature, and blood glucose level are analyzed to set a threshold for anomaly
detection and alarming abnormal behavior. Heart rate data is in beats per minute (BPM),
whereas blood glucose level data is in millimoles per liter (mmol/L).
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Figure 7. Statistical Analysis of Heart Rate and Blood Glucose Level Data.

4. Results and Discussions

In this section, the results of the proposed elderly patient health monitoring system are
discussed. Data analysis is performed based on the data obtained from E-PHMS. Threshold
and machine learning-based mechanism used for anomaly detection is discussed. The later
sub-section discussed optimization module results, performance analysis, and discussion
on the proposed architecture’s comparison and significance.

4.1. Anomaly Detection

Anomaly detection is used to detect an abnormal event occurrence that deviates
from regular events. In the elderly patient monitoring case study, analysis of collected
sensing data has been made from the wearable sensors to determine anomalous behavior
in terms of the defined threshold. Two approaches were used for detecting abnormal
behavior in elderly patient health monitoring environment. The first one is based on a
simple threshold method, and the second is machine learning-based predictive models for
identifying abnormal behavior based on past historical data. Table 8 presents threshold
information for detecting abnormalities from the sensing data of heart rate and body
temperature sensors is presented. A threshold is defined for normal and abnormal heart
rate and body temperature. In the future, this threshold for different abnormal situations
can be extended to identify more abnormal behaviors. Some abnormal behavior on which
the system will raise the alarm is the detection of fever, bradyarrhythmia, tachycardia, etc.

Table 8. Threshold for Anomaly Detection in Heart rate and Body Temperature Data [50–52].

Age Range Normal Heart Rate Bradyarrhythmia Fever Tachycardia Hypothermia

17–34 72–75 Heart Rate ≤ 55 Body Temperature ≥ 98.96 Heart Rate ≥ 110 Body Temperature < 95.9
35–60 76–79 Heart Rate ≤ 60 Body Temperature ≥ 99.5 Heart Rate ≥ 120 Body Temperature < 95.18

Above 60 70–73 Heart Rate ≤ 65 Body Temperature ≥ 98.42 Heart Rate ≥ 100 Body Temperature < 95

In Table 9, the threshold for anomaly detection in blood glucose level data is presented.
Type 2 diabetes is a long-lasting disease that increases insulin resistance in the body. Middle-
aged and older people are mostly affected by type 2 diabetics, but it can also affect kids and
teenagers with childhood obesity. Type 1 diabetes is a chronic condition in which the body
has little or no insulin. Type 1 diabetic factors are genetics, and some viruses may also
contribute to it. Type 1 diabetes symptoms usually appear in childhood or adolescence,
and it can also develop in adults. There is no cure introduced for type 1 diabetes, and the
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treatment is based on the management of blood glucose levels with insulin using diet and
lifestyle management.

Table 9. Threshold for Anomaly Detection in Blood Glucose Level Data [53].

Blood Glucose Level Type before Meals At Least 1.5 h after Meal

Non Diabetic 4.0 ≤ blood glucose level ≤ 5.9 blood glucose level < 7.8
Type 2 diabetes 4.0 ≤ blood glucose level ≤ 7 blood glucose level < 8.5
Type 1 diabetes 4.0 ≤ blood glucose level ≤ 7 5.0 ≤ blood glucose level ≤ 9

Two methods were implemented for anomalous behavior detection in elderly patient
activities, such as a patient fall. The first one is a threshold-based approach, and the second
approach is a machine learning classifier-based approach based on elderly patient activities
data. A threshold-based approach based on multiple parameters from the accelerometer
and a gyroscope sensing data gives a relatively high sensitivity of 91 percent and specificity
of 92 percent [54]. In this approach, 3-axial acceleration sensing data was used as used
by previous studies [55]. Fall detection using acceleration data from accelerometer based
on the threshold approach of multiple parameters has 85.7 percent sensitivity and 90.1
percent specificity [56]. Fall detection using a gyroscope angular velocities have 100 percent
sensitivity, and 97.5 percent specificity [57]. The second approach for anomaly detection
of patient activities is an artificial neural network (ANN) based detection of regular and
fall activity. Machine learning classifiers have been trained using the activities data from
the E-PHMS and compared with ANN. The Fall activity is labeled one, and other activities
are labeled zero. The trained models are tested and evaluated in terms of classification
performance matrices. ANN model performs best than the traditional threshold-based
approach for fall detection with an accuracy of 95 percent. As part of future work, a hybrid
approach based on machine learning and a threshold-based approach can be implemented
to increase the reliability of the fall detection module.

The dataset produced from the E-PHMS contains 1440 instances. The data set contains
5 data features, time, body temperature, heart rate, activity, and blood glucose level of
the E-PHMS users. Figure 8 presents correlation analysis between the features of the
prepared dataset.

Figure 8. Correlation Between Features of Prepared Dataset.
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The dataset’s activity feature is labeled for training the machine learning models. The
dataset is split into 70 percent training data and 30 percent test data. The training dataset
is of 1008 instances, whereas test dataset instances are 432. Other classifiers along ANN
was trained for fall detection using the training data. Finally, models were tested, and fall
detection accuracy is evaluated in terms of accuracy, recall, precision, and F1 score. Table 10
presents the Performance analysis of Fall detection using machine learning models.

Table 10. Performance Analysis of Fall Detection using Machine Learning Models

Classifier Accuracy Precision Recall F1-Score

Decision Trees 0.75 0.73 0.75 0.74
K-Nearest Neighbors 0.83 0.82 0.82 0.82

Random Forests 0.89 0.87 0.87 0.88
Artificial neural network 0.95 0.93 0.92 0.89

Stochastic Gradient Decent 0.79 0.75 0.79 0.70

4.2. Particle Swarm Optimization

Particle swarm optimization (PSO) is used due to its accuracy for optimization prob-
lems’ solutions [58–60]. In this study, PSO-based optimization was used to achieve optimal
task mapping using the proposed objective functions. Three versions of PSO, such as the
traditional PSO approach, Darwinian PSO (DPSO), and Improved PSO (IPSO) algorithms,
were used for optimization based on proposed objective functions. PSO is explained in
detail in the book of Olsson et al. [61]. Detail description of DPSO is found in the study of
Tillett et al. [62]. Researchers using these algorithms for multilevel optimizations objective.
IPSO is an improved version of PSO based on a modification mechanism involving the
update of the velocity equation. Figure 9, presents Pop objective function results obtained
using PSO, IPSO, and DPSO.
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Figure 9. Visualization of Pop Objective Function Results.
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Pop function provides a value based on device operation plans to use the resources in
such a manner that delayable time of devices operation is maximized. The Pop value is directly
proportional to delayable time, the maximum the Pop value, the maximum is the delayable
time, and minimum the Pop value, the minimum is the delayable time. Results of Pop objective
function using DPSO is more optimized than traditional PSO and IPSO. Figure 10 shows the
CSI objective function results based on PSO, IPSO, and DPSO are presented. As explained
earlier, CSI is the correlation between a set of devices, and maximum CSI means the device
sets are related, and the operational plans based on these devices will lead to flexible task
mapping plans, minimum idle time, and maximum delayable time. The Pop value is directly
proportional to CSI value. The highest CSI value is achieved based on the maximum Pop
value. Results of the CSI objective function are compared using three versions of PSO. DPSO
is more optimized as compared to traditional PSO and IPSO approaches.
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Figure 10. Visualization of CSI Objective Function Results.

4.3. Performance Analysis

The performance analysis of the proposed E-PHMS based on an intelligent task
mapping approach is evaluated using metrics such as round-trip time, reliability, and
network Latency. The round-trip time is the total time E-PHMS takes from health task
generation to process execution on health devices and respond back from health devices
to E-PHMS. Health tasks for 30 volunteers were deployed, and the round-trip time based
on the log system of E-PHMS were recorded for analysis. From these 30 subjects’ data,
aggregation functions such as minimum, maximum, and average of the round-trip time are
calculated. Round trip time analysis of E-PHMS is presented in Figure 11. The round-trip
time is measured in milliseconds.
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Figure 11. Round Trip Time based Analysis of E-PHMS.

The figure shows minimum round-trip time is four milliseconds, the maximum round-
trip time is 87.8 milliseconds, and the average round-trip time is around 45 milliseconds.
The average round-trip time for all health tasks depicts the architecture strength for patient
health monitoring and other critical task applications. The second metric used for the
performance analysis of E-PHMS is the reliability of the architecture during elderly patient
activities such as rest, stress, walking, and patient fall. The reliability percentage is calcu-
lated from the mean percentage of task dropping rate. Figure 12 shows the reliability results
of E-PHMS in percentage during various patient activities. The reliability is calculated us-
ing 30, 50, and 100 subjects health tasks in the apache Jmeter, a load testing tool. The lesser
the task dropping rate, the higher the system’s reliability. For 30 subjects, the task dropping
rate is minimum, and hence the reliability is maximum. The reliability of a system decrease
for more tasks load as the number of tasks load increases, but the reliability decrease is very
steady for the proposed E-PHMS architecture. Even for 100 subjects tasks, the minimum
reliability percentage is 98.02 percent, which shows the proposed architecture’s efficiency
for critical tasks such as fall detection tasks.
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The third metric for performance analysis is the latency of health task deployment.
Figure 13 shows the latency of health tasks deployment of the 30, 50, and 100 users.
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Figure 13. Task Deployment Latency with Respect to Patient Activity.

The performance of the proposed system was further evaluated using task deployment
latency was with respect to patient activities of the virtual patients. Minimum latency
values of 30, 50 and 100 users’ cross-domain requests were 187.5, 193.7 and 215 milliseconds
respectively. Maximum latency values of 30, 50 and 100 users were 320.7, 331.2 and 351.6
milliseconds respectively.

For risk management analysis of the architecture, we consider recovery from failure.
Fault tolerance is used as a reliability metric for the IoT platforms. Sensing devices fail
due to environmental effects, battery drainage, hardware failure, to name a few. The
task mapping module runs the proposed task mapping algorithm and assigns the top ten
virtual objects are assigned with a mapping index. The virtual object with the highest
mapping index is selected for health task deployment. If the biosensor associated with
the virtual object is active, the health task is executed. In case the device failed to respond,
the allocator finds the next virtual object in the list and deploys it on the corresponding
biosensor. An exceptional situation can happen if all the ten virtual objects face device
failure. In such exceptional cases, the architecture’s recovery time will be more as the
PHMS will cause an error message. The task mapping module will regenerate the task
mapping index recommended pool. Once a device node failure occurs, the next device
node is fetched from the queue. If ten concurrent device failures occur, which have a very
low probability, the average deviation of the response time is 77 ms.

Figure 14a shows response time analysis likely to frequent failures. Figure 14b depicts
response time deviation with concurrent device failures.The spikes in the Figure are the
deviation from the response time, which is the time spent in searching for a new device and
re-running the algorithm. The graph also depicts that the response time is back to normal
for the next iteration of devices with a slight increase. This slight increase is because the
first iteration of selected devices is the best, which leads to the minimum response time.
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Figure 14. Fault effect on response time.

4.4. Comparison and Significance

To the best of the authors’ knowledge, E-PHMS is the first-ever attempt towards
patient health monitoring using task composition architecture based on an intelligent task
mapping approach. Previously task composition architecture was proposed based on DIY
approaches to provide task-level management of IoT services [8]. DIY approaches based
task composition architecture address various aspects of task-level management in the IoT
environment. However, the DIY based task mapping approach has limitations of manual
deployment of tasks on the physical device. The manual task mapping approach is not
appropriate for critical tasks applications such as health monitoring. The comparison of
proposed E-PHMS architecture based on intelligent task mapping with existing IoT task
composition architecture based on DIY task mapping approach is discussed in terms of
task dropping rate, response time over time, and an average latency of task deployments.

The first quantitative metric considered for the performance comparison of the pro-
posed intelligent task mapping-based architecture with exiting DIY task mapping-based
architectures is stability in peak load time. The stability of the architecture is evaluated
based on the task dropping rate. A lesser rate of tasks dropping in peak load time means the
system is more stable and reliable. Tasks dropping-based comparison analysis is presented
in Figure 15. The figure shows that as the task load increases, the rate of tasks dropping
increases, and vice versa. It is evident from the rate of tasks dropping increase, although
the number of tasks drop is small for the DIY task mapping-based approach for small tasks
load. However, for more tasks load intelligent task mapping-based architecture’s drop rate
is steady.

Figure 16 presents the performance comparison of the proposed intelligent task
mapping-based architecture with existing DIY task mapping-based architecture in terms of
response time-over-time. As in the health scenarios, event-driven tasks are more critical.
The proposed architecture’s response time is compared with existing DIY task mapping-
based architecture in term of event-driven tasks.
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Figure 15. Comparison based on Task Dropping Rate.

Figure 16. comparison based on Response Time over Time.

Event-driven tasks sense ambient scenarios and alarming situations such as anomaly
detection in the data. Control tasks are activated for notification and handling the alarming
situation based on event-driven tasks. The control tasks, which are based on event-driven
tasks, are given the highest priority. The Lower response time in the comparison witness
that proposed architecture always gives more priority to event-driven tasks than existing
DIY task mapping-based architecture.

The third quantitative metric considered for the performance comparison of the pro-
posed intelligent task mapping-based architecture with existing DIY task mapping-based
architecture is the latency of tasks deployment. The comparison shown in Figure 17 is made
using Locust, an open-source tool for three sets of virtual users. The average latency of DIY
task mapping-based architecture for 50, 300 and 1000 users are 238 ms, 327 ms, and 432 ms.
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The average latency of the proposed intelligent task mapping-based architecture for 50, 300
and 1000 users are 238 ms, 327 ms and 432 ms.
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Figure 17. Comparison based on Average Latency of Task Deployment.

Table 11 presents qualitative comparison of the proposed architecture with existing
IoT-based health platforms. The proposed E-PHMS platform was compared with ex-
isting health platforms in terms of task-level management, remote access, device-level
management, edge computing support, scalability issues, applications, and relative merits.

Table 11. Comparison of E-PHMS with existing health and IoT platforms.

Platform Task
Management

Remote
Access

Device
Management

Edge
Computing Applications Scalability

Issues Relative Merits

H3IoT [45] No Yes Yes No
elderly patient

health
monitoring

Yes

Simple design,delay
tolerant but no

support for
emergencies alert

HCCETS [63] Task Scheduling Yes No Yes Critical
Heartbeat Task No

Cost-efficient
framework but not

support fault-tolerant
and energy cost of the

system

Glue.thing [64] DIY approach Yes yes Yes
Mashup

platform for IoT
applications

No

Effective for general
purpose IoT

applications but have
limitations for critical

tasks applications

Health
parameter
monitoring

[25]

No Yes No No
Fever and

hypothermia
detection

Yes

Cost effective and
open source but

communication delay
is more

DIY based
Task

orchestration
[8]

DIY approach Yes Yes Yes smart home
applications Yes

Easy to use for
general public but not

effective for critical
tasks applications

Technology-
enabled care
(TEC) [47]

No No Yes No Technology
Enabled Care Yes

Harvesting ambient
energy and reduce
power but causes

cause skin irritation

IRTBS [49] No No Yes Yes

connected health
or technology-

enabled
care

No
Time efficient, not
deployed in real

environment

Proposed
E-PHMS

Intelligent Task
Mapping Yes Yes Yes

Health
monitoring and

other critical
tasks

applications

No

Effective for critical
tasks applications but
need to enhance the
prediction module
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5. Conclusions

In this paper, elderly patient health monitoring architecture based on an intelligent
task mapping approach is proposed for a closed-loop IoT healthcare environment. As a
case study, an elderly patient health monitoring system was developed on the proposed
health monitoring architecture. The system could detect and notify deteriorating conditions
to the authorities based on biomedical sensors for faster interventions. The system used
sensing data from the biomedical sensors and notified abnormalities using threshold and
machine learning approaches. The proposed architecture’s performance is evaluated in
terms of round trip time, reliability, latency, and recovery. Performance results show that
the proposed architecture of the elderly patient health monitoring can be used to develop
reliable solutions for critical tasks in IoT environments. As future work, the proposed
architecture will be coupled with advanced predictive analysis and predictive optimization
module to design optimal policies regarding the internet of healthcare resources. We will
further extend the study to design risk management and cost-benefit analysis framework
to analyze risk factors and the economic impact of the proposed system.
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