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Abstract: We report off-shell Noether currents obtained from off-shell Noether potentials for first-
order general relativity described by n-dimensional Palatini and Holst Lagrangians including the
cosmological constant. These off-shell currents and potentials are achieved by using the corre-
sponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by
arbitrary vector fields, local SO(n) or SO(n− 1, 1) transformations, ‘improved diffeomorphisms’, and
the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable
aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the
currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We
also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular,
we find that the resulting diffeomorphism and local SO(3, 1) or SO(4) off-shell Noether currents and
potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even
in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and
on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static
spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.

Keywords: Noether potentials; Noether currents; Noether charges; Palatini Lagrangian; Holst
Lagrangian

1. Introduction

Some of the most fundamental results in mathematical physics are Noether’s the-
orems [1–3], which establish a deep connection between infinitesimal symmetries of a
variational principle and conservation laws. There are two Noether’s theorems: the
first one dealing with global (or rigid) symmetries and the second one concerning local
(or gauge) symmetries. These theorems have forged and shaped the modern view of
theoretical physics, furnishing a vast amount of applications in many areas of physics.

Noether’s theorems provide powerful tools to calculate conserved currents and
charges of physical systems. This feature has been highly exploited by the gravitational
community and is an active ingredient of the modern research in general relativity and
other alternative theories of gravity [4–10]. For instance, the definition of energy in gener-
ally covariant systems is a rather delicate issue [11] and Noether’s theorem plays a central
role in addressing it.

To obtain conserved charges associated to spacetime diffeomorphisms in gravitational
systems, Noether’s second theorem is implemented in its direct fashion (its converse also
holds), leading to the construction of an associated Noether current that is conserved on-
shell [4,7,9]; that is, when the equations of motion are satisfied. This is the usual viewpoint
taken and one might wonder whether it is really necessary to work on-shell to obtain such
conservation laws. After all, in any gauge theory, there exist Noether currents that are
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identically off-shell conserved [5], thus leading to the definition of off-shell potentials and
charges.

Some years ago, off-shell Noether currents and potentials were introduced to define
quasi-local charges in any theory of metric gravity invariant under diffeomorphisms [12].
Later on, an analogous proposal was put forward for covariant gravity theories within the
first-order formalism [13,14], with again off-shell Noether currents and potentials playing
an essential role, although only the case of a combined Lorentz-diffeomorphism symmetry
is considered.

It is well-known that, within the first-order formalism, general relativity can be de-
scribed by either the Palatini action or the Holst action [15], the latter being the starting point
of the loop approach to quantum gravity in its canonical and covariant versions [16–19].
In particular, the Holst action contains the so-called Immirzi or Barbero–Immirzi parame-
ter [20,21], which plays no role when the equations of motion are satisfied, but on which the
theory strongly depends when away from them (off-shell). In fact, this parameter affects
the way in which fermions couple to gravity [22–25] and manifests itself in the spectra
of geometric quantum operators [17,26,27] and in the black hole entropy [28–32] derived
within the loop framework. Then, given the relevance of the Immirzi parameter at both
the classical and quantum levels, it is important to understand how this parameter may
contribute to off-shell Noether currents and potentials.

To expand our horizons on the off-shell effects of the Immirzi parameter, in this paper,
by using a new theoretical framework, we find off-shell Noether currents and potentials
for general relativity with a cosmological constant in the first-order formalism for both the
Palatini Lagrangian in n dimensions and the Holst Lagrangian in four dimensions. The
advantage of our approach is that it is carried out completely off-shell, and its novelty is that
it takes advantage of the off-shell Noether identities arising from both Lagrangians and
avoids the use of Noether’s second theorem in its direct version. We report these off-shell
Noether currents and potentials for infinitesimal diffeomorphisms generated by arbitrary
vector fields, local SO(n) or SO(n− 1, 1) transformations, ‘improved diffeomorphisms’,
and the so-called ‘generalization of local translations’ of the orthonormal frame and the
connection [33]. The resulting off-shell Noether current and potential for diffeomorphisms
can be regarded as the first-order version of the off-shell Noether current and potential in
the metric second-order formalism reported in [12]. Remarkably, our results reveal that
the Immirzi parameter affects, in a non-trivial way, the definition of the off-shell Noether
currents and potentials associated to diffeomorphisms and local SO(3, 1) or SO(4) trans-
formations for the Holst Lagrangian. We also find that the currents for both ‘improved
diffeomorphisms’ and the ‘generalization of local translations’ identically vanish. Never-
theless, we also show that from these symmetries we can obtain the off-shell current and
potential for diffeomorphisms for both Lagrangians.

Additionally, we consider the particular case of diffeomorphisms generated by Killing
vector fields and determine their corresponding off-shell Noether currents and potentials.
This leads to the introduction of an effective gauge transformation, and we report its
corresponding off-shell Noether currents and potentials. We also work ‘half off-shell’ (in a
sense made precise in Section 6) and obtain general expressions for the Noether currents
and potentials for both Palatini and Holst Lagrangians. We find that in the ‘half off-shell’
case the resulting diffeomorphism and SO(3, 1) or SO(4) Noether currents and potentials
for the Holst Lagrangian still generically depend on the Immirzi parameter, even though
the ones for the second-order Lagrangian (Einstein–Hilbert Lagrangian in terms of the
tetrad) are independent of it. This implies that the Immirzi parameter is going to be present
in these currents and potentials even ‘on-shell’. Furthermore, even though the Noether
potential for the effective gauge transformation for the Holst Lagrangian in the ‘half off-
shell’ case still depends on the Immirzi parameter, the ‘half off-shell’ current is independent
of it. Finally, we illustrate the current theoretical framework in four-dimensional static
spherically symmetric and Friedmann–Lemaitre–Robertson–Walker (FLRW) spacetimes
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and report the explicit expressions for the ‘half off-shell’ Noether currents and potentials,
which turn out to depend on the Immirzi parameter as expected.

We follow the notation and conventions of Montesinos et al. [33]. Let M be an
n-dimensional Lorentzian or Riemannian manifold. In the first-order formalism, the
fundamental variables are an orthonormal frame of 1-forms eI and a connection 1-form
ω I

J compatible with the metric (ηI J) = diag(σ, 1, . . . , 1), dηI J −ωK
IηKJ −ωK

JηIK = 0, and
therefore ωI J = −ωJ I because frame indices I, J, K, . . ., which take the values 0, 1, . . . , n− 1,
are raised and lowered with ηI J . For σ = −1 the frame rotation group is the Lorentz group
SO(n− 1, 1), whereas for σ = 1 it is the rotation group SO(n). The SO(n− 1, 1) [or SO(n)]
totally antisymmetric tensor εI1 ...In is such that ε01...n−1 = 1. The symbols ∧, d, and Lζ

stand for the wedge product, exterior derivative, and the Lie derivative along the vector ζ
of differential forms, respectively. Furthermore, stands for the contraction of a vector field
with a differential form [34], the volume form is given by η = (1/n!)εI1 ...In eI1 ∧ · · · ∧ eIn ,
? is the Hodge dual, and D stands for the covariant derivative with respect to ω I

J . The
antisymmetric part of tensors involving frame indices is defined by t[I J] =

(
tI J − tJ I)/2.

It is worth pointing out that in this paper we focus our attention on the Lagrangian
n-form instead of the action principle, which in turn is defined as the integral of the
Lagrangian over a determined spacetime region. Thus, the Lagrangian itself completely
specifies the theory under consideration.

2. Palatini Lagrangian

First-order general relativity in n-dimensions with (or without) a cosmological con-
stant Λ can be described by the action principle constructed out of the n-dimensional
Palatini Lagrangian

LP = κ
[

RI J ∧ ?(eI ∧ eJ)− 2Λη
]
, (1)

where RI
J = dω I

J + ω I
K ∧ωK

J is the curvature of ω I
J . Because we do not consider matter

fields in this paper, we could omit the constant κ := (16πG)−1 in the previous Lagrangian.
However, we keep it for dimensional reasons (so that the Lagrangian has dimensions of
action).

A general variation of the Palatini Lagrangian under the corresponding variations of
the frame eI and the connection ω I

J takes the form

δLP = EI ∧ δeI + EI J ∧ δω I J + d
[
κδω I J ∧ ?

(
eI ∧ eJ

)]
, (2)

where the variational derivatives EI and EI J are given by

EI = κ(−1)n−1
[
?
(
eI ∧ eJ ∧ eK

)
∧ RJK − 2Λ ? eI

]
, (3)

EI J = κ(−1)n−1D
[
?
(
eI ∧ eJ

)]
. (4)

2.1. Off-Shell Current and Potential for Diffeomorphisms

By handling the variational derivatives EI and EI J given in (3) and (4), we get the
off-shell Noether identity [33]

EI ∧ Lζ eI + EI J ∧ Lζ ω I J + d
{
(−1)n

[
(ζ ω I J)EI J + (ζ eI)EI

]}
= 0, (5)

satisfied by the change of eI and ω I
J under an infinitesimal diffeomorphism generated by

an arbitrary vector field ζ (converse of Noether’s second theorem).
By computing the variation (2) for the change of eI and ω I

J under an infinitesimal
diffeomorphism generated by ζ, we obtain

δζ LP = EI ∧ LζeI + EI J ∧ Lζ ω I J + d
[
κLζ ω I J ∧ ?

(
eI ∧ eJ

)]
. (6)
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Using (5), we rewrite the right-hand side of last expression as

δζ LP = d
{
(−1)n−1

[
(ζ ω I J)EI J + (ζ eI)EI − κ ?

(
eI ∧ eJ

)
∧ Lζ ω I J

]}
, (7)

that is, as an exact form. It is remarkable that the terms inside the braces can be written as

(−1)n−1
[
(ζ ω I J)EI J + (ζ eI)EI − κ ?

(
eI ∧ eJ

)
∧ Lζ ω I J

]
= d

[
κ
(

ζ ω I J
)
?
(
eI ∧ eJ

)]
+ ζ LP. (8)

The meaning of the off-shell identity (8) is better appreciated by noting that it has the form

Jζ = dUζ , (9)

where the off-shell current Jζ is defined by

Jζ := −ζ LP + (−1)n−1
[
(ζ ω I J)EI J + (ζ eI)EI − κ ?

(
eI ∧ eJ

)
∧ Lζ ω I J

]
, (10)

with corresponding off-shell Noether potential Uζ defined by

Uζ := κ
(

ζ ω I J
)
?
(
eI ∧ eJ

)
. (11)

It follows from (9) that Jζ is off-shell conserved

dJζ = 0. (12)

Note that the off-shell current (10) can be further simplified and it acquires the off-shell
form

Jζ = (−1)n−1
(

ζ ω I J
)
EI J + (−1)nκ ?

(
eI ∧ eJ

)
∧ D

(
ζ ω I J

)
. (13)

This expression is remarkable because it involves neither EI nor LP, in contrast to (10).
Here, we show three things: First, we provide a new and systematic theoretical

framework that allows us to define the off-shell Noether potential Uζ given by (11) and the
off-shell Noether current Jζ given by (10) associated to the diffeomorphism covariance of
the Palatini Lagrangian (1). Second, we show that Uζ and Jζ are related by (9). Third, we
show that Jζ is off-shell conserved too. The whole procedure to achieve these three things
is carried out off-shell, namely, without using the equations of motion. This is in contrast
to the conventional approach found in literature (see, e.g., [35]), where these three things
are defined only on-shell. Therefore, we have generalized and extended these notions to
the first-order formalism of general relativity described by the Palatini Lagrangian, and
shown that it is not necessary to define these notions on-shell. Thus, it is correct to interpret
these results coming from the Palatini Lagrangian as the first-order version of the off-shell
Noether potential and current associated to diffeomorphisms for general relativity in the
metric second-order formalism reported in [12]. Further, our approach is also very general
in the sense that it holds for any arbitrary vector field ζ.

Let us emphasize that the off-shell aspect is just one of the important features of the
theoretical framework developed in this paper. The second aspect is that Noether’s theorem
for gauge transformations (also called Noether’s second theorem) was not used at all to
get (9). This is another key difference between the approach of this paper and previous
ones [4,35–37], i.e., we did not assume (nor use) that under an infinitesimal diffeomorphism
generated by ζ the change of the action is

δζSP[e, ω] = δζ

∫
M

LP =
∫
M
Lζ LP =

∫
M

d(ζ L), (14)
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as is usually assumed when dealing with Noether’s theorem for diffeomorphism trans-
formations. In our approach, the relation (14) holds, of course, but it is deduced from the
combination of (7) and (8).

2.2. Off-Shell Current and Potential for Local SO(n− 1, 1) or SO(n) Transformations

Similarly, by handling the variational derivatives EI and EI J given in (3) and (4), we
get the off-shell Noether identity

EI ∧
(

τ I
JeJ
)
+ EI J ∧

(
−Dτ I J

)
= d

[
(−1)nτ I JEI J

]
, (15)

satisfied by infinitesimal local SO(n− 1, 1) or SO(n) transformations of eI and ω I
J with

τ I J = −τ J I being the gauge parameter (converse of Noether’s second theorem).
On the other hand, by evaluating the variation (2) for an infinitesimal local SO(n− 1, 1)

or SO(n) transformation of eI and ω I
J , we obtain

δτ LP = EI ∧
(

τ I
JeJ
)
+ EI J ∧

(
−Dτ I J

)
+ d
[
κ
(
−Dτ I J

)
∧ ?
(
eI ∧ eJ

)]
. (16)

Using (15), the right-hand side of (16) acquires the form

δτ LP = d
[
(−1)nτ I JEI J + κ

(
−Dτ I J

)
∧ ?
(
eI ∧ eJ

)]
. (17)

Once again, the terms inside the brackets can be written as

(−1)nτ I JEI J + κ
(
−Dτ I J

)
∧ ?
(
eI ∧ eJ

)
= d

[
−κτ I J ?

(
eI ∧ eJ

)]
. (18)

This off-shell identity has the form
Jτ = dUτ , (19)

where we define the off-shell current Jτ by

Jτ := (−1)nτ I JEI J + (−1)n+1κ ?
(
eI ∧ eJ

)
∧
(

Dτ I J
)

, (20)

and the off-shell Noether potential Uτ as

Uτ := −κτ I J ?
(
eI ∧ eJ

)
. (21)

It is clear from (19) that Jτ is off-shell conserved,

dJτ = 0. (22)

It is worth noting that the structure of Jτ in (20) resembles that of the diffeomorphism
current (13).

Therefore, we show three things: First, we apply our theoretical framework and
defined the off-shell Noether potential Uτ given by (21) and the off-shell Noether current Jτ

given by (20), both associated to local SO(n− 1, 1) or SO(n) transformations. Second, we
show that Uτ and Jτ are related by (19). Third, we show that Jτ is off-shell conserved too. As
in the case of diffeomorphisms, here these three things are defined off-shell; we nowhere use
the equations of motion in our approach. This differs totally from conventional approaches
found in literature (see, e.g., [37]) which work at the on-shell level only. Thus, we generalize
and extend these notions to the first-order formalism of general relativity described by the
Palatini Lagrangian and show that it is not necessary to define these notions on-shell.

2.3. Off-Shell Current for ‘Improved Diffeomorphisms’

It is pretty obvious that we can combine the relations (9) and (19) involving the
off-shell Noether currents and potentials. In particular, by adding them and taking a field-
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dependent local SO(n− 1, 1) or SO(n) transformation with gauge parameter τ I J = ζ ω I J ,
we get the off-shell relation

− ζ LP + (−1)n−1
(

ζ eI
)
EI + κ

(
ζ RI J

)
∧ ?
(
eI ∧ eJ

)
= 0. (23)

This off-shell identity is nothing but the current for an ‘improved diffeomorphism’ along a
vector field ζ, as we show below.

In fact, from the variational derivatives EI and EI J given in (3) and (4), we derive the
off-shell Noether identity

EI ∧
[

D
(

ζ eI
)
+ ζ DeI

]
+ EI J ∧

(
ζ RI J

)
+ d
[
(−1)n

(
ζ eI

)
EI

]
= 0, (24)

satisfied by the change of eI and ω I
J under an ‘improved diffeomorphism’, given by

δζ eI := D
(

ζ eI
)
+ ζ DeI

= Lζ eI +
(

ζ ω I
J

)
eJ , (25)

δζ ω I J := ζ RI J

= Lζ ω I J − D
(

ζ ω I J
)

, (26)

which are a linear a combination of a diffeomorphism transformation and a field-dependent
local SO(n− 1, 1) or SO(n) transformation with gauge parameter τ I J = ζ ω I J .

On the other hand, by equating the variation in (2) with the change of eI and ω I
J

under an ‘improved diffeomorphism’, we obtain

δζ LP = EI ∧
[

D
(

ζ eI
)
+ ζ DeI

]
+ EI J ∧

(
ζ RI J

)
+ d
[
κ
(

ζ RI J
)
∧ ?
(
eI ∧ eJ

)]
. (27)

Using (24), the previous expression becomes

δζ LP = d
[
(−1)n−1

(
ζ eI

)
EI + κ

(
ζ RI J

)
∧ ?
(
eI ∧ eJ

)]
. (28)

However, the terms inside square brackets can be written as

(−1)n−1
(

ζ eI
)
EI + κ

(
ζ RI J

)
∧ ?
(
eI ∧ eJ

)
= ζ LP, (29)

so that for an ‘improved diffeomorphism’ the off-shell Noether current identically vanishes:

J := −ζ LP + (−1)n−1
(

ζ eI
)
EI + κ

(
ζ RI J

)
∧ ?
(
eI ∧ eJ

)
= 0. (30)

Note that (30) is precisely (23).
It is important to remark that the procedure to arrive at (30) differs from the one

followed to get the off-shell Noether potential and current for diffeomorphisms presented
in Section 2.1. The difference relies in the fact that, to arrive at (30), Cartan’s formula is not
used at all. If we use it as

Lζ ω I J = ζ RI J + D
(

ζ ω I J
)

, (31)

then the expression (29) is written as

(−1)n−1
(

ζ eI
)
EI + κLζω I J ∧ ?

(
eI ∧ eJ

)
− κD

(
ζ ω I J

)
∧ ?
(
eI ∧ eJ

)
= ζ LP. (32)

Substituting

κD
(

ζ ω I J
)
∧ ?
(
eI ∧ eJ

)
= (−1)n

(
ζ ω I J

)
EI J + d

[
κ
(

ζ ω I J
)
?
(
eI ∧ eJ

)]
, (33)
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into (32) we get precisely (8), from which (9) arises. Therefore, from ‘improved diffeomor-
phisms’ we also obtain the off-shell Noether current and potential associated to diffeomor-
phisms.

2.4. Off-Shell Current for the ‘Generalization of Local Translations’

It was shown some years ago [33] that the variational derivatives EI and EI J given
in (3) and (4) can be handled to give the off-shell Noether identity

EI ∧ DρI + EI J ∧ Zn
I J

KLρKeL + d
[
(−1)nρIEI

]
= 0, (34)

with
Zn

I J
KL = RI J

KL − 2δ
[I
KR

J]
L +

2
n− 2

δ
[I
LR

J]
K +

1
n− 2

(R+ 2Λ)δ
[I
K δ

J]
L . (35)

Here, ρI is the gauge parameter, RI J
KL are the components of RI J with respect to the

orthonormal frame, RI J = (1/2)RI J
KLeK ∧ eL; RI

J := RIK
JK is the Ricci tensor, and

R := RI
I is the curvature scalar.

The off-shell Noether identity (34) gives the gauge transformation of eI and ω I
J

δρeI = DρI , (36)

δρω I J = Zn
I J

KLρKeL, (37)

named ‘generalization of local translations’ because it is the generalization of the so-
called ‘local translations’ that exist in three dimensions (see [38] for a simple derivation
of this symmetry in three dimensions and [39] for a straightforward derivation in four
dimensions).

By computing the variation (2) for a ‘generalization of local translations’ of eI and ω I
J ,

we have
δρLP = EI ∧ δρeI + EI J ∧ δρω I J + d

[
κδρω I J ∧ ?

(
eI ∧ eJ

)]
. (38)

Using (34), the right-hand side of last expression becomes

δρLP = d
[
(−1)n−1ρIEI + κ Zn

I J
KLρKeL ∧ ?

(
eI ∧ eJ

)]
. (39)

If we define the vector field ρ = ρI∂I , where ∂I is the dual basis of eI (i.e., ∂I eJ = δJ
I ),

then ρI = ρ eI . Using this definition, the terms inside square brackets of the previous
expression can be expressed as

(−1)n−1(ρ eI)EI + κ Zn
I J

KL(ρ eK)eL ∧ ?
(
eI ∧ eJ

)
= ρ LP +

(−1)n−1

n− 2
(ρ eI)EI −

σ

n− 2

(
∂I ? E I

)
ρJ ? eJ . (40)

Thus, the off-shell Noether current associated to the ‘generalization of local translations’
identically vanishes:

J := (−1)n−1(ρ eI)EI + κ Zn
I J

KL(ρ eK)eL ∧ ?
(
eI ∧ eJ

)
−ρ LP −

(−1)n−1

n− 2
(ρ eI)EI +

σ

n− 2

(
∂I ? E I

)
ρJ ? eJ

= 0. (41)

Furthermore, using the off-shell identity

κ Zn
I J

KL

(
ρ eK

)
eL ∧ ?

(
eI ∧ eJ

)
=

(
ρ RI J

)
∧ ?
(
eI ∧ eJ

)
+

(−1)n−1

n− 2

(
ρ eI

)
EI

− σ

n− 2

(
∂I ? E I

)
ρJ ? eJ , (42)
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the off-shell current (41) becomes precisely the one given in (30) with ζ replaced by ρ.
However, note that the identity (42) can be used differently. If (42) is substituted

into (40), we get (29) with ζ replaced by ρ, from which (8) and (9) arise, as explained in
Section 2.3. Therefore, from the ‘generalization of local translations’, we also obtain the
off-shell Noether current and potential associated to diffeomorphisms.

3. Holst Lagrangian

In four spacetime dimensions, the Holst action [15] with a cosmological constant Λ is
given by the action principle determined by the Lagrangian

LH = κeI ∧ eJ ∧
(

PI JKLRKL − Λ
12

εI JKLeK ∧ eL
)

, (43)

where PI JKL := (1/2)εI JKL + (σ/γ)η[I|Kη|J]L and γ ∈ R− {0} is the Immirzi parameter.
The variation of the Lagrangian (43) under general variations of the independent

variables eI and ω I
J reads

δLH = EI ∧ δeI + EI J ∧ δω I J + d
(

κPI JKLδω I J ∧ eK ∧ eL
)

, (44)

where the variational derivatives EI and EI J are given by

EI := −2κeJ ∧
(

PI JKLRKL − Λ
6

εI JKLeK ∧ eL
)

, (45)

EI J := −κD(PI JKLeK ∧ eL). (46)

3.1. Off-Shell Current and Potential for Diffeomorphisms

Using EI and EI J , we obtain the off-shell Noether identity

EI ∧ Lζ eI + EI J ∧ Lζω I J + d
[(

ζ ω I J
)
EI J +

(
ζ eI

)
EI

]
= 0, (47)

satisfied by the change of eI and ω I J under an infinitesimal diffeomorphism generated by
ζ (converse of Noether’s second theorem).

Then, evaluating the variation (44) for the change of eI and ω I
J under an infinitesimal

diffeomorphism generated by ζ, we obtain

δζ LH = EI ∧ Lζ eI + EI J ∧ Lζω I J+ d
(

κPI JKLLζ ω I J ∧ eK ∧ eL
)
, (48)

which, using (47), is written as

δζ LH = d
[
−(ζ ω I J)EI J − (ζ eI)EI+ κPI JKLLζω I J ∧ eK ∧ eL

]
. (49)

Note that the terms inside the brackets can be written as

−
(

ζ ω I J
)
EI J −

(
ζ eI

)
EI + κPI JKLLζ ω I J ∧ eK ∧ eL

= ζ LH + d
[
κPI JKL(ζ ω I J)eK ∧ eL

]
. (50)

This off-shell identity has the form
Jζ = dUζ , (51)

where we define the off-shell current Jζ by

Jζ := −ζ LH − (ζ ω I J)EI J − (ζ eI)EI + κPI JKLLζ ω I J ∧ eK ∧ eL, (52)
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and the off-shell Noether potential Uζ by

Uζ := κPI JKL(ζ ω I J)eK ∧ eL. (53)

Then, Expression (51) implies that Jζ is off-shell conserved

dJζ = 0. (54)

Note that the off-shell current (52) can be further simplified off-shell, giving

Jζ = −
(

ζ ω I J
)
EI J + κPI JKL

(
eI ∧ eJ

)
∧ D

(
ζ ωKL

)
. (55)

This expression is relevant because it involves neither EI nor LH , in contrast to (52).
In this way, we show three things: First, by using our theoretical framework, we

define the off-shell Noether potential Uζ given by (53) and the off-shell Noether current Jζ

given by (52), which are associated to diffeomorphisms generated by arbitrary vector fields
ζ. Second, we show that Uζ and Jζ are related by (51). Third, we show that Jζ is off-shell
conserved too. To accomplish these three things we calculate everything off-shell, and
hence our results are different from the existing ones, which are defined only on-shell in
literature (see, e.g., [37,40–42]). Consequently, we generalize and extend these notions
to the first-order formalism of general relativity described by the Holst Lagrangian and
show that it is not necessary to define these notions on-shell. Moreover, as for the Palatini
Lagrangian studied in Section 2.1, these results coming from the Holst Lagrangian can
also be interpreted as a first-order version of the off-shell Noether potential and current
associated to diffeomorphisms for general relativity in the metric second-order formalism
reported in [12].

3.2. Off-Shell Current and Potential for Local SO(3, 1) or SO(4) Transformations

Similarly, using EI and EI J , we obtain the off-shell Noether identity

EI ∧ (τ I
JeJ) + EI J ∧ (−Dτ I J) = d(τ I JEI J), (56)

satisfied by infinitesimal local SO(3, 1) or SO(4) transformations of eI and ω I J with τ I J =
−τ J I being the gauge parameter (converse of Noether’s second theorem).

Now, computing the variation (44) for an infinitesimal local SO(3, 1) or SO(4) trans-
formation of eI and ω I

J , we get

δτ LH = EI ∧ (τ I
JeJ) + EI J ∧ (−Dτ I J) + d

(
−κPI JKLDτ I J ∧ eK ∧ eL

)
. (57)

Using (56), the right-hand side of the previous expression takes the form

δτ LH = d
(

τ I JEI J − κPI JKLDτ I J ∧ eK ∧ eL
)

. (58)

The terms inside the parenthesis can be written as

τ I JEI J − κPI JKLDτ I J ∧ eK ∧ eL = d
(
−κPI JKLτ I JeK ∧ eL

)
. (59)

This off-shell identity has the form
Jτ = dUτ , (60)

where we define the off-shell current Jτ by

Jτ := τ I JEI J − κPI JKL

(
eI ∧ eJ

)
∧ DτKL, (61)
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and the off-shell Noether potential Uτ by

Uτ := −κPI JKLτ I JeK ∧ eL. (62)

It follows from (60) that Jτ is off-shell conserved,

dJτ = 0. (63)

Notice that the structure of the SO(3, 1) or SO(4) current (61) resembles that of the diffeo-
morphism current (55).

Thus, we show three things: First, by applying our theoretical framework, we define
the off-shell Noether potential Uτ given by (62) and the off-shell Noether current Jτ given
by (61) associated to local SO(3, 1) or SO(4) transformations. Second, we show that Uτ

and Jτ are related by (60). Third, we show that Jτ is off-shell conserved too. We remark
that, as in the case of diffeomorphisms, these three things are defined off-shell, which is in
contrast to the on-shell definitions typically found in literature (see, e.g., [37]). In this sense,
we generalize and extend these notions to the first-order formalism of general relativity
described by the Holst Lagrangian and show that it is not necessary to define these notions
on-shell.

3.3. Off-Shell Current for ‘Improved Diffeomorphisms’

By combining the variational derivatives EI and EI J , we obtain the off-shell Noether
identity

EI ∧
[

D
(

ζ eI
)
+ ζ DeI

]
+ EI J ∧

(
ζ RI J

)
+ d
[(

ζ eI
)
EI

]
= 0, (64)

satisfied by the change of eI and ω I
J under an ‘improved diffeomorphism’.

By calculating the variation (44) for the change of eI and ω I
J under an ‘improved

diffeomorphism’, we have

δζ LH = EI ∧
[

D(ζ eI) + ζ DeI
]
+ EI J ∧ (ζ RI J)

+d
[
κPI JKL(ζ RI J) ∧ eK ∧ eL

]
. (65)

Using (64), the right-hand side of (65) can be written as

δζ LH = d
[
−(ζ eI)EI + κPI JKL(ζ RI J) ∧ eK ∧ eL

]
. (66)

Notice that the terms inside the brackets can be written as

− (ζ eI)EI + κPI JKL(ζ RI J) ∧ eK ∧ eL = ζ LH , (67)

which means that for an ‘improved diffeomorphism’ the off-shell Noether current identi-
cally vanishes:

J := −ζ LH − (ζ eI)EI + κPI JKL(ζ RI J) ∧ eK ∧ eL = 0. (68)

To close this subsection, we remark that, as for the n-dimensional Palatini Lagrangian,
we can also use Cartan’s identity (31) to rewrite (67) as

− (ζ eI)EI + κPI JKLLζ ω I J ∧ eK ∧ eL − κPI JKLD
(

ζ ω I J
)
∧ eK ∧ eL = ζ LH . (69)

By substituting

κPI JKLD
(

ζ ω I J
)
∧ ?
(

eK ∧ eL
)
=
(

ζ ω I J
)
EI J + d

[
κ
(

ζ ω I J
)
?
(
eI ∧ eJ

)]
, (70)
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into (69), we obtain (50), and then (51) arises. Therefore, from ‘improved diffeomorphisms’
we also obtain the off-shell Noether current and potential associated to diffeomorphisms.

3.4. Off-Shell Current for the ‘Generalization of Local Translations’

By handling the variational derivatives EI and EI J , we get the off-shell identity [33]

EI ∧ DρI + EI J ∧ ZI J
KLρKeL + d

(
ρIEI

)
= 0, (71)

with

ZI J
KL = RI J

KL + (P−1)I JMN
(

1
2

εMNPQXPQ
KL +

σ

γ
YMNKL

)
, (72)

where we define

XI JKL := −2η[I|KR|J]L + η[I|LR|J]K +
1
2
(R+ 2Λ)η[I|Kη|J]L, (73)

YI JKL :=
1
2
(

BJLIK + BLIKJ + BIKJL
)
, (74)

for RI
J ∧ eJ =: (1/3!)BI

JKLeJ ∧ eK ∧ eL, and ρI is the gauge parameter.
The off-shell Noether identity (71) gives the gauge transformation of eI and ω I J

δρeI = DρI , (75)

δρω I J = ZI J
KLρKeL, (76)

named ‘generalization of local translations.’
By equating the variation in (44) with a ‘generalization of local translations’ of eI and

ω I J , we have

δρLH = EI ∧ δρeI + EI J ∧ δρω I J + d
(

κPI JKLδρω I J ∧ eK ∧ eL
)

. (77)

Then, using (71), the right-hand side of this expression takes the form

δρLH = d
(
−ρIEI + κPI JMN ZI J

KLρKeL ∧ eM ∧ eN
)

. (78)

Defining the vector field ρ = ρI∂I , then ρI = ρ eI and the terms inside the parenthesis
of (78) can be written as

−(ρ eI)EI + κPI JMN ZI J
KL(ρ eK)eL ∧ eM ∧ eN

= ρ LH −
1
2
(ρ eI)EI −

σ

2
(∂I ? E I)ρJ ? eJ . (79)

This implies that for the ‘generalization of local translations’ the off-shell Noether current
identically vanishes:

J := −(ρ eI)EI + κPI JMN ZI J
KL(ρ eK)eL ∧ eM ∧ eN

−ρ LH +
1
2
(ρ eI)EI +

σ

2
(∂I ? E I)ρJ ? eJ

= 0. (80)

It is worth noting that using the off-shell identity

κPI JMN ZI J
KL(ρ eK)eL ∧ eM ∧ eN = κPI JKL(ρ RI J) ∧ eK ∧ eL

−1
2
(ρ eI)EI −

σ

2
(∂I ? E I)ρJ ? eJ , (81)

the off-shell current (80) becomes precisely the one given in (68) with ζ replaced by ρ.
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However, note that the identity (81) can be used differently. If (81) is substituted
into (79), we get (67) with ζ replaced with ρ, from which (50) and (51) arise, as explained in
Section 3.3. Therefore, from the ‘generalization of local translations’, we also obtain the
off-shell Noether current and potential associated to diffeomorphisms.

4. Off-Shell Noether Charges

An advantage (and a possible use) of the identities satisfied by the off-shell Noether
currents and potentials reported in Sections 2 and 3 is that they always hold because no
restrictions or specific hypotheses were imposed to obtain them. Therefore, these identities
lead naturally to the definition of off-shell Noether charges via

Q =
∫

Σ
J =

∫
∂Σ

U, (82)

where Σ is an (n− 1)-dimensional surface and ∂Σ its boundary in the case of the Pala-
tini Lagrangian in n-dimensions, whereas Σ is a three-dimensional surface for the Holst
Lagrangian.

It is important to remark that the off-shell Noether charges (82) are also kinematical
in the sense that the variational derivatives EI J and EI are not set to zero. Nevertheless,
the off-shell currents and potentials are constructed using the n-dimensional Palatini and
Holst Lagrangians, so they capture or encode the dynamical information contained in
the Lagrangians through the way the frame eI and the connection ω I

J couple to each
other. After all, Palatini and Holst Lagrangians lead to the equations of motion for general
relativity via the action principle (see [12] for the construction of an off-shell Noether
current and potential in the metric second-order formalism).

The right hand-side of (82) can be computed on-shell too, of course, because the
off-shell identities between the off-shell potentials and currents are general. Due to the fact
that the off-shell potentials for the Holst Lagrangian studied in Section 3 depend on the
Immirzi parameter, we expect the resulting charges generically depend on this parameter
too. Moreover, in Sections 6 and 7, we consider the ‘half off-shell’ case for the Holst
Lagrangian (in the sense defined there), and we show that the Immirzi parameter is present
in the resulting expressions for the diffeomorphisms and SO(3, 1) or SO(4) potentials and
currents. Therefore, from this, it is deduced that the Immirzi parameter will generically
appear in these expressions even ‘on-shell’ too. In fact, the on-shell case is illustrated in
Section 7 and the Immirzi parameter is present.

5. Killing Vector Fields

If the vector field ζ is a Killing vector field, then the Lie derivative of the metric tensor
along it vanishes,

Lζ g = 0. (83)

Since g = ηI JeI ⊗ eJ , equation (83) implies that

∂I Lζ eJ = −∂J LζeI , (84)

which means that the Lie derivative of the orthonormal frame eI equals an infinitesimal
local SO(n− 1, 1) or SO(n) transformation of itself,

LζeI = τ I
J(ζ)eJ , τ I J(ζ) = −τ J I(ζ), (85)

for some suitable gauge parameter τ I J(ζ). From this relation, we obtain, in particular, the
field-dependent gauge parameter τ I J(ζ)

τ I J(ζ) = ∂J Lζ eI . (86)
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On the other hand, the Lie derivative of the connection ω I
J with respect to a Killing

vector is more involved because we are working off-shell, and we need to consider sepa-
rately Palatini and Holst Lagrangians.

5.1. Palatini Lagrangian

Using (4), we express DeI in terms of the variational derivatives EI J ,

DeI =
σ(−1)n−1

2κ

[
?
(

eI ∧ EJK

)
eJ ∧ eK +

2
n− 2

?
(

eJ ∧ EJK

)
eK ∧ eI

]
. (87)

From this relation and (85), we obtain that the Lie derivative of the connection with respect
to a Killing vector field equals a local SO(n) or SO(n− 1, 1) transformation plus a ‘trivial
gauge transformation’ W I J (see [43] for the definition of trivial gauge transformations)

Lζ ω I J = −Dτ I J(ζ) + W I J , (88)

where τ I J(ζ) is given by (86) and

W I J = Lζ K I J − 2τ[I
L(ζ)K|L|J], W I J = −W J I (89)

with

KI J := − σ(−1)n−1

2κ

[
?
(
eI ∧ EJK

)
eK − ?

(
eJ ∧ EIK

)
eK

− ?
(
eK ∧ EI J

)
eK − 4

n−2 ?
(

eK ∧ EK[I

)
eJ]

]
. (90)

Thus, Expressions (85) and (88) are the corresponding changes of the frame eI and the con-
nection ω I

J when the vector field ζ is a Killing vector field, for the Palatini Lagrangian (1).
Equation (88) expresses the fact that the action of a Killing vector on the connection is
compensated by a local SO(n) or SO(n− 1, 1) transformation and the ‘trivial gauge trans-
formation’ given by the term W I J proportional to the variational derivative EI J according
to (89) and (90), thus giving rise to an effective transformation, as shown below.

By substituting (85) and (88) into (5), we get the off-shell Noether identity

EI ∧
[
τ I

J(ζ)eJ
]
+ EI J ∧

[
−Dτ I J(ζ) + W I J

]
+d
{
(−1)n

[
(ζ ω I J)EI J + (ζ eI)EI

]}
= 0. (91)

Using (15), the previous expression acquires the form

EI J ∧W I J + d
{
(−1)n[(ζ ω I J + τ I J

)
EI J + (ζ eI)EI

]}
= 0, (92)

which involves the gauge transformation

δeI = 0,

δω I J = W I J , (93)

that leaves the frame eI unchanged, while the connection ω I
J undergoes a ‘trivial gauge

transformation’.
By taking the gauge transformation (93) as the starting point and applying the same

procedure developed in Section 2, we get the off-shell relation

JP = dUP, (94)
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with the off-shell potential UP and the off-shell current JP defined by

UP := κ
[
τ I J(ζ) + ζ ω I J

]
?
(
eI ∧ eJ

)
, (95)

JP := (−1)n+1
[
τ I J(ζ) + ζ ω I J

]
EI J + (−1)nκ ?

(
eI ∧ eJ

)
∧ D

[
τ I J(ζ) + ζ ω I J

]
. (96)

The potential and current can, alternatively, be written as

UP = Uζ −Uτ(ζ), (97)

JP = Jζ − Jτ(ζ), (98)

where Uζ is given by (11) and Jζ is given by (13). Similarly, Uτ(ζ) is given by (21) and Jτ(ζ)

is given by (20) with τ I J(ζ) given by (86). Moreover, it follows from (94) that JP is off-shell
conserved,

dJP = 0. (99)

5.2. Holst Lagrangian

Using (46), we get DeI in terms of the variational derivatives EI J

DeI = − σ

2κ

[
?
(

eI ∧ EJK

)
eJ ∧ eK + ?

(
eJ ∧ EJK

)
eK ∧ eI

]
, (100)

with

EI J :=
1
2

εI JKL

(
P−1

)KLMN
EMN =

γ2

γ2 − σ

(
δK
[Iδ

L
J] −

1
2γ

εI J
KL
)
EKL. (101)

From this relation and (85), we obtain that the Lie derivative of the connection with
respect to a Killing vector field equals a local SO(3, 1) or SO(4) transformation plus a
‘trivial gauge transformation’ W I J(= −W J I)

Lζ ω I J = −Dτ I J(ζ) + W I J , (102)

where τ I J(ζ) is given by (86) and

W I J = Lζ K I J − 2τ[I
L(ζ)K|L|J], (103)

with

KI J :=
σ

2κ

[
?
(
eI ∧ EJK

)
eK − ?

(
eJ ∧ EIK

)
eK

− ?
(
eK ∧ EI J

)
eK − 2 ?

(
eK ∧ EK[I

)
eJ]

]
. (104)

Thus, Expressions (85) and (102) are the corresponding changes of the frame eI and the
connection ω I

J when the vector field ζ is a Killing vector field, for the Holst Lagrangian (43).
Again, the action of a Killing vector on the connection is compensated by a local SO(3, 1)
or SO(4) transformation and the ‘trivial gauge transformation’ given by the term W I J

proportional to the variational derivative EI J according to (103) and (104), thus, giving rise
to an effective transformation, as shown below.

In fact, by substituting (85) and (102) into (47), we get the off-shell Noether identity

EI ∧
[
τ I

J(ζ)eJ
]
+ EI J ∧

[
−Dτ I J(ζ) + W I J

]
+ d
[
(ζ ω I J)EI J + (ζ eI)EI

]
= 0. (105)

Using (56), the previous expression acquires the form

EI J ∧W I J + d
[(

ζ ω I J + τ I J
)
EI J + (ζ eI)EI

]
= 0, (106)
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which involves the gauge transformation

δeI = 0,

δω I J = W I J , (107)

that leaves the frame eI invariant, while the connection ω I
J undergoes a ‘trivial gauge

transformation’.
By taking the gauge transformation (107) as the starting point and applying the same

procedure developed in Section 3, we get the off-shell relation

JH = dUH , (108)

with the off-shell potential UH and the off-shell current JH defined by

UH := κPI JKL

[
τ I J(ζ) + ζ ω I J

](
eK ∧ eL

)
, (109)

JH := −
[
τ I J(ζ) + ζ ω I J

]
EI J + κPI JKL

(
eI ∧ eJ

)
∧ D

[
τKL(ζ) + ζ ωKL

]
. (110)

The potential UH and current JH can, alternatively, be written as

UH = Uζ −Uτ(ζ), (111)

JH = Jζ − Jτ(ζ), (112)

where Uζ is given by (53) and Jζ is given by (55). Similarly, Uτ(ζ) is given by (62) and Jτ(ζ)

is given by (61) with τ I J(ζ) given by (86). Furthermore, it follows from (108) that JH is
off-shell conserved,

dJH = 0. (113)

Note that the Noether potential Uζ for diffeomorphisms (53) when ζ is a Killing vector
field can off-shell, alternatively, be rewritten as

Uζ = Un=4
ζ + d

[
−σκ

γ
(ζ eI)eI

]
− σκ

γ

(
τI J(ζ)− ζ KI J

)
eI ∧ eJ , (114)

where here Un=4
ζ is in fact the corresponding Noether potential (11) for the Palatini La-

grangian in four-dimensional spacetimes.
Moreover, the potential UH (109) can be further simplified and it acquires the off-shell

expression

UH = UP + d
[
−σκ

γ
(ζ eI)eI

]
+

σκ

γ

{
(ζ eI)DeI +

[
∂J (ζ DeI)

]
eI ∧ eJ

}
, (115)

with UP given by (97). Alternatively, using (100), it can off-shell be written as

UH = UP + d
[
−σκ

γ
(ζ eI)eI

]
+

σκ

γ

(
ζ KI J

)
eI ∧ eJ . (116)

Therefore,

JH = dUH = JP + d
[

σκ

γ

(
ζ KI J

)
eI ∧ eJ

]
, (117)

with JP given by (98).

6. Half Off-Shell Case

There are essentially three different cases when dealing with gauge symmetries: the
first case is defined by EI 6= 0 and EI J 6= 0 and it is named the ‘off-shell’ case. The second
case is defined by EI = 0 and EI J = 0 and it is named the ‘on-shell’ case. The third case
is defined by EI 6= 0 and EI J = 0, and we name it the ‘half off-shell’ case (other possible
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names for this case are ‘half on-shell’ and ‘semi on-shell’). The ‘half off-shell’ case is the
central focus of this section and is illustrated with examples in Section 7 to appreciate
the explicit expressions for the currents and potentials in spacetimes having particular
symmetries. The ‘on-shell’ case is also illustrated in Section 7.

In the ‘half off-shell’ case EI J = 0 (and thus W I J = 0). Therefore, ω I
J becomes the spin

connection ΓI
J , which is defined by

deI + ΓI
J ∧ eJ = 0, ΓI J = −ΓJ I , (118)

and has the explicit expression

ΓI J =
1
2

{
∂J deI − ∂I deJ +

[
∂I
(

∂J deK
)]

eK

}
. (119)

Therefore, both (88) and (102) become

LζΓI J = −
(

dτ I J + ΓI
KτKJ + ΓJ

Kτ IK
)

≡ −DΓτ I J . (120)

Palatini Lagrangian. In the ‘half off-shell’ case, the expressions for the Noether
potentials and currents for the Palatini Lagrangian in n-dimensional spacetimes can simply
be obtained by replacing EI J = 0 and ω I

J with ΓI
J in the expressions found in Section 2.

Holst Lagrangian. In the ‘half off-shell’ case, the expressions for the Noether potentials
and currents for the Holst Lagrangian can simply be obtained by replacing EI J = 0 and
ω I

J with ΓI
J in the expressions found in Section 3. Nevertheless, note that the resulting

expressions for the potentials and currents for both diffeomorphisms and local SO(3, 1)
or SO(4) transformations still carry the Immirzi parameter γ. Therefore, this case is
very different from the one we would get if we imposed the ‘half off-shell” condition
EI J = 0 from the very beginning and we replaced ω I

J with ΓI
J in the Holst Lagrangian

because in such a case the term involving the Immirzi parameter γ in LH would vanish
as a consequence of the Bianchi identity, and the Lagrangian LH would reduce to the
Einstein–Hilbert Lagrangian in terms of the frame eI rather than the metric:

LEH = κ
[

RI J ∧ ?(eI ∧ eJ)− 2Λη
]
, (121)

with RI
J = dΓI

J + ΓI
K ∧ ΓK

J being the curvature of ΓI
J . The action principle defined by

this Lagrangian is S[e] =
∫
M LEH and we are in the second-order formalism.

Einstein–Hilbert Lagrangian. For the sake of completeness, if we redo the calcula-
tions for the Lagrangian LEH for spacetimes in n dimensions, we find the following off-shell
Noether identities, potentials, and currents:

Diffeomorphisms. From the off-shell Noether identity for the change of eI under an
infinitesimal diffeomorphism generated by ζ

EI ∧ Lζ eI + d
[
(−1)n(ζ eI)E I

]
= 0, (122)

and applying the same off-shell procedure, we get

Uζ := κ
(

ζ ΓI J
)
?
(
eI ∧ eJ

)
, (123)

Jζ := dUζ = (−1)nκ ?
(
eI ∧ eJ

)
∧ DΓ

(
ζ ΓI J

)
. (124)

Local SO(n− 1, 1) or SO(n) transformations. From the off-shell Noether identity for
local SO(n− 1, 1) or SO(n) transformations

EI ∧
(

τ I
JeJ
)
= 0, (125)
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and applying the same off-shell approach, we obtain

Uτ := −κτ I J ?
(
eI ∧ eJ

)
, (126)

Jτ := dUτ = (−1)n+1κ ?
(
eI ∧ eJ

)
∧ DΓτ I J . (127)

These expressions can alternatively be obtained in an easier way by just setting EI J = 0
(and replacing ω I

J with ΓI
I) in the corresponding ones reported in Section 2 of this paper.

Killing vector fields and half off-shell case. In the ‘half off-shell’ case, we simply
have to substitute the corresponding EI J = 0 which implies KI J = 0 and W I J = 0 in both
Sections 5.1 and 5.2. Let us analyze more carefully the results for the Holst Lagrangian
contained in Section 5.2. In particular, the Noether potential Uζ for diffeomorphisms (114)
when ζ is a Killing vector field becomes

Uζ = Un=4
ζ + d

[
−σκ

γ
(ζ eI)eI

]
− σκ

γ
τI J(ζ)eI ∧ eJ , (128)

where here Un=4
ζ is in fact the corresponding Noether potential (11) for the Palatini La-

grangian in four-dimensional spacetimes in the ‘half off-shell’ case too.
Moreover, in ‘the half off-shell’ case, the expressions for the potential UH and the

current JP for the effective transformation considered in the Section 5.2 become

UH = UP + d
[
−σκ

γ
(ζ eI)eI

]
, (129)

JH = JP. (130)

We emphasize again that these expressions have been obtained by substituting EI J = 0
at the end of the computations. Notice, however, that the potential UH for the Holst
Lagrangian still carries a γ dependence inside the total differential. As explained above,
this ‘half off-shell’ potential is very different from the potential we would obtain if the
condition EI J = 0 were used from the very beginning in the Holst Lagrangian and we
replaced ω I

J with ΓI
J in the Holst Lagrangian, because in such a case the term involving

the Immirzi parameter would disappear. Notice that, if the potential (129) is integrated
over a two-dimensional compact surface without boundary, then the last term in (129)
vanishes and the charge for the Holst Lagrangian coincides with the charge for the Palatini
Lagrangian.

Finally, we remark that the potentials (128) and (129) depend on the Immirzi parameter
even in the on-shell case.

7. Examples

In this section, we apply the theoretical framework developed in Section 6 to two
relevant spacetimes having particular Killing vector fields, which means that here we
restrict our analysis to the ‘half off-shell’ case. It is important to remark that our approach
allows us to compute the Noether potentials and currents without using any specific exact
solution of Einstein’s equations, only the symmetries of the spacetime are needed. This
means that the following expressions cannot be computed by other approaches, which
displays the power of the theoretical framework reported in this paper.

7.1. Static Spherically Symmetric Spacetimes

For the sake of simplicity, let us consider Lorentzian (σ = −1) spacetimes in four
dimensions. The static spherically symmetric spacetime has the metric

g = − f (r)dt⊗ dt + h(r)dr⊗ dr + r2
(

dθ ⊗ dθ + sin2 θ dφ⊗ dφ
)

, (131)

in local coordinates xµ = (x0, x1, x2, x3) = (t, r, θ, φ) adapted to the symmetry (static
coordinates).
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The orthonormal frame is given by

e0 = f 1/2dt, e1 = h1/2dr, e2 = rdθ, e3 = r sin θdφ. (132)

The isometry group of the metric (131) is R× SO(3) and has associated the following
Killing vector fields as generators [44]:

ζ1 = ∂t,

ζ2 = ∂φ,

ζ3 = sin φ ∂θ + cot θ cos φ ∂φ,

ζ4 = − cos φ ∂θ + cot θ sin φ ∂φ. (133)

The vector ζ1 is the generator of time translations, whereas the vectors ζ2, ζ3, and ζ4
correspond to the components of the angular momentum, that is, to the generators of
SO(3). From now on, we take f (r) = e2a(r) and h(r) = e2b(r) to simplify the calculations.
With this at hand, the ‘half off-shell’ potentials and currents for diffeomorphisms asso-
ciated with the Killing vector fields, local SO(3, 1) transformations induced by Killing
vector fields, and the effective transformation acquire the explicit forms contained in
Sections 7.1.1 and 7.1.2.

7.1.1. Palatini Lagrangian
Half Off-Shell Potentials and Currents for Diffeomorphisms Generated by the Killing Vector Fields

(i) For the Killing vector field ζ1, the potential (11) acquires the form

Uζ1 = 2κ

(
da
dr

)
e(a−b)e2 ∧ e3, (134)

and therefore

Jζ1 = dUζ1

= 2κ
e(a−2b)

r

[
r
(

da
dr

)2
+

da
dr

(
2− r

db
dr

)
+ r

d2a
dr2

]
e1 ∧ e2 ∧ e3. (135)

(ii) Likewise, for the Killing vector field ζ2, the potential (11) becomes

Uζ2 = −2κ cos θ e0 ∧ e1 + 2κe−b sin θ e0 ∧ e2, (136)

and so

Jζ2 = dUζ2

= 2κ
e−2b

r
sin θ

[
− 1 + e2b + r

(
db
dr
− da

dr

)]
e0 ∧ e1 ∧ e2. (137)

(iii) For the Killing vector field ζ3, the potential (11) acquires the form

Uζ3 = −2κ cos θ cot θ cos φ e0 ∧ e1 + 2κe−b cos θ cos φ e0 ∧ e2

−2κe−b sin φ e0 ∧ e3, (138)
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and then

Jζ3 = dUζ3

= 2κ
e−2b

r
cos φ

{
e2b csc θ cot θ −

[
1− e2b + r

(
da
dr
− db

dr

)]
cos θ

}
e0 ∧ e1 ∧ e2

+2κ
e−2b

r
sin φ

[
1 + e2b cot2 θ + r

(
da
dr
− db

dr

)]
e0 ∧ e1 ∧ e3. (139)

(iv) For the Killing vector field ζ4, the potential (11) becomes

Uζ4 = −2κ cos θ cot θ sin φ e0 ∧ e1 + 2κe−b cos θ sin φ e0 ∧ e2

+2κe−b cos φ e0 ∧ e3, (140)

and therefore

Jζ4 = dUζ4

= 2κ
e−2b

r
sin φ

{
−
[

1− e2b + r
(

da
dr
− db

dr

)]
cos θ + e2b cot θ csc θ

}
e0 ∧ e1 ∧ e2

−2κ
e−2b

r
cos φ

[
1 + e2b cot2 θ + r

(
da
dr
− db

dr

)]
e0 ∧ e1 ∧ e3. (141)

We can do more. We can compute the integral of the potential Uζ1 over a sphere S2 of
constant radius r, which defines the conserved charge inside it. We obtain the ‘half off-shell’
charge

Q(r) =
∫

S2
Uζ1 = 8πκr2e[a(r)−b(r)] da

dr
. (142)

This result is general. For instance, using in particular the explicit expressions

e2a = 1− 2M
r
− Λr2

3
,

e−2b = 1− 2M
r
− Λr2

3
, (143)

with M the “mass parameter” and Λ the cosmological constant, which correspond to the
Schwarzschild–de-Sitter or the Schwarzschild–anti-de-Sitter solution depending on the
sign of Λ, we arrive at the on-shell charge

Q(r) =
∫

S
Uζ1 = 8πκ

(
M− Λr3

3

)
. (144)

Note that the term involving Λ has a very appealing behavior. Such a term is added to M
if Λ < 0 while it is subtracted from M if Λ > 0, thus indicating an attractive effect in the
former case (effective mass increases) and a repulsive effect in the latter case (effective mass
decreases). Of course, the region of spacetime and its boundary must be clearly defined to
calculate the Noether charges using the potentials computed in this paper, and the current
calculations can be used to achieve that goal. In particular, it would be interesting to use
the current expressions to compute masses, energies, and entropy of the Schwarzschild–de-
Sitter black hole, and compare with the results of Corichi and Gomberoff [45]. Similarly,
the Schwarzschild–anti-de-Sitter black hole can be analyzed and compared with the results
in [40,46].
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Half Off-Shell Potentials and Currents for Local SO(3, 1) Transformations Induced by Killing
Vector Fields

(i) For the gauge parameter τ I J(ζ1), the potential (21) and its current acquire the form

Uτ(ζ1)
= 0, Jτ(ζ1)

= 0. (145)

(ii) For the gauge parameter τ I J(ζ2), the potential (21) and its current become

Uτ(ζ2) = 0, Jτ(ζ2) = 0. (146)

This is so because both τ I J(ζ1) and τ I J(ζ2) vanish.
(iii) For the gauge parameter τ I J(ζ3), the potential (21) acquires the form

Uτ(ζ3) = −2κ csc θ cos φ e0 ∧ e1, (147)

and thus

Jτ(ζ3) = dUτ(ζ3)

=
2κ

r
cot θ csc θ cos φ e0 ∧ e1 ∧ e2 +

2κ

r
csc2θ sin φ e0 ∧ e1 ∧ e3. (148)

(iv) For the gauge parameter τ I J(ζ4), the potential (21) becomes

Uτ(ζ4)
= −2κ csc θ sin φ e0 ∧ e1, (149)

and thus

Jτ(ζ4)
= dUτ(ζ4)

=
2κ

r
cot θ csc θ sin φ e0 ∧ e1 ∧ e2 − 2κ

r
csc2θ cos φ e0 ∧ e1 ∧ e3. (150)

7.1.2. Holst Lagrangian
Half Off-Shell Potentials and Currents for Diffeomorphisms Generated by the Killing Vector Fields

(i) For the Killing vector field ζ1, the potential (128) acquires the form

Uζ1 = 2κ

(
da
dr

)
e(a−b)e2 ∧ e3 +

2κ

γ

(
da
dr

)
e(a−b)e0 ∧ e1, (151)

and thus

Jζ1 = dUζ1

= 2κ
e(a−2b)

r

[
r
(

da
dr

)2
+

da
dr

(
2− r

db
dr

)
+ r

d2a
dr2

]
e1 ∧ e2 ∧ e3. (152)

Note that there is no γ in the current Jζ1 despite the fact that it appears in the potential Uζ1 .
(ii) For the Killing vector field ζ2, the potential (128) becomes

Uζ2 = −2κ cos θ e0 ∧ e1 + 2κe−b sin θ e0 ∧ e2

+
2κ

γ
cos θ e2 ∧ e3 +

2κ

γ
e−b sin θ e1 ∧ e3, (153)

and so

Jζ2 = dUζ2

= 2κ
e−2b

r
sin θ

[
− 1 + e2b + r

(
db
dr
− da

dr

)]
e0 ∧ e1 ∧ e2. (154)
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Note that there is no γ in the current Jζ2 even though it is in the potential Uζ2 .
(iii) For the Killing vector field ζ3, the potential (128) acquires the form

Uζ3 = −2κ cos θ cot θ cos φ e0 ∧ e1 + 2κe−b cos θ cos φ e0 ∧ e2 − 2κe−b sin φ e0 ∧ e3

+
2κ

γ
cos θ cot θ cos φ e2 ∧ e3 +

2κ

γ
e−b cos θ cos φ e1 ∧ e3 +

2κ

γ
e−b sin φ e1 ∧ e2,

(155)

and then

Jζ3 = dUζ3

= 2κ
e−2b

r
cos φ

{
e2b csc θ cot θ −

[
1− e2b + r

(
da
dr
− db

dr

)]
cos θ

}
e0 ∧ e1 ∧ e2

+2κ
e−2b

r
sin φ

[
1 + e2b cot2 θ + r

(
da
dr
− db

dr

)]
e0 ∧ e1 ∧ e3

+
4κ

γr
e−b csc θ cos φ e1 ∧ e2 ∧ e3. (156)

(iv) For Killing vector field ζ4, the potential (128) becomes

Uζ4 = −2κ cos θ cot θ sin φ e0 ∧ e1 + 2κe−b cos θ sin φ e0 ∧ e2 + 2κe−b cos φ e0 ∧ e3

+
2κ

γ
cos θ cot θ sin φ e2 ∧ e3 +

2κ

γ
e−b cos θ sin φ e1 ∧ e3 − 2κ

γ
e−b cos φ e1 ∧ e2,

(157)

and therefore

Jζ4 = dUζ4

= 2κ
e−2b

r
sin φ

{
−
[

1− e2b + r
(

da
dr
− db

dr

)]
cos θ + e2b cot θ csc θ

}
e0 ∧ e1 ∧ e2

−2κ
e−2b

r
cos φ

[
1 + e2b cot2 θ + r

(
da
dr
− db

dr

)]
e0 ∧ e1 ∧ e3

+
4κ

γr
e−b csc θ sin φe1 ∧ e2 ∧ e3. (158)

Notice that in Cases (iii) and (iv) the Immirzi parameter shows up in the corresponding
expressions for potentials and currents. Even if the explicit expressions (143) are used, the
Immirzi parameter will be present.

Half Off-Shell Potentials and Currents for Local SO(3, 1) Transformations Induced by the Killing
Vector Fields

(i) For the gauge parameter τ I J(ζ1), the potential (62) and its current acquire the form

Uτ(ζ1)
= 0, Jτ(ζ1)

= 0. (159)

(ii) For the gauge parameter τ I J(ζ2), the potential (62) and its current become

Uτ(ζ2) = 0, Jτ(ζ2) = 0. (160)

This is so because both τ I J(ζ1) and τ I J(ζ2) vanish.

(iii) For the gauge parameter τ I J(ζ3), the potential (62) acquires the form

Uτ(ζ3) = −2κ csc θ cos φ e0 ∧ e1 +
2κ

γ
csc θ cos φ e2 ∧ e3, (161)
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and thus

Jτ(ζ3) = dUτ(ζ3)

=
2κ

r
cot θ csc θ cos φ e0 ∧ e1 ∧ e2 +

2κ

r
csc2θ sin φ e0 ∧ e1 ∧ e3

+
4κ

γr
e−b csc θ cos φ e1 ∧ e2 ∧ e3. (162)

(iv) For the gauge parameter τ I J(ζ4), the potential (62) becomes

Uτ(ζ4)
= −2κ csc θ sin φ e0 ∧ e1 +

2κ

γ
csc θ sin φ e2 ∧ e3, (163)

and thus

Jτ(ζ4)
= dUτ(ζ4)

=
2κ

r
cot θ csc θ sin φ e0 ∧ e1 ∧ e2 − 2κ

r
csc2θ cos φ e0 ∧ e1 ∧ e3

+
4κ

γr
e−b csc θ sin φe1 ∧ e2 ∧ e3. (164)

Again, the Immirzi parameter shows up in the potentials and in their associated
currents, and it is not possible to get rid of it even in the ‘on-shell’ case.

Half Off-Shell Potentials and Currents (129) and (130)

(i) For ζ1

UH = Uζ1

= UP + d
[

κ

γ
(ζ1 eI)eI

]
= 2κ

(
da
dr

)
e(a−b)e2 ∧ e3 + d

(
− κ

γ
ea e0

)
, (165)

JH = dUH = JP = Jζ1

= 2κ
e(a−2b)

r

[
r
(

da
dr

)2
+

da
dr

(
2− r

db
dr

)
+ r

d2a
dr2

]
e1 ∧ e2 ∧ e3. (166)

Notice that UP is given by the first term in the last equality in (165).

(ii) For ζ2

UH = Uζ2

= UP + d
[

κ

γ
(ζ2 eI)eI

]
= −2κ cos θ e0 ∧ e1 + 2κe−b sin θ e0 ∧ e2 + d

(
κ

γ
r sin θ e3

)
, (167)

JH = dUH = JP = Jζ2

= 2κ
e−2b

r
sin θ

[
− 1 + e2b + r

(
db
dr
− da

dr

)]
e0 ∧ e1 ∧ e2. (168)

Notice that UP is given by the first and second terms in the last equality in (167).
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(iii) For ζ3

UH = Uζ3 −Uτ(ζ3)

= UP + d
[

κ

γ
(ζ3 eI)eI

]
= 2κ sin θ cos φ e0 ∧ e1 + 2κe−b cos θ cos φ e0 ∧ e2 − 2κe−b sin φ e0 ∧ e3

+d
(

κr
γ

sin φ e2 +
κr
γ

cos θ cos φ e3
)

, (169)

JH = dUH = JP = Jζ3 − Jτ(ζ3)

= 2κ
e−2b

r
cos θ cos φ

(
− 1 + e2b − r

da
dr

+ r
db
dr

)
e0 ∧ e1 ∧ e2

−2κ
e−2b

r
sin φ

(
− 1 + e2b − r

da
dr

+ r
db
dr

)
e0 ∧ e1 ∧ e3. (170)

Notice that UP is given by the first three terms in the last equality in (169).

(iv) For ζ4

UH = Uζ4 −Uτ(ζ4)

= UP + d
[

κ

γ
(ζ4 eI)eI

]
= 2κ sin θ sin φ e0 ∧ e1 + 2κe−b cos θ sin φ e0 ∧ e2 + 2κe−b cos φ e0 ∧ e3

+d
(
−κr

γ
cos φ e2 +

κr
γ

cos θ sin φ e3
)

, (171)

JH = dUH = JP = Jζ4 − Jτ(ζ4)

= 2κ
e−2b

r
cos θ sin φ

(
− 1 + e2b − r

da
dr

+ r
db
dr

)
e0 ∧ e1 ∧ e2

+2κ
e−2b

r
cos φ

(
− 1 + e2b − r

da
dr

+ r
db
dr

)
e0 ∧ e1 ∧ e3. (172)

Notice that UP is given by the first three terms in the last equality in (171).

7.2. Friedmann–Lemaitre–Robertson–Walker Cosmology

For the sake of simplicity, let us consider Lorentzian (σ = −1) spacetimes in four di-
mensions with homogeneous and isotropic spacelike slices. In local coordinates
xµ = (x0, x1, x2, x3) = (t, r, θ, φ) adapted to these symmetries, the general form of the met-
ric is given by the FLRW metric

g = −dt⊗ dt + a2(t)
(

1
1− kr2 dr⊗ dr + r2dθ ⊗ dθ + r2 sin2 θ dφ⊗ dφ

)
, (173)

where k = 0, 1,−1 is the spatial curvature and a(t) is the scale factor. Do not confuse k with
κ in the expressions of this Subsection.

From (173), we read off the orthonormal frame given by

e0 = dt, e1 =
a(t)√

1− kr2
dr, e2 = a(t)rdθ, e3 = a(t)r sin θdφ. (174)
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Since the spatial part of (173) is maximally symmetric, it has associated the following six
Killing vector fields [47]

χ1 =
√

1− kr2
(

sin θ cos φ
∂

∂r
+

1
r

cos θ cos φ
∂

∂θ
− 1

r
csc θ sin φ

∂

∂φ

)
,

χ2 =
√

1− kr2
(

sin θ sin φ
∂

∂r
+

1
r

cos θ sin φ
∂

∂θ
+

1
r

csc θ cos φ
∂

∂φ

)
,

χ3 =
√

1− kr2
(

cos θ
∂

∂r
− 1

r
sin θ

∂

∂θ

)
,

ζ1 = sin φ
∂

∂θ
+ cot θ cos φ

∂

∂φ
,

ζ2 = cos φ
∂

∂θ
− cot θ sin φ

∂

∂φ
,

ζ3 =
∂

∂φ
. (175)

The Lie algebra of the Killing vector fields (ζAB = −ζBA) is the following:

[ζAB, ζCD] = gACζBD − gBCζAD + gBDζAC − gADζBC, (176)

with (gAB) = diag(k, 1, 1, 1); ζ01 = χ1, ζ02 = χ2, ζ03 = χ3, ζ12 = −ζ3, ζ23 = ζ1, and
ζ31 = −ζ2. The indices A, B, C, D, . . . take the values 0, 1, 2, 3. The corresponding isometry
group is SO(4) for k > 0 (de Sitter, in physicists’ terminology), SO(3, 1) for k < 0 (anti-de
Sitter, in physicists’ terminology), and E(3) = SO(3)nR3 (Euclidean) for k = 0.

7.2.1. Palatini Lagrangian
Half Off-Shell Potentials and Currents for Diffeomorphisms Generated by the Killing Vector Fields

(i) For the Killing vector field χ1, the potential (11) acquires the form

Uχ1 = 2κ

√
1− kr2

r
cot θ sin φ e0 ∧ e1 − 2κ

(
1− kr2)

r
sin φ e0 ∧ e2

−2κ

(
1− kr2)

r
cos θ cos φ e0 ∧ e3 − 2κ

(
da
dt

)√
1− kr2 sin φ e1 ∧ e2

−2κ

(
da
dt

)√
1− kr2 cos θ cos φ e1 ∧ e3 + 2κ

(
da
dt

)
sin θ cos φ e2 ∧ e3, (177)

and thus

Jχ1 = dUχ1

= −2κ

√
1− kr2

r2a
sin φ

[
csc2 θ + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]
e0 ∧ e1 ∧ e2

−2κ

√
1− kr2

r2a
cos φ

×
[
− cot θ csc θ + 2kr2 cos θ + 2r2

(
da
dt

)2
cos θ + r2a

d2a
dt2 cos θ

]
e0 ∧ e1 ∧ e3

+
2κ

r2a
sin θ cos φ

[
−2 + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]
e0 ∧ e2 ∧ e3. (178)
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(ii) For the Killing vector field χ2, the potential (11) becomes

Uχ2 = −2κ

√
1− kr2

r
cot θ cos φ e0 ∧ e1 + 2κ

(
1− kr2)

r
cos φ e0 ∧ e2

−2κ

(
1− kr2)

r
cos θ sin φ e0 ∧ e3 + 2κ

(
da
dt

)√
1− kr2 cos φ e1 ∧ e2

−2κ

(
da
dt

)√
1− kr2 cos θ sin φ e1 ∧ e3+2κ

(
da
dt

)
sin θ sin φ e2 ∧ e3, (179)

and so

Jχ2 = dUχ2

= 2κ

√
1− kr2

r2a
cos φ

[
csc2 θ + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]
e0 ∧ e1 ∧ e2

−2κ

√
1− kr2

r2a
sin φ

×
[
− cot θ csc θ + 2kr2 cos θ + 2r2

(
da
dt

)2
cos θ + r2a

d2a
dt2 cos θ

]
e0 ∧ e1 ∧ e3

+
2κ

r2a
sin θ sin φ

[
−2 + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]
e0 ∧ e2 ∧ e3. (180)

(iii) For the Killing vector field χ3, the potential (11) acquires the form

Uχ3 = 2κ

(
1− kr2)

r
sin θ e0 ∧ e3 + 2κ

(
da
dt

)√
1− kr2 sin θ e1 ∧ e3

+2κ

(
da
dt

)
cos θ e2 ∧ e3, (181)

and then

Jχ3 = dUχ3

= 2κ

√
1− kr2

a
sin θ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e1 ∧ e3

+
2κ

r2a
cos θ

[
−2 + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]
e0 ∧ e2 ∧ e3. (182)

(iv) For the Killing vector field ζ1, the potential (11) becomes

Uζ1 = −2κ cos θ cot θ cos φ e0 ∧ e1 + 2κ
√

1− kr2 cos θ cos φ e0 ∧ e2

−2κ
√

1− kr2 sin φ e0 ∧ e3 + 2κ

(
da
dt

)
r cos θ cos φ e1 ∧ e2

−2κ

(
da
dt

)
r sin φ e1 ∧ e3, (183)
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and therefore

Jζ1 = dUζ1

=
2κ

ra
cos φ

×
[

cot θ csc θ + 2kr2 cos θ + 2r2
(

da
dt

)2
cos θ + r2a

(
d2a
dt2

)
cos θ

]
e0 ∧ e1 ∧ e2

−2κ

ra
sin φ

[
−1− cot2 θ + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]
e0 ∧ e1 ∧ e3. (184)

(v) For the Killing vector field ζ2, the potential (11) acquires the form

Uζ2 = 2κ cos θ cot θ sin φ e0 ∧ e1 − 2κ
√

1− kr2 cos θ sin φ e0 ∧ e2

−2κ
√

1− kr2 cos φ e0 ∧ e3 − 2κ

(
da
dt

)
r cos θ sin φ e1 ∧ e2

−2κ

(
da
dt

)
r cos φ e1 ∧ e3, (185)

and therefore

Jζ2 = dUζ2

= −2κ

ra
sin φ

×
[

cot θ csc θ + 2kr2 cos θ + 2r2
(

da
dt

)2
cos θ + r2a

(
d2a
dt2

)
cos θ

]
e0 ∧ e1 ∧ e2

−2κ

ra
cos φ

[
−1− cot2 θ + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]
e0 ∧ e1 ∧ e3. (186)

(vi) For the Killing vector field ζ3, the potential (11) becomes

Uζ3 = −2κ cos θ e0 ∧ e1 + 2κ
√

1− kr2 sin θ e0 ∧ e2 + 2κ

(
da
dt

)
r sin θ e1 ∧ e2, (187)

and therefore

Jζ3 = dUζ3

= 2κ
r
a

sin θ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e1 ∧ e2. (188)

Half Off-Shell Potentials and Currents for Local SO(3, 1) Transformations Induced by the Killing
Vector Fields

(i) For the gauge parameter τ I J(χ1), the potential (21) acquires the form

Uτ(χ1) = 2κ

√
1− kr2

r
cot θ sin φ e0 ∧ e1 − 2κ

r
sin φ e0 ∧ e2 − 2κ

r
cos θ cos φ e0 ∧ e3, (189)
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and therefore

Jτ(χ1)
= dUτ(χ1)

= −2κ

√
1− kr2

r2a
csc2 θ sin φ e0 ∧ e1 ∧ e2

+2κ

√
1− kr2

r2a
cot θ csc θ cos φ e0 ∧ e1 ∧ e3

− 4κ

r2a
sin θ cos φ e0 ∧ e2 ∧ e3. (190)

(ii) For the gauge parameter τ I J(χ2), the potential (21) becomes

Uτ(χ2)
= −2κ

√
1− kr2

r
cot θ cos φ e0 ∧ e1 +

2κ

r
cos φ e0 ∧ e2

−2κ

r
cos θ sin φ e0 ∧ e3, (191)

and therefore

Jτ(χ2)
= dUτ(χ2)

= 2κ

√
1− kr2

r2a
csc2 θ cos φ e0 ∧ e1 ∧ e2

+2κ

√
1− kr2

r2a
cot θ csc θ sin φ e0 ∧ e1 ∧ e3

− 4κ

r2a
sin θ sin φ e0 ∧ e2 ∧ e3. (192)

(iii) For the gauge parameter τ I J(χ3), the potential (21) acquires the form

Uτ(χ3)
=

2κ

r
sin θ e0 ∧ e3, (193)

and therefore

Jτ(χ3)
= dUτ(χ3)

= − 4κ

r2a
cos θ e0 ∧ e2 ∧ e3. (194)

(iv) For the gauge parameter τ I J(ζ1), the potential (21) becomes

Uτ(ζ1)
= −2κ csc θ cos φ e0 ∧ e1, (195)

and therefore

Jτ(ζ1)
= dUτ(ζ1)

=
2κ

ra
cot θ csc θ cos φ e0 ∧ e1 ∧ e2 +

2κ

ra
csc2 θ sin φ e0 ∧ e1 ∧ e3. (196)

(v) For the gauge parameter τ I J(ζ2), the potential (21) acquires the form

Uτ(ζ2)
= 2κ csc θ sin φ e0 ∧ e1, (197)

and therefore

Jτ(ζ2)
= dUτ(ζ2)

= −2κ

ra
cot θ csc θ sin φ e0 ∧ e1 ∧ e2 +

2κ

ra
csc2 θ cos φ e0 ∧ e1 ∧ e3. (198)
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(vi) For the gauge parameter τ I J(ζ3), the potential (21) and its current become

Uτ(ζ3)
= 0, Jτ(ζ3)

= 0. (199)

This is so because τ I J(ζ3) vanishes.

7.2.2. Holst Lagrangian
Half Off-Shell Potentials and Currents for Diffeomorphisms Generated by the Killing Vector Fields

(i) For the Killing vector field χ1, the potential (128) acquires the form

Uχ1 = 2κ

√
1− kr2

r
cot θ sin φ e0 ∧ e1 − 2κ

(
1− kr2)

r
sin φ e0 ∧ e2

−2κ

(
1− kr2)

r
cos θ cos φ e0 ∧ e3 − 2κ

(
da
dt

)√
1− kr2 sin φ e1 ∧ e2

−2κ

(
da
dt

)√
1− kr2 cos θ cos φ e1 ∧ e3 + 2κ

(
da
dt

)
sin θ cos φ e2 ∧ e3

− 2κ

γr

√
1− kr2 cot θ sin φ e2 ∧ e3 − 2κ

γr

(
1− kr2

)
sin φ e1 ∧ e3

+
2κ

γr

(
1− kr2

)
cos θ cos φ e1 ∧ e2 − 2κ

γ

(
da
dt

)√
1− kr2 sin φ e0 ∧ e3

+
2κ

γ

(
da
dt

)√
1− kr2 cos θ cos φ e0 ∧ e2 +

2κ

γ

(
da
dt

)
sin θ cos φ e0 ∧ e1, (200)

and thus

Jχ1 = dUχ1

=

{
−2κ

√
1− kr2

r2a
sin φ

[
csc2 θ + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]

+
4κ

γra

(
da
dt

)
cos θ cos φ

}
e0 ∧ e1 ∧ e2 +

{
−2κ

√
1− kr2

r2a
cos φ

×
[
− cot θ csc θ + 2kr2 cos θ + 2r2

(
da
dt

)2
cos θ + r2a

d2a
dt2 cos θ

]

− 4κ

γra

(
da
dt

)
sin φ

}
e0 ∧ e1 ∧ e3

+

{
2κ

r2a
sin θ cos φ

[
−2 + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]

− 4κ

γra

(
da
dt

)√
1− kr2 cot θ sin φ

}
e0 ∧ e2 ∧ e3

− 2κ

γr2a

(
1− 2kr2

)
cot θ sin φ e1 ∧ e2 ∧ e3. (201)
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(ii) For the Killing vector field χ2, the potential (128) becomes

Uχ2 = −2κ

√
1− kr2

r
cot θ cos φ e0 ∧ e1 + 2κ

(
1− kr2)

r
cos φe0 ∧ e2

−2κ

(
1− kr2)

r
cos θ sin φ e0 ∧ e3 + 2κ

(
da
dt

)√
1− kr2 cos φ e1 ∧ e2

−2κ

(
da
dt

)√
1− kr2 cos θ sin φ e1 ∧ e3 + 2κ

(
da
dt

)
sin θ sin φ e2 ∧ e3

+
2κ

γr

√
1− kr2 cot θ cos φ e2 ∧ e3 +

2κ

γr

(
1− kr2

)
cos φe1 ∧ e3

+
2κ

γr

(
1− kr2

)
cos θ sin φ e1 ∧ e2 +

2κ

γ

(
da
dt

)√
1− kr2 cos φ e0 ∧ e3

+
2κ

γ

(
da
dt

)√
1− kr2 cos θ sin φ e0 ∧ e2 +

2κ

γ

(
da
dt

)
sin θ sin φ e0 ∧ e1, (202)

and so

Jχ2 = dUχ2

=

{
2κ

√
1− kr2

r2a
cos φ

[
csc2 θ + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]

+
4κ

γra

(
da
dt

)
cos θ sin φ

}
e0 ∧ e1 ∧ e2 +

{
−2κ

√
1− kr2

r2a
sin φ

×
[
− cot θ csc θ + 2kr2 cos θ + 2r2

(
da
dt

)2
cos θ + r2a

d2a
dt2 cos θ

]

+
4κ

γra

(
da
dt

)
cos φ

}
e0 ∧ e1 ∧ e3

+

{
2κ

r2a
sin θ sin φ

[
−2 + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]

+
4κ

γra

(
da
dt

)√
1− kr2 cot θ cos φ

}
e0 ∧ e2 ∧ e3

+
2κ

γr2a

(
1− 2kr2

)
cot θ cos φ e1 ∧ e2 ∧ e3. (203)

(iii) For the Killing vector field χ3, the potential (128) acquires the form

Uχ3 = 2κ

(
1− kr2)

r
sin θ e0 ∧ e3 + 2κ

(
da
dt

)√
1− kr2 sin θ e1 ∧ e3

+2κ

(
da
dt

)
cos θ e2 ∧ e3 − 2κ

γr

(
1− kr2

)
sin θ e1 ∧ e2

−2κ

γ

(
da
dt

)√
1− kr2 sin θ e0 ∧ e2 +

2κ

γ

(
da
dt

)
cos θ e0 ∧ e1, (204)
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and then

Jχ3 = dUχ3

= − 4κ

aγr

(
da
dt

)
sin θ e0 ∧ e1 ∧ e2

+2κ

√
1− kr2

a
sin θ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e1 ∧ e3

+
2κ

r2a
cos θ

[
−2 + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]
e0 ∧ e2 ∧ e3. (205)

(iv) For the Killing vector field ζ1, the potential (128) becomes

Uζ1 = −2κ cos θ cot θ cos φ e0 ∧ e1 + 2κ
√

1− kr2 cos θ cos φ e0 ∧ e2

−2κ
√

1− kr2 sin φ e0 ∧ e3 + 2κ

(
da
dt

)
r cos θ cos φ e1 ∧ e2

−2κ

(
da
dt

)
r sin φ e1 ∧ e3 +

2κ

γ
cos θ cot θ cos φ e2 ∧ e3

+
2κ

γ

√
1− kr2 cos θ cos φ e1 ∧ e3 +

2κ

γ

√
1− kr2 sin φ e1 ∧ e2

+
2κ

γ

(
da
dt

)
r cos θ cos φ e0 ∧ e3 +

2κ

γ

(
da
dt

)
r sin φ e0 ∧ e2, (206)

and therefore

Jζ1 = dUζ1

=
2κ

ra
cos φ

[
cot θ csc θ + 2kr2 cos θ + 2r2

(
da
dt

)2
cos θ + r2a

d2a
dt2 cos θ

]
e0 ∧ e1 ∧ e2

−2κ

ra
sin φ

[
−1− cot2 θ + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]
e0 ∧ e1 ∧ e3

+
4κ

γa

(
da
dt

)
csc θ cos φ e0 ∧ e2 ∧ e3 +

4κ

γra

√
1− kr2 csc θ cos φ e1 ∧ e2 ∧ e3. (207)

(v) For the Killing vector field ζ2, the potential (128) acquires the form

Uζ2 = 2κ cos θ cot θ sin φ e0 ∧ e1 − 2κ
√

1− kr2 cos θ sin φ e0 ∧ e2

−2κ
√

1− kr2 cos φ e0 ∧ e3 − 2κ

(
da
dt

)
r cos θ sin φ e1 ∧ e2

−2κ

(
da
dt

)
r cos φ e1 ∧ e3 − 2κ

γ
cos θ cot θ sin φ e2 ∧ e3

−2κ

γ

√
1− kr2 cos θ sin φ e1 ∧ e3 +

2κ

γ

√
1− kr2 cos φ e1 ∧ e2

−2κ

γ

(
da
dt

)
r cos θ sin φ e0 ∧ e3 +

2κ

γ

(
da
dt

)
r cos φ e0 ∧ e2, (208)
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and therefore

Jζ2 = dUζ2

= −2κ

ra
sin φ

×
[

cot θ csc θ + 2kr2 cos θ + 2r2
(

da
dt

)2
cos θ + r2a

d2a
dt2 cos θ

]
e0 ∧ e1 ∧ e2

−2κ

ra
cos φ

[
−1− cot2 θ + 2kr2 + 2r2

(
da
dt

)2
+ r2a

d2a
dt2

]
e0 ∧ e1 ∧ e3

− 4κ

γa

(
da
dt

)
csc θ sin φ e0 ∧ e2 ∧ e3 − 4κ

γra

√
1− kr2 csc θ sin φ e1 ∧ e2 ∧ e3. (209)

(vi) For the Killing vector field ζ3, the potential (128) becomes

Uζ3 = −2κ cos θ e0 ∧ e1 + 2κ
√

1− kr2 sin θ e0 ∧ e2 + 2κ

(
da
dt

)
r sin θ e1 ∧ e2

+
2κ

γ
cos θ e2 ∧ e3 +

2κ

γ

√
1− kr2 sin θ e1 ∧ e3 +

2κ

γ

(
da
dt

)
r sin θ e0∧ e3, (210)

and therefore

Jζ3 = dUζ3

= 2κ
r
a

sin θ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e1 ∧ e2. (211)

Notice that the potentials and currents that depend on the Immirzi parameter will
still depend on it even in the ‘on-shell’ case, except for the current (211), which actually
coincides with the current (188) for the Palatini Lagrangian. This is a consequence of
the fact that the terms on the second row of the potential (210) (that involve the Immirzi
parameter) can be cast as the exact form d(κγ−1ar sin θ e3) and hence do not contribute to
the current (211).

Half Off-Shell Potentials and Currents for Local SO(3, 1) Transformations Induced by the Killing
Vector Fields

(i) For the gauge parameter τ I J(χ1), the potential (62) acquires the form

Uτ(χ1)
= 2κ

√
1− kr2

r
cot θ sin φ e0 ∧ e1 − 2κ

r
sin φ e0 ∧ e2 − 2κ

r
cos θ cos φ e0 ∧ e3

− 2κ

γr

√
1− kr2 cot θ sin φ e2 ∧ e3 − 2κ

γr
sin φ e1 ∧ e3 +

2κ

γr
cos θ cos φ e1 ∧ e2, (212)

and therefore

Jτ(χ1)
= dUτ(χ1)

=

[
−2κ

√
1− kr2

r2a
csc2 θ sin φ +

4κ

γra

(
da
dt

)
cos θ cos φ

]
e0 ∧ e1 ∧ e2

+

[
2κ

√
1− kr2

r2a
cot θ csc θ cos φ− 4κ

γra

(
da
dt

)
sin φ

]
e0 ∧ e1 ∧ e3

+

[
− 4κ

r2a
sin θ cos φ− 4κ

γra

(
da
dt

)√
1− kr2 cot θ sin φ

]
e0 ∧ e2 ∧ e3

− 2κ

γr2a

(
1− 2kr2

)
cot θ sin φ e1 ∧ e2 ∧ e3. (213)
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(ii) For the gauge parameter τ I J(χ2), the potential (62) becomes

Uτ(χ2)
= −2κ

√
1− kr2

r
cot θ cos φ e0 ∧ e1 +

2κ

r
cos φ e0 ∧ e2 − 2κ

r
cos θ sin φ e0 ∧ e3

+
2κ

γr

√
1− kr2 cot θ cos φ e2 ∧ e3 +

2κ

γr
cos φ e1 ∧ e3 +

2κ

γr
cos θ sin φ e1 ∧ e2, (214)

and therefore

Jτ(χ2)
= dUτ(χ2)

=

[
2κ

√
1− kr2

r2a
csc2 θ cos φ +

4κ

γra

(
da
dt

)
cos θ sin φ

]
e0 ∧ e1 ∧ e2

+

[
2κ

√
1− kr2

r2a
cot θ csc θ sin φ +

4κ

γra

(
da
dt

)
cos φ

]
e0 ∧ e1 ∧ e3

+

[
− 4κ

r2a
sin θ sin φ +

4κ

γra

(
da
dt

)√
1− kr2 cot θ cos φ

]
e0 ∧ e2 ∧ e3

+
2κ

γr2a

(
1− 2kr2

)
cot θ cos φ e1 ∧ e2 ∧ e3. (215)

(iii) For the gauge parameter τ I J(χ3), the potential (62) acquires the form

Uτ(χ3)
=

2κ

r
sin θ e0 ∧ e3 − 2κ

γr
sin θ e1 ∧ e2, (216)

and therefore

Jτ(χ3)
= dUτ(χ3)

= − 4κ

r2a
cos θ e0 ∧ e2 ∧ e3 − 4κ

γra

(
da
dt

)
sin θ e0 ∧ e1 ∧ e2. (217)

(iv) For the gauge parameter τ I J(ζ1), the potential (62) becomes

Uτ(ζ1)
= −2κ csc θ cos φ e0 ∧ e1 +

2κ

γ
csc θ cos φ e2 ∧ e3, (218)

and therefore

Jτ(ζ1)
= dUτ(ζ1)

=
2κ

ra
cot θ csc θ cos φ e0 ∧ e1 ∧ e2 +

2κ

ra
csc2 θ sin φ e0 ∧ e1 ∧ e3

+
4κ

γa

(
da
dt

)
csc θ cos φ e0 ∧ e2 ∧ e3 +

4κ

γra

√
1− kr2 csc θ cos φ e1 ∧ e2 ∧ e3.

(219)

(v) For the gauge parameter τ I J(ζ2), the potential (62) acquires the form

Uτ(ζ2)
= 2κ csc θ sin φ e0 ∧ e1 − 2κ

γ
csc θ sin φ e2 ∧ e3, (220)

and therefore

Jτ(ζ2) = dUτ(ζ2)

= −2κ

ra
cot θ csc θ sin φ e0 ∧ e1 ∧ e2 +

2κ

ra
csc2 θ cos φ e0 ∧ e1 ∧ e3

− 4κ

γa

(
da
dt

)
csc θ sin φ e0 ∧ e2 ∧ e3 − 4κ

γra

√
1− kr2 csc θ sin φ e1 ∧ e2 ∧ e3. (221)
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(vi) For the gauge parameter τ I J(ζ3), the potential (62) and its current become

Uτ(ζ3)
= 0, Jτ(ζ3)

= 0. (222)

This is so because τ I J(ζ3) vanishes.

In this case, all the nonvanishing potentials and currents depend on the Immirzi
parameter, which also holds in the ‘on-shell’ case.

Half Off-Shell Potentials and Currents (129) and (130)

(i) For χ1

UH = Uχ1 −Uτ(χ1)

= UP + d
[

κ

γ
(χ1 eI)eI

]
= 2κkr sin φe0 ∧ e2 + 2κkr cos θ cos φe0 ∧ e3 − 2κ

(
da
dt

)√
1− kr2 sin φ e1 ∧ e2

−2κ

(
da
dt

)√
1− kr2 cos θ cos φ e1 ∧ e3 + 2κ

(
da
dt

)
sin θ cos φ e2 ∧ e3

+d
(

κa
γ

sin θ cos φ e1 +
κa
γ

√
1− kr2 cos θ cos φ e2 − κa

γ

√
1− kr2 sin φ e3

)
,

(223)

JH = = dUH = JP = Jχ1 − Jτ(χ1)

= − 2κ

a

√
1− kr2 sin φ

[
2k + 2

(
da
dt

)2

+ a
d2a
dt2

]
e0 ∧ e1 ∧ e2

− 2κ

a

√
1− kr2 cos θ cos φ

[
2k + 2

(
da
dt

)2

+ a
d2a
dt2

]
e0 ∧ e1 ∧ e3

+
2κ

a
sin θ cos φ

[
2k + 2

(
da
dt

)2

+ a
d2a
dt2

]
e0 ∧ e2 ∧ e3. (224)

Notice that UP is given by the first five terms in the last equality in (223).

(ii) For χ2

UH = Uχ2 −Uτ(χ2)

= UP + d
[

κ

γ
(χ2 eI)eI

]
= −2κkr cos φ e0 ∧ e2 + 2κkr cos θ sin φ e0 ∧ e3 + 2κ

(
da
dt

)√
1− kr2 cos φ e1 ∧ e2

−2κ

(
da
dt

)√
1− kr2 cos θ sin φ e1 ∧ e3 + 2κ

(
da
dt

)
sin θ sin φ e2 ∧ e3

+d
(

κa
γ

sin θ sin φ e1 +
κa
γ

√
1− kr2 cos θ sin φ e2 +

κa
γ

√
1− kr2 cos φ e3

)
,

(225)

JH = = dUH = JP = Jχ2 − Jτ(χ2)

=
2κ

a

√
1− kr2 cos φ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e1 ∧ e2

−2κ

a

√
1− kr2 cos θ sin φ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e1 ∧ e3

+
2κ

a
sin θ sin φ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e2 ∧ e3. (226)

Notice that UP is given by the first five terms in the last equality in (225).
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(iii) For χ3

UH = Uχ3 −Uτ(χ3)

= UP + d
[

κ

γ
(χ3 eI)eI

]
= −2κkr sin θ e0 ∧ e3 + 2κ

(
da
dt

)√
1− kr2 sin θ e1 ∧ e3 + 2κ

(
da
dt

)
cos θ e2 ∧ e3

+d
(

κa
γ

cos θ e1 − κa
γ

√
1− kr2 sin θ e2

)
, (227)

JH = dUH = JP = Jχ3 − Jτ(χ3)

=
2κ

a

√
1− kr2 sin θ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e1 ∧ e3

+
2κ

a
cos θ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e2 ∧ e3. (228)

Notice that UP is given by the first three terms of the last equality in (227).

(iv) For ζ1

UH = Uζ1 −Uτ(ζ1)

= UP + d
[

κ

γ
(ζ1 eI)eI

]
= 2κ sin θ cos φe0 ∧ e1 + 2κ

√
1− kr2 cos θ cos φ e0 ∧ e2 − 2κ

√
1− kr2 sin φe0 ∧ e3

+2κ

(
da
dt

)
r cos θ cos φ e1 ∧ e2 − 2κ

(
da
dt

)
r sin φ e1 ∧ e3

+d
(

κar
γ

sin φ e2 +
κar
γ

cos θ cos φ e3
)

, (229)

JH = dUH = JP = Jζ1 − Jτ(ζ1)

= 2κ
r
a

cos θ cos φ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e1 ∧ e2

−2κ
r
a

sin φ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e1 ∧ e3. (230)

Notice that UP is given by the first five terms in the last equality in (229).
(v) For ζ2

UH = Uζ2 −Uτ(ζ2)

= UP + d
[

κ

γ
(ζ2 eI)eI

]
= −2κ sin θ sin φ e0 ∧ e1 − 2κ

√
1− kr2 cos φ e0 ∧ e3

−2κ
√

1− kr2 cos θ sin φ e0 ∧ e2 − 2κ

(
da
dt

)
r cos θ sin φ e1 ∧ e2

−2κ

(
da
dt

)
r cos φ e1 ∧ e3 + d

(
κar
γ

cos φ e2 − κar
γ

cos θ sin φ e3
)

, (231)

JH = dUH = JP = Jζ2 − Jτ(ζ2)

= −2κ
r
a

cos θ sin φ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e1 ∧ e2

−2κ
r
a

cos φ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e1 ∧ e3. (232)
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Notice that UP is given by the first five terms in the last equality in (231).

(vi) For ζ3

UH = Uζ3

= UP + d
[

κ

γ
(ζ3 eI)eI

]
= −2κ cos θ e0 ∧ e1 + 2κ

√
1− kr2 sin θ e0 ∧ e2

+2κ

(
da
dt

)
r sin θ e1 ∧ e2 + d

(
κar
γ

sin θ e3
)

, (233)

JH = dUH = JP = Jζ3

= 2κ
r
a

sin θ

[
2k + 2

(
da
dt

)2
+ a

d2a
dt2

]
e0 ∧ e1 ∧ e2. (234)

Notice that UP is given by the first three terms in the last equality in (233).

8. Conclusions

In this paper, we define off-shell Noether currents and potentials for the n-dimensional
Palatini Lagrangian and the four-dimensional Holst Lagrangian, which embody first-order
formulations of general relativity with a cosmological constant. To derive them, we
implement a new theoretical framework that uses off-shell Noether identities satisfied by
the variational derivatives of each formulation, which, combined with the variation of the
Lagrangian under the infinitesimal versions of the underlying gauge symmetries, lead
to the appropriate identification of these off-shell Noether currents and potentials. Two
remarkable aspects of our framework are that the whole procedure is carried out off-shell
and that the resulting Noether currents are off-shell conserved too. More precisely, for
the n-dimensional Palatini Lagrangian, we derive off-shell expressions for the Noether
currents and potentials associated to diffeomorphisms generated by arbitrary vector fields
and local SO(n− 1, 1) or SO(n) transformations. The resulting off-shell Noether current
and potential associated to diffeomorphisms can be regarded as the first-order version
of those reported in [12] for general relativity in the metric second-order formalism. In
the case of the Holst Lagrangian, the off-shell Noether currents and potentials, for both
diffeomorphisms and local SO(3, 1) or SO(4) transformations, are affected by the Immirzi
parameter in a non-trivial way. Similar to the n-dimensional Palatini Lagrangian, the
resulting off-shell Noether current and potential associated to diffeomorphisms can also be
regarded as a first-order version of those reported in [12] for general relativity in the metric
second-order formalism. In addition, we compute the associated off-shell currents for
the so called ‘improved diffeomorphisms’ and for the ‘generalization of local translations’
reported in [33], showing that they identically vanish for both first-order formulations of
general relativity. However, we also show that the off-shell Noether current and potential
associated to diffeomorphisms emerge from these symmetries.

For both the n-dimensional Palatini and Holst Lagrangians, we also study how these
off-shell Noether currents and potentials simplify in a spacetime with symmetries generated
by Killing vector fields. In particular, for the n-dimensional Palatini Lagrangian, we show
that the action of a Killing vector field on the orthonormal frame and the connection
equals a local SO(n− 1, 1) or SO(n) transformation plus a trivial gauge transformation
that only affects the infinitesimal transformation of the connection. The resulting off-
shell Noether currents and potentials for this effective gauge transformation are also
reported, and they can be expressed, respectively, as the difference of the off-shell Noether
currents and potentials associated to Killing vectors and their induced SO(n) or SO(n− 1, 1)
transformations. Analogous results follow from the Holst Lagrangian.

To simplify things a bit, we consider the ‘half off-shell’ case, which is defined by the
conditions E 6= 0 and EI J = 0 (thus, we work on solutions of the equation of motion for the
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connection) for both formulations of general relativity and thus the aforementioned trivial
transformation of the connection is set to zero. We show that the ‘half off-shell’ Noether
currents and potentials for diffeomorphisms and local SO(3, 1) or SO(4) transformations
for the Holst Lagrangian generically depend on the Immirzi parameter, which is also true in
the ‘on-shell’ case. This result is remarkable, since such a contribution is not expected from
the point of view of the second-order formalism for general relativity in terms of the tetrad,
which is what the Holst Lagrangian collapses to when the condition EI J = 0 is satisfied
and does not depend on the Immirzi parameter whatsoever. Furthermore, in the ‘half
off-shell’ case, the Noether potential associated to the effective gauge transformation for the
Holst Lagrangian differs from that for the Palatini Lagrangian by an exact differential form
depending on the Immirzi parameter. To illustrate our approach, we explicitly compute
the ‘half off-shell’ Noether currents and potentials discussed above, for Killing vector
fields, their induced local SO(3, 1) transformations, and the associated effective gauge
transformations, in four-dimensional static spherically symmetric and FLRW spacetimes,
for both Palatini and Holst Lagrangians. For the Holst Lagrangian, the resulting Noether
currents and potentials generically depend on the Immirzi parameter, except for the
Noether current associated to the effective gauge transformation.

Although we do not consider adding boundary terms to the Lagrangians in this
paper, they can be handled with our theoretical techniques, and we expect the addition
of boundary terms to the action principles defined by the Palatini and Holst Lagrangians
generically contribute to the off-shell Noether currents and their associated potentials. The
understanding of such terms in gravity is essential to appropriately define quantities such
as asymptotic charges and black hole entropy, and will be one of the main focuses of our
forthcoming studies. In addition, those studies might help to clarify the role of the Immirzi
parameter in the definition of conserved charges and entropy as well. We expect to confront
our results with those obtained in the literature following alternative approaches within
the first-order formalism [13,14,35–37,41,42,48–50].

Even though we construct the off-shell Noether currents and potentials for general
relativity in the first-order formalism, it is obvious that the same theoretical framework can
be extended to any gauge theory and, in particular, to any diffeomorphism invariant theory
of gravity in the first-order formalism. In particular, similar off-shell Noether currents and
potentials can be obtained using the formalism developed in this paper for f (R) theories
[39], matter fields coupled to general relativity [38], and any other alternative theory of
gravity such as Lovelock gravity [51] in the first-order formalism. Moreover, it would
also be interesting to study other gravitational models within the first-order formalism
including some background structure into play, such as unimodular gravity [52,53] and
extensions thereof.
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14. Adami, H.; Setare, M.R.; Çağrı Şişman, T.; Tekin, B. Conserved charges in extended theories of gravity. Phys. Rep. 2019, 834–835,

1. [CrossRef]
15. Holst, S. Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action. Phys. Rev. D 1996, 53, 5966. [CrossRef]
16. Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004.
17. Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge Monographs on Mathematical Physics; Cambridge

University Press: Cambridge, UK, 2007.
18. Perez, A. The Spin-Foam Approach to Quantum Gravity. Living Rev. Rel. 2013, 16, 3. [CrossRef] [PubMed]
19. Rovelli, C.; Vidotto, F. Covariant Loop Quantum Gravity; Cambridge Monographs on Mathematical Physics; Cambridge University

Press: Cambridge, UK, 2014.
20. Barbero, J.F. Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D 1995, 51, 5507. [CrossRef]
21. Immirzi, G. Real and complex connections for canonical gravity. Class. Quantum Grav. 1997, 14, L177. [CrossRef]
22. Freidel, L.; Minic, D.; Takeuchi, T. Quantum gravity, torsion, parity violation, and all that. Phys. Rev. D 2005, 7, 104002. [CrossRef]
23. Mercuri, S. Fermions in the Ashtekar-Barbero connection formalism for arbitrary values of the Immirzi parameter. Phys. Rev. D

2006, 73, 084016. [CrossRef]
24. Perez, A.; Rovelli, C. Physical effects of the Immirzi parameter in loop quantum gravity. Phys. Rev. D 2006, 73, 044013. [CrossRef]
25. Bojowald, M.; Das, R. Canonical gravity with fermions. Phys. Rev. D 2008, 78, 064009. [CrossRef]
26. Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nucl. Phys. B 1995, 442, 593. [CrossRef]
27. Ashtekar, A.; Lewandowski, J. Quantum theory of geometry: I. Area operators. Class. Quantum Grav. 1997, 14, A55. [CrossRef]
28. Rovelli, C. Black Hole Entropy from Loop Quantum Gravity. Phys. Rev. Lett. 1996, 77, 3288. [CrossRef]
29. Ashtekar, A.; Baez, J.; Krasnov, K. Quantum Geometry of isolated horizons and black hole entropy. Adv. Theor. Math. Phys. 2000,

4, 1. [CrossRef]
30. Meissner, K.A. Black-hole entropy in loop quantum gravity. Class. Quantum Grav. 2004, 21, 5245. [CrossRef]
31. Agullo, I.; Díaz-Polo, J.; Fernández-Borja, E.; Villaseñor, E.J. Black Hole State Counting in Loop Quantum Gravity: A Number-

Theoretical Approach. Phys. Rev. Lett. 2008, 100, 211301. [CrossRef]
32. Engle, J.; Noui, K.; Perez, A. Black Hole Entropy and SU(2) Chern-Simons Theory. Phys. Rev. Lett. 2010, 105, 031302. [CrossRef]
33. Montesinos, M.; González, D.; Celada, M.; Díaz, B. Reformulation of the symmetries of first-order general relativity. Class.

Quantum Grav. 2017, 34, 205002. [CrossRef]
34. Torres del Castillo, G.F. Differentiable Manifolds: A Theoretical Physics Approach, 2nd ed.; Birkhäuser: New York, NY, USA, 2020.
35. Jacobson, T.; Mohd, A. Black hole entropy and Lorentz-diffeomorphism Noether charge. Phys. Rev. D 2015, 92, 124010. [CrossRef]
36. Corichi, A.; Rubalcava-García, I.; Vukašinac, T. Actions, topological terms and boundaries in first-order gravity: A review. Int. J.

Mod. Phys. D 2016, 25, 1630011. [CrossRef]
37. Oliveri, R.; Speziale, S. Boundary effects in General Relativity with tetrad variables. Gen. Rel. Grav. 2020, 52, 1. [CrossRef]
38. Montesinos, M.; Gonzalez, D.; Celada, M. The gauge symmetries of first-order general relativity with matter fields. Class.

Quantum Grav. 2018, 35, 205005. [CrossRef]
39. Montesinos, M.; Romero, R.; Gonzalez, D. The gauge symmetries of f (R) gravity with torsion in the Cartan formalism. Class.

Quantum Grav. 2020, 37, 045008. [CrossRef]

http://doi.org/10.1007/BF01459410
http://dx.doi.org/10.1080/00411457108231446
http://dx.doi.org/10.1103/PhysRevD.50.846
http://dx.doi.org/10.1088/0264-9381/15/8/006
http://dx.doi.org/10.1007/978-88-470-2113-6_10
http://dx.doi.org/10.1103/PhysRevD.61.084027
http://dx.doi.org/10.1063/1.1336514
http://dx.doi.org/10.1016/S0550-3213(02)00251-1
http://dx.doi.org/10.1088/0264-9381/20/16/310
http://dx.doi.org/10.1088/1751-8121/ab1e19
http://dx.doi.org/10.1103/PhysRevLett.111.081101
http://dx.doi.org/10.1140/epjc/s10052-016-4032-x
http://dx.doi.org/10.1016/j.physrep.2019.08.003
http://dx.doi.org/10.1103/PhysRevD.53.5966
http://dx.doi.org/10.12942/lrr-2013-3
http://www.ncbi.nlm.nih.gov/pubmed/28179842
http://dx.doi.org/10.1103/PhysRevD.51.5507
http://dx.doi.org/10.1088/0264-9381/14/10/002
http://dx.doi.org/10.1103/PhysRevD.72.104002
http://dx.doi.org/10.1103/PhysRevD.73.084016
http://dx.doi.org/10.1103/PhysRevD.73.044013
http://dx.doi.org/10.1103/PhysRevD.78.064009
http://dx.doi.org/10.1016/0550-3213(95)00150-Q
http://dx.doi.org/10.1088/0264-9381/14/1A/006
http://dx.doi.org/10.1103/PhysRevLett.77.3288
http://dx.doi.org/10.4310/ATMP.2000.v4.n1.a1
http://dx.doi.org/10.1088/0264-9381/21/22/015
http://dx.doi.org/10.1103/PhysRevLett.100.211301
http://dx.doi.org/10.1103/PhysRevLett.105.031302
http://dx.doi.org/10.1088/1361-6382/aa89f3
http://dx.doi.org/10.1103/PhysRevD.92.124010
http://dx.doi.org/10.1142/S0218271816300111
http://dx.doi.org/10.1007/s10714-020-02733-8
http://dx.doi.org/10.1088/1361-6382/aae10d
http://dx.doi.org/10.1088/1361-6382/ab6272


Symmetry 2021, 13, 348 38 of 38

40. Durka, R. Immirzi parameter and Noether charges in first order gravity. J. Phys. Conf. Ser. 2012, 343, 012032. [CrossRef]
41. Freidel, L.; Geiller, M.; Pranzetti, D. Edge modes of gravity. Part I. Corner metric and Lorentz charges. J. High Energy Phys. 2020,

11, 026. [CrossRef]
42. Freidel, L.; Geiller, M.; Pranzetti, D. Edge modes of gravity. Part II. Corner metric and Lorentz charges. J. High Energy Phys. 2020,

11, 027. [CrossRef]
43. Henneaux, M.; Teitelboim, C. Quantization of Gauge Systems; Princeton University Press: Princeton, NJ, USA, 1992.
44. Benguria, R.; Cordero, P.; Teitelboim, C. Aspects of the Hamiltonian dynamics of interacting gravitational gauge and Higgs fields

with applications to spherical symmetry. Nucl. Phys. B 1977, 122, 61. [CrossRef]
45. Corichi, A.; Gomberoff, A. Black holes in de Sitter space: Masses, energies, and entropy bounds. Phys. Rev. D 2004, 69, 064016.

[CrossRef]
46. Aros, R.; Contreras, M.; Olea, R.; Troncoso, R.; Zanelli, J. Conserved Charges for Gravity with Locally Anti–de Sitter Asymptotics.

Phys. Rev. Lett. 2000, 84, 1647. [CrossRef] [PubMed]
47. Fernández-Jambrina, L.; Lazkoz, R. Geodesic behavior of sudden future singularities. Phys. Rev. D 2004, 70, 121503. [CrossRef]
48. Chakraborty, S.; Dey, R. Noether current, black hole entropy and spacetime torsion. Phys. Lett. B 2018, 786, 432–441. [CrossRef]
49. Frodden, E.; Hidalgo, D. Surface charges for gravity and electromagnetism in the first order formalism. Class. Quantum Grav.

2018, 35, 035002. [CrossRef]
50. Barnich, G.; Mao, P.; Ruzziconi, R. Conserved currents in the Palatini formulation of general relativity. arXiv 2004, arXiv:2004.15002.
51. Montesinos, M.; Romero, R.; Díaz, B. Symmetries of first-order Lovelock gravity. Class. Quantum Grav. 2018, 35, 235015.

[CrossRef]
52. Bonder, Y.; Corral, C. Unimodular Einstein-Cartan gravity: Dynamics and conservation laws. Phys. Rev. D 2018, 97, 084001.

[CrossRef]
53. Corral, C.; Bonder, Y. Symmetry algebra in gauge theories of gravity. Class. Quantum Grav. 2019, 36, 045002. [CrossRef]

http://dx.doi.org/10.1088/1742-6596/343/1/012032
http://dx.doi.org/10.1007/JHEP11(2020)026
http://dx.doi.org/10.1007/JHEP11(2020)027
http://dx.doi.org/10.1016/0550-3213(77)90426-6
http://dx.doi.org/10.1103/PhysRevD.69.064016
http://dx.doi.org/10.1103/PhysRevLett.84.1647
http://www.ncbi.nlm.nih.gov/pubmed/11017591
http://dx.doi.org/10.1103/PhysRevD.70.121503
http://dx.doi.org/10.1016/j.physletb.2018.10.027
http://dx.doi.org/10.1088/1361-6382/aa9ba5
http://dx.doi.org/10.1088/1361-6382/aaea21
http://dx.doi.org/10.1103/PhysRevD.97.084001
http://dx.doi.org/10.1088/1361-6382/aafce1

	Introduction
	Palatini Lagrangian
	Off-Shell Current and Potential for Diffeomorphisms
	Off-Shell Current and Potential for Local SO(n-1,1) or SO(n) Transformations
	Off-Shell Current for `Improved Diffeomorphisms'
	Off-Shell Current for the `Generalization of Local Translations'

	Holst Lagrangian
	Off-Shell Current and Potential for Diffeomorphisms
	Off-Shell Current and Potential for Local SO(3,1) or SO(4) Transformations
	Off-Shell Current for `Improved Diffeomorphisms'
	Off-Shell Current for the `Generalization of Local Translations'

	Off-Shell Noether Charges
	Killing Vector Fields
	Palatini Lagrangian
	Holst Lagrangian

	Half Off-Shell Case
	Examples
	Static Spherically Symmetric Spacetimes
	Palatini Lagrangian
	Holst Lagrangian

	Friedmann–Lemaitre–Robertson–Walker Cosmology
	Palatini Lagrangian
	Holst Lagrangian


	Conclusions
	References

