
symmetryS S

Article

Assessing a Multi-Objective Genetic Algorithm with a
Simulated Environment for Energy-Saving of Air Conditioning
Systems with User Preferences

Alejandro Humberto García Ruiz 1 , Salvador Ibarra Martínez 1, José Antonio Castán Rocha 1,
Jesús David Terán Villanueva 1,*, Julio Laria Menchaca 1, Mayra Guadalupe Treviño Berrones 1,
Mirna Patricia Ponce Flores 2,3 and Aurelio Alejandro Santiago Pineda 4

����������
�������

Citation: García Ruiz, A.H.; Ibarra

Martínez, S.; Castán Rocha, J.A.;

Terán Villanueva, J.D.; Laria

Menchaca, J.; Treviño Berrones, M.G.;

Ponce Flores, M.P.; Santiago Pineda,

A.A. Assessing a Multi-Objective

Genetic Algorithm with a Simulated

Environment for Energy-Saving of

Air Conditioning Systems with User

Preferences. Symmetry 2021, 13, 344.

https://doi.org/10.3390/sym13020344

Academic Editor: Jan Awrejcewic

Received: 27 January 2021

Accepted: 16 February 2021

Published: 20 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Facultad de Ingeniería, Universidad Autónoma de Tamaulipas, Tampico 89339, Mexico;
a2113330227@alumnos.uat.edu.mx (A.H.G.R.); sibarram@docentes.uat.edu.mx (S.I.M.);
jacastan@docentes.uat.edu.mx (J.A.C.R.); jlaria@docentes.uat.edu.mx (J.L.M.);
mgtrevino@docentes.uat.edu.mx (M.G.T.B.)

2 Graduate Program Division, Tecnológico Nacional de México, Madero 89440, Mexico;
D94070293@cdmadero.tecnm.mx

3 Graduate Program Division, Instituto Tecnológico de Ciudad Madero, Cd., Madero 89440, Mexico
4 Information Technology Engineering, Polytechnic University of Altamira, Altamira 89602, Mexico;

aurelio.santiago@upalt.edu.mx
* Correspondence: jdteran@docentes.uat.edu.mx

Abstract: Electricity is one of the most important resources for the growth and sustainability of the
population. This paper assesses the energy consumption and user satisfaction of a simulated air
conditioning system controlled with two different optimization algorithms. The algorithms are a
genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic
algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system
considering user preferences. It is worth noting that we made several modifications to the objective
function’s definition to make it more robust. The energy-saving optimization is essential to reduce
CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable,
yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving
on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and
decrease electrical energy consumption. To assess the experimentation, we constructed a simulator
by training a backpropagation neural network with real data from a laboratory’s air conditioning
system. According to the results, we conclude that NSGA II provides better results than the state of
the art (GA) regarding user preferences and energy-saving.

Keywords: energy optimization; genetic algorithms; multi-objective optimization; artificial neural
network simulator

1. Introduction

Due to constant technological growth, it is now possible to integrate electronic circuits
and computer systems to develop, manage, and monitor a wide variety of devices in
many of the structures that surround us [1–3]. One of the main advantages of including
computational techniques in regular devices is the efficient administration of electrical
energy. Researchers have focused their efforts on optimizing these regular devices as
well as new research focused on the use of artificial intelligence, neural networks, and
fuzzy logic and a study on a new class of optimization problems of constrained interval
values [4,5]. This paper implements two evolutionary algorithms, a genetic algorithm (GA)
and a non-dominated sorting genetic algorithm (NSGA II), to optimize an air conditioning
system’s energy consumption. We chose to research air conditioning systems because they
consume a large amount of energy regardless of the purpose.

Symmetry 2021, 13, 344. https://doi.org/10.3390/sym13020344 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8054-6510
https://orcid.org/0000-0003-2496-0009
https://orcid.org/0000-0002-3265-8531
https://doi.org/10.3390/sym13020344
https://doi.org/10.3390/sym13020344
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13020344
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/13/2/344?type=check_update&version=1

Symmetry 2021, 13, 344 2 of 13

In the literature, it is possible to find some papers focused on ensuring an adequate
administration of electrical energy through the so-called home energy management systems
which seek to promote renewable energy, lengthen device life, and avoid accidents. In [1],
Collota et al. present an example of this system, where a fuzzy controller is used to
improve the home energy management scheme; the results showed the system’s capability
to reduce the maximum load demand for electrical energy. Similarly, Attoue et al. [2]
used machine learning techniques, optimization, and data structures to create an energy
management system to satisfy the needs of an intelligent building; the results obtained
show the proposed mechanisms’ effectiveness to improve the performance.

Even though there is a wide variety of papers aiming to save electricity, air conditioners
still consume a significant amount of energy. In [6], the authors present a fuzzy controller
made in Simulink to lower air conditioning energy while dealing with thermal disturbances.
The results demonstrate that the fuzzy controller with triangular membership functions
gives the desired performance with an error lower than 1% and saving 25% of energy
consumption. Chen, Fu, and Liu [3] proposed a hybrid meta ensemble learning and stacked
auto-encoder (SAE), tested with data from the air-conditioning system from a commercial
building in Singapore. The proposed meta ensemble learning method showed efficient
energy management of the air-conditioning system.

Additionally, Arikiez et al. [7] proposed a heuristic algorithm based on mixed integer
linear programming (MILP) to minimize the cost of electrical energy caused by a set of
air conditioners. The result reveals that their algorithm can solve a massive problem in
a few seconds and gives reasonable suboptimal solutions. Moreover, Ullah and Kim [8]
proposed two improved optimization algorithms, a particle swarm optimization and a
genetic algorithm, to achieve maximum user comfort in the building environment with
minimum energy consumption. Results showed that the proposed optimization algorithms
produce better results than the baseline scheme in user comfort and consumed energy.

This paper proposes two metaheuristic algorithms to optimize an air conditioning
system while considering the users’ preferences, a genetic algorithm (GA) and a non-
dominated sorting genetic algorithm (NSGA II). The former intends to replicate the algo-
rithm from [8], and the latter was selected to analyze the performance of a multi-objective
optimization algorithm.

The remainder of the paper is as follows: Section 2 addresses the design of the
optimization algorithms; Section 3 shows our simulator design; Sections 4 and 5 describe
the experimental results and the discussion, respectively. Finally, Section 6 contains the
conclusions and future work.

2. Algorithm Design
2.1. Problem Definition

The proposed algorithms aim to tackle two objectives: energy-saving and user satis-
faction. These objectives are directly in conflict because the air conditioner system must be
turned on for extended periods of time to increase user satisfaction while increasing energy
consumption, which conflicts with energy-saving. Such a task seems relatively simple
for NSGA II due to its multi-objective nature. Additionally, the genetic algorithm used a
weighted objective function to optimize both objectives simultaneously. In this paper, we
use the formulation presented in [8] by Ullah and Kim. However, we modify Equations
(2)–(4) in two different ways. The first modification adds a cost to maintain the current
temperature. The second modification nullifies any energy cost when the laboratory’s
temperature is lower than the desired temperature. It is important to explain that our
climate is warm; therefore, we consider a cooling scheme and turn on the air conditioner
system to cool down the room, trying to reach the optimal desired temperature of 22 ◦C.
However, we considered a temperature of 27 ◦C and below as acceptable yet not no ideal.
Furthermore, temperatures below 22 ◦C are also not desired and would trigger a shutdown
of the air conditioner system, nullifying the energy cost and raising the temperature.

Symmetry 2021, 13, 344 3 of 13

For this formulation, expression (1) shows the user-accepted temperature range.

UserPre f erences = [Tmin, Tmax] (1)

where Tmin and Tmax represent the minimum and maximum temperatures accepted by the
user. It is worth noting that for our case, Tmin is the ideal temperature because we are in
a tropical environment and a colder climate is desired. Additionally, the current room
temperature is Tc, and the temperature recommended by the optimization algorithms is
named To|Tmin ≤ To ≤ Tmax .

With To, it is possible to calculate the optimal energy (Eo) needed to change or maintain
Tc if it were the same as To; see Equation (2). Additionally, if the current temperature is
lower than the optimized temperature (Tc < To), the air conditioner system should be
turned off; hence the zero in that case. To calculate this parameter, we need to know the
power required per unit change in temperature (PT).

Eo =

{
PT + PT ·(Tc − To) i f Tc ≥ To

0 i f Tc < To
(2)

Similarly, it is possible to calculate the minimum and maximum hypothetical energy
consumptions (Emin) and (Emax), as shown in expressions (3) and (4), which are used later
to calculate the energy-saving gain (Ges). For these equations, there is a similar condition as
Equation (2); where if Tc < Tmax or Tc < Tmin, it would mean that the current temperature
is lower than the maximum or minimum temperature and the air conditioner system will
not need to be turned on to reach those temperatures, hence requiring 0 energy.

Emin =

{
PT + PT ·(Tc − Tmax) i f Tc ≥ Tmax

0 i f Tc < Tmax
(3)

Emax =

{
PT + PT ·(Tc − Tmin) i f Tc ≥ Tmin

0 i f Tc < Tmin
(4)

Equations (5) and (6) show the user satisfaction gain (Gus) and the energy-saving gain
(Ges) where both gains range from 0 to 1, with 0 representing no gain and 1 represents
the most gain. Furthermore, both objectives are in direct conflict because increasing user
satisfaction entails an increased use of the air conditioner resulting in higher energy cost.

Gus =

(
Tmax − To

Tmax − Tmin

)2
∈ [0, 1] (5)

Ges = 1−
(

Eo − Emin
Emax − Emin

)2
∈ [0, 1] (6)

Additionally, the user relevance factor for each objective is determined by αus for user
satisfaction and αes for energy-saving where αus + αes = 1. Therefore, the NSGA II would
maximize both objectives considering their relevance factor; see Equations (7) and (8).

Maximize(αusGuc) ∈ [0, 1] (7)

Maximize(αesGes) ∈ [0, 1] (8)

On the other hand, GA uses the weighted function in Equation (9).

Maximize(αusGuc + αesGes) ∈ [0, 1] (9)

Figure 1 shows an example of the calculation of user satisfaction gain (Gus) and the
energy-saving gain (Ges) for a given To and Tc.

Symmetry 2021, 13, 344 4 of 13
Symmetry 2021, 13, x FOR PEER REVIEW 4 of 14

Figure 1. Example of user satisfaction gain (𝐺) and the energy-saving gain (𝐺) calculation.

2.2. GA and NSGA II
As we said before, we modify the formal definition of [8], trying to make it more

robust by considering new elements; however, we will not be able to compare directly to
their results because of the modifications in the definition. Thus, in this paper, we imple-
ment their genetic algorithm as explained in [8], and a multi-objective NSGA II as our
proposal (both algorithms are available at https://github.com/ahgarciar/Air-Conditioner-
System-Controllers (accessed on 19 February 2021)).

We use the same population, selection, crossover, and mutation operators for both
algorithms with little modifications for the NSGA II, as explained below.

Population. We use a vector of one hundred solutions for both algorithms, where
each solution (𝑇 ∈ ℝ) is a possible temperature between 22 and 27 °C.

Selection. The algorithms use a binary tournament between random individuals of
the population to select the parents for the crossover operator. The GA uses a binary tour-
nament, comparing the solutions’ objective values, and the winners are selected for cross-
over. On the other hand, the NSGA II algorithm uses the rank of the Pareto front of each
solution to identify the winner, which will be the solution with the lowest level on the
Pareto front, meaning that it is less dominated than the other solution. However, suppose
both solutions are in the same level of the Pareto front. In that case, we use the crowded
comparison operator (), which identifies the solution with the largest crowding dis-
tance, which will be explained further in this section.

Crossover. As stated before, our GA and NSGA II have a static population of one
hundred solutions; then, another one hundred solutions are produced as offspring, using
the Simulated Binary Crossover operator [9]. This operator requires two parents (𝑝1 and 𝑝2) to obtain two new individuals (𝑇 and 𝑇).

Here, we explain the crossover operator for our specific problem. Thus, we will
change some of the original notation of this crossover to match our variables.

First, we identify the two parents’ maximum and minimum temperature values; see
Equations (10) and (11). 𝑚𝑎𝑥 = 𝑀𝐴𝑋(𝑝1, 𝑝2) (10)𝑚𝑖𝑛 = 𝑀𝐼𝑁(𝑝1, 𝑝2) (11)

Then, we calculate Equations (12) and (13) to produce 𝛽1 and 𝛼1, which also
use a random real number (𝑢 ∈ 0,1) and a constant 𝜂 = 20 in Equation (14) to produce 𝛽1𝑞. Finally, we produce 𝑇 as shown in Equation (15). 𝛽1 = 1 + 2(𝑚𝑖𝑛 − 𝑇)𝑚𝑎𝑥 − 𝑚𝑖𝑛 (12)

𝛼1 = 2 − (𝛽1) () (13)

Figure 1. Example of user satisfaction gain (Gus) and the energy-saving gain (Ges) calculation.

2.2. GA and NSGA II

As we said before, we modify the formal definition of [8], trying to make it more
robust by considering new elements; however, we will not be able to compare directly
to their results because of the modifications in the definition. Thus, in this paper, we
implement their genetic algorithm as explained in [8], and a multi-objective NSGA II as our
proposal (both algorithms are available at https://github.com/ahgarciar/Air-Conditioner-
System-Controllers (accessed on 19 February 2021)).

We use the same population, selection, crossover, and mutation operators for both
algorithms with little modifications for the NSGA II, as explained below.

Population. We use a vector of one hundred solutions for both algorithms, where
each solution (Toi ∈ R) is a possible temperature between 22 and 27 ◦C.

Selection. The algorithms use a binary tournament between random individuals
of the population to select the parents for the crossover operator. The GA uses a binary
tournament, comparing the solutions’ objective values, and the winners are selected for
crossover. On the other hand, the NSGA II algorithm uses the rank of the Pareto front of
each solution to identify the winner, which will be the solution with the lowest level on the
Pareto front, meaning that it is less dominated than the other solution. However, suppose
both solutions are in the same level of the Pareto front. In that case, we use the crowded
comparison operator (>n), which identifies the solution with the largest crowding distance,
which will be explained further in this section.

Crossover. As stated before, our GA and NSGA II have a static population of one
hundred solutions; then, another one hundred solutions are produced as offspring, using
the Simulated Binary Crossover operator [9]. This operator requires two parents (p1 and
p2) to obtain two new individuals (Toi and Toi+1).

Here, we explain the crossover operator for our specific problem. Thus, we will change
some of the original notation of this crossover to match our variables.

First, we identify the two parents’ maximum and minimum temperature values; see
Equations (10) and (11).

max = MAX(p1, p2) (10)

min = MIN(p1, p2) (11)

Then, we calculate Equations (12) and (13) to produce β1 and α1, which also use a
random real number (u ∈ [0, 1]) and a constant η = 20 in Equation (14) to produce β1q.
Finally, we produce Toi as shown in Equation (15).

β1 = 1 +
2(min− Tmin)

max−min
(12)

α1 = 2− (β1)−(η+1) (13)

https://github.com/ahgarciar/Air-Conditioner-System-Controllers
https://github.com/ahgarciar/Air-Conditioner-System-Controllers

Symmetry 2021, 13, 344 5 of 13

β1q =

(u · α1)

1
η+1 i f u ≤

(
1
a1

)
(

1
2−u·α1

) 1
η+1 otherwise

(14)

Toi = 0.5(max + min− β1q ∗ (max−min)) (15)

Then, we carry out a similar process to produce Toi+1 . However, the difference is that
β2 is calculated using Tmax instead of Tmin as β1, see Equations (16)–(19).

β2 = 1 +
2(Tmax −max)

max−min
(16)

α2 = 2− (β2)−(η+1) (17)

β2q =

(u · α2)

1
η+1 i f u ≤

(
1

α2

)
(

1
2−u·α2

) 1
η+1 otherwise

(18)

Toi+1 = 0.5(max + min− β2q ∗ (max−min)) (19)

Figure 2 shows an example of the crossover operator.

Symmetry 2021, 13, x FOR PEER REVIEW 5 of 14

𝛽1𝑞 = ⎩⎪⎨
⎪⎧ (𝑢 ⋅ 𝛼1) 𝑖𝑓 𝑢 ≤ 1𝑎112 − 𝑢 ⋅ 𝛼1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (14)

𝑇 = 0.5(𝑚𝑎𝑥 + 𝑚𝑖𝑛 − 𝛽1𝑞 ∗ (𝑚𝑎𝑥 − 𝑚𝑖𝑛)) (15)

Then, we carry out a similar process to produce 𝑇 . However, the difference is that 𝛽2 is calculated using 𝑇 instead of 𝑇 as 𝛽1, see Equations (16)–(19). 𝛽2 = 1 + 2(𝑇 − 𝑚𝑎𝑥)𝑚𝑎𝑥 − 𝑚𝑖𝑛 (16)

𝛼2 = 2 − (𝛽2) () (17)

𝛽2𝑞 = ⎩⎪⎨
⎪⎧ (𝑢 ⋅ 𝛼2) 𝑖𝑓 𝑢 ≤ 1𝛼212 − 𝑢 ⋅ 𝛼2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (18)

𝑇 = 0.5(𝑚𝑎𝑥 + 𝑚𝑖𝑛 − 𝛽2𝑞 ∗ (𝑚𝑎𝑥 − 𝑚𝑖𝑛)) (19)

Figure 2 shows an example of the crossover operator.

Figure 2. Example of crossover process.

Mutation. As a mutation operator, we used the polynomial mutation operator [10],
which is applied to fifty percent of the solutions generated in the crossover operator.

Here, we modify the temperature produced by the crossover operation depending on
the 𝛿 value, which ranges from −1 to 1, and also uses a random real number (𝑢 ∈ 0,1)
and a constant 𝜂 = 20; see Equations (20)–(23). 𝑇 = 𝑇 + 𝛿 (𝑇 − 𝑇) (20)𝛿 = (𝑇 − 𝑇)/(𝑇 − 𝑇) (21)𝛿 = (𝑇 − 𝑇)/(𝑇 − 𝑇) (22)

Figure 2. Example of crossover process.

Mutation. As a mutation operator, we used the polynomial mutation operator [10],
which is applied to fifty percent of the solutions generated in the crossover operator.

Here, we modify the temperature produced by the crossover operation depending on
the δ value, which ranges from −1 to 1, and also uses a random real number (u ∈ [0, 1])
and a constant η = 20; see Equations (20)–(23).

Toi = Toi + δq(Tmax − Tmin) (20)

δ1 = (Toi − Tmin)/(Tmax − Tmin) (21)

δ2 = (Tmax − Toi)/(Tmax − Tmin) (22)

δq =

[
2u + (1.0− 2.0 ∗ u) ∗ (1.0− δ1)

η+1
] 1
(η+1) − 1 i f u ≤ 0.5

1−
[
2(1− u) + 2.0 ∗ (u− 0.5) ∗ (1.0− δ2)

η+1
] 1
(η+1) otherwise

(23)

Figure 3 shows an example of the mutation operator.

Symmetry 2021, 13, 344 6 of 13

Symmetry 2021, 13, x FOR PEER REVIEW 6 of 14

𝛿 = 2𝑢 + (1.0 − 2.0 ∗ 𝑢) ∗ (1.0 − 𝛿) () − 1 𝑖𝑓 𝑢 ≤ 0.5 1 − 2(1 − 𝑢) + 2.0 ∗ (𝑢 − 0.5) ∗ (1.0 − 𝛿) () 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (23)

Figure 3 shows an example of the mutation operator.

Figure 3. Example of the mutation process.

For this experimentation, we tested several values for constant 𝜂, resulting in a value
of twenty.

The NSGA II requires two additional procedures:
Fast Non-Dominated Sort. This procedure allocates the solutions of the pool of so-

lutions (𝑃) into Pareto fronts of non-dominated individuals; this allows elitism in selecting
the parents for the offspring of NSGA II.

Crowding Distance. A particular solution’s crowding distance value is the average
distance of its two neighboring solutions [11]. Figure 4 shows the calculation of the crowd-
ing distance of the solution i, which is an estimate of the size of the largest cuboid enclos-
ing i without including any other solution. The algorithm used in this implementation is a
normalized version of the original algorithm with the minimum (𝑀𝐼𝑁) and maximum
(𝑀𝐴𝑋) values per objective (𝑚) [12]; this algorithm is calculated for each generation for the
current population. The algorithm requires a set of non-dominated individuals (l) to calcu-
late their distance.

Figure 4. Crowding distance calculation.

3. Simulator
To assess the optimization algorithms, we constructed a neural-network-based sim-

ulator with temperature data from a specific room within our laboratory. The data ac-
quired was the internal and external temperature (in Celsius) and the state of the air con-
ditioner system. We recorded this data every five minutes using two temperature sensors
(DHT22) with an Arduino Mega controller in the second week of September from Monday
to Wednesday. Figure 5 shows a diagram from the data acquisition to the evaluation of

Figure 3. Example of the mutation process.

For this experimentation, we tested several values for constant η, resulting in a value
of twenty.

The NSGA II requires two additional procedures:
Fast Non-Dominated Sort. This procedure allocates the solutions of the pool of solu-

tions (P) into Pareto fronts of non-dominated individuals; this allows elitism in selecting
the parents for the offspring of NSGA II.

Crowding Distance. A particular solution’s crowding distance value is the average
distance of its two neighboring solutions [11]. Figure 4 shows the calculation of the crowd-
ing distance of the solution i, which is an estimate of the size of the largest cuboid enclosing
i without including any other solution. The algorithm used in this implementation is a
normalized version of the original algorithm with the minimum (MINm) and maximum
(MAXm) values per objective (m) [12]; this algorithm is calculated for each generation for
the current population. The algorithm requires a set of non-dominated individuals (l) to
calculate their distance.

Symmetry 2021, 13, x FOR PEER REVIEW 6 of 14

𝛿 = 2𝑢 + (1.0 − 2.0 ∗ 𝑢) ∗ (1.0 − 𝛿) () − 1 𝑖𝑓 𝑢 ≤ 0.5 1 − 2(1 − 𝑢) + 2.0 ∗ (𝑢 − 0.5) ∗ (1.0 − 𝛿) () 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (23)

Figure 3 shows an example of the mutation operator.

Figure 3. Example of the mutation process.

For this experimentation, we tested several values for constant 𝜂, resulting in a value
of twenty.

The NSGA II requires two additional procedures:
Fast Non-Dominated Sort. This procedure allocates the solutions of the pool of so-

lutions (𝑃) into Pareto fronts of non-dominated individuals; this allows elitism in selecting
the parents for the offspring of NSGA II.

Crowding Distance. A particular solution’s crowding distance value is the average
distance of its two neighboring solutions [11]. Figure 4 shows the calculation of the crowd-
ing distance of the solution i, which is an estimate of the size of the largest cuboid enclos-
ing i without including any other solution. The algorithm used in this implementation is a
normalized version of the original algorithm with the minimum (𝑀𝐼𝑁) and maximum
(𝑀𝐴𝑋) values per objective (𝑚) [12]; this algorithm is calculated for each generation for the
current population. The algorithm requires a set of non-dominated individuals (l) to calcu-
late their distance.

Figure 4. Crowding distance calculation.

3. Simulator
To assess the optimization algorithms, we constructed a neural-network-based sim-

ulator with temperature data from a specific room within our laboratory. The data ac-
quired was the internal and external temperature (in Celsius) and the state of the air con-
ditioner system. We recorded this data every five minutes using two temperature sensors
(DHT22) with an Arduino Mega controller in the second week of September from Monday
to Wednesday. Figure 5 shows a diagram from the data acquisition to the evaluation of

Figure 4. Crowding distance calculation.

3. Simulator

To assess the optimization algorithms, we constructed a neural-network-based simu-
lator with temperature data from a specific room within our laboratory. The data acquired
was the internal and external temperature (in Celsius) and the state of the air conditioner
system. We recorded this data every five minutes using two temperature sensors (DHT22)
with an Arduino Mega controller in the second week of September from Monday to
Wednesday. Figure 5 shows a diagram from the data acquisition to the evaluation of the
neural-network-based simulator. Regarding the data acquisition, we force fluctuations in
the internal temperature (from the external temperature to 24 ◦C) during different moments
of the day, turning on and off the air conditioning system.

Symmetry 2021, 13, 344 7 of 13

Symmetry 2021, 13, x FOR PEER REVIEW 7 of 14

the neural-network-based simulator. Regarding the data acquisition, we force fluctuations
in the internal temperature (from the external temperature to 24 °C) during different mo-
ments of the day, turning on and off the air conditioning system.

Figure 5. Diagram from data acquisition to the evaluation of the simulator.

Once the data were acquired, we constructed a dataset with the external temperature,
internal temperature, air conditioning state, and the next internal temperature taken from
the next row. With this dataset, we trained a backpropagation neural network imple-
mented in C# and is available at https://github.com/ahgarciar/Air-Conditioner-System-
Controllers (accessed on 19 February 2021). We configured the neural network with three
input neurons, ten neurons in a hidden layer, and one output neuron. Additionally, it was
tested with the mean average percentage error (MAPE) [10], producing a 1.07% error; this
result shows that our simulator has a relatively good performance.

4. Experimental Results
This experimentation aims to assess energy-saving and user satisfaction for five

whole days. To do this, we executed both algorithms independently and used the neural
network to simulate the temperature changes, given each algorithm’s recommendation.

Figure 6 shows the external temperature acquired for five days and the simulated
internal temperature obtained by the neuronal-network-based simulator. The simulator
requires three parameters to forecast the new internal temperature: current external tem-
perature, current internal temperature, and the state of the air conditioner system; the lat-
est is obtained according to the optimizer recommendation, i.e., if the optimizer recom-
mendation is lower or equal to the internal temperature, the air conditioning system is
turned on; otherwise, it is turned off.

Figure 5. Diagram from data acquisition to the evaluation of the simulator.

Once the data were acquired, we constructed a dataset with the external temperature,
internal temperature, air conditioning state, and the next internal temperature taken
from the next row. With this dataset, we trained a backpropagation neural network
implemented in C# and is available at https://github.com/ahgarciar/Air-Conditioner-
System-Controllers (accessed on 19 February 2021). We configured the neural network with
three input neurons, ten neurons in a hidden layer, and one output neuron. Additionally, it
was tested with the mean average percentage error (MAPE) [10], producing a 1.07% error;
this result shows that our simulator has a relatively good performance.

4. Experimental Results

This experimentation aims to assess energy-saving and user satisfaction for five whole
days. To do this, we executed both algorithms independently and used the neural network
to simulate the temperature changes, given each algorithm’s recommendation.

Figure 6 shows the external temperature acquired for five days and the simulated
internal temperature obtained by the neuronal-network-based simulator. The simulator
requires three parameters to forecast the new internal temperature: current external temper-
ature, current internal temperature, and the state of the air conditioner system; the latest is
obtained according to the optimizer recommendation, i.e., if the optimizer recommendation
is lower or equal to the internal temperature, the air conditioning system is turned on;
otherwise, it is turned off.

To avoid increasing computational costs, we execute the optimization algorithms
once every half hour. These experimentations consider three configurations (see Table 1):
prioritizing energy-savings (A), a balance between energy-saving and user satisfaction
(B), and prioritizing user satisfaction (C). These three configurations constitute the three
primary user profiles within our laboratory and, roughly, in any conventional home.

Table 1. Configurations of the user’s priorities.

Configuration αus αes

A 0.2 0.8
B 0.5 0.5
C 0.8 0.2

https://github.com/ahgarciar/Air-Conditioner-System-Controllers
https://github.com/ahgarciar/Air-Conditioner-System-Controllers

Symmetry 2021, 13, 344 8 of 13Symmetry 2021, 13, x FOR PEER REVIEW 8 of 14

Figure 6. Internal temperature simulation based on the optimizer recommendation.

To avoid increasing computational costs, we execute the optimization algorithms
once every half hour. These experimentations consider three configurations (see Table 1):
prioritizing energy-savings (A), a balance between energy-saving and user satisfaction
(B), and prioritizing user satisfaction (C). These three configurations constitute the three
primary user profiles within our laboratory and, roughly, in any conventional home.

Table 1. Configurations of the user’s priorities.

Configuration 𝜶𝒖𝒔 𝜶𝒆𝒔
A 0.2 0.8
B 0.5 0.5
C 0.8 0.2

We configured the algorithms with the values from Table 1; then, the algorithms pro-
duce their recommendations for five simulated days; where we use as a recommendation
the best solution produced by GA, and a single solution from the first Pareto front for the
NSGA II. To keep a fair comparison, we used the nadir point of the Pareto front, which is
the solution with the lowest Euclidian distance to a hypothetical optimal point in the
space. This hypothetical optimal point is (1, 1) because both objectives intend to maximize
their gain, and 1 is the largest possible value for both objectives; see Figure 7.

Figure 6. Internal temperature simulation based on the optimizer recommendation.

We configured the algorithms with the values from Table 1; then, the algorithms pro-
duce their recommendations for five simulated days; where we use as a recommendation
the best solution produced by GA, and a single solution from the first Pareto front for the
NSGA II. To keep a fair comparison, we used the nadir point of the Pareto front, which is
the solution with the lowest Euclidian distance to a hypothetical optimal point in the space.
This hypothetical optimal point is (1, 1) because both objectives intend to maximize their
gain, and 1 is the largest possible value for both objectives; see Figure 7.

Symmetry 2021, 13, x FOR PEER REVIEW 9 of 14

Figure 7. Nadir point calculation.

Figures 8–10 show the temperature recommended by GA and NSGA II for each mo-
ment of the day analyzed (every half an hour) for each of the configurations.

Figure 8. Temperature recommended by genetic algorithms using configuration A.

Figure 9. Temperature recommended by genetic algorithms using configuration B.

Figure 7. Nadir point calculation.

Figures 8–10 show the temperature recommended by GA and NSGA II for each
moment of the day analyzed (every half an hour) for each of the configurations.

Symmetry 2021, 13, 344 9 of 13

Symmetry 2021, 13, x FOR PEER REVIEW 9 of 14

Figure 7. Nadir point calculation.

Figures 8–10 show the temperature recommended by GA and NSGA II for each mo-
ment of the day analyzed (every half an hour) for each of the configurations.

Figure 8. Temperature recommended by genetic algorithms using configuration A.

Figure 9. Temperature recommended by genetic algorithms using configuration B.

Figure 8. Temperature recommended by genetic algorithms using configuration A.

Symmetry 2021, 13, x FOR PEER REVIEW 9 of 14

Figure 7. Nadir point calculation.

Figures 8–10 show the temperature recommended by GA and NSGA II for each mo-
ment of the day analyzed (every half an hour) for each of the configurations.

Figure 8. Temperature recommended by genetic algorithms using configuration A.

Figure 9. Temperature recommended by genetic algorithms using configuration B.

Figure 9. Temperature recommended by genetic algorithms using configuration B.

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 14

Figure 10. Temperature recommended by genetic algorithms using configuration C.

Here, we can see that for configuration A, both algorithms recommend higher tem-
peratures than the other configurations. However, GA does recommend lower values
than NSGA II. For configuration B, GA’s recommendations have larger fluctuations than
NSGA II, which mainly maintains its recommendations from 27 to 23.5 °C. Finally, for
configuration C, GA recommends the lowest temperature, about 22 °C, while NSGA II
increases its fluctuation.

Based on each algorithm’s recommended temperature, the simulator turns the air
conditioning on or off for half an hour to adjust the room temperature.

Figures 11–13 show the room temperature simulation results by applying the algo-
rithms’ recommendation for each configuration.

Figure 11. Simulation of temperature according to the recommendation of the genetic algorithms
for configuration A.

Figure 10. Temperature recommended by genetic algorithms using configuration C.

Here, we can see that for configuration A, both algorithms recommend higher tem-
peratures than the other configurations. However, GA does recommend lower values
than NSGA II. For configuration B, GA’s recommendations have larger fluctuations than
NSGA II, which mainly maintains its recommendations from 27 to 23.5 ◦C. Finally, for
configuration C, GA recommends the lowest temperature, about 22 ◦C, while NSGA II
increases its fluctuation.

Based on each algorithm’s recommended temperature, the simulator turns the air
conditioning on or off for half an hour to adjust the room temperature.

Figures 11–13 show the room temperature simulation results by applying the algo-
rithms’ recommendation for each configuration.

Symmetry 2021, 13, 344 10 of 13

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 14

Figure 10. Temperature recommended by genetic algorithms using configuration C.

Here, we can see that for configuration A, both algorithms recommend higher tem-
peratures than the other configurations. However, GA does recommend lower values
than NSGA II. For configuration B, GA’s recommendations have larger fluctuations than
NSGA II, which mainly maintains its recommendations from 27 to 23.5 °C. Finally, for
configuration C, GA recommends the lowest temperature, about 22 °C, while NSGA II
increases its fluctuation.

Based on each algorithm’s recommended temperature, the simulator turns the air
conditioning on or off for half an hour to adjust the room temperature.

Figures 11–13 show the room temperature simulation results by applying the algo-
rithms’ recommendation for each configuration.

Figure 11. Simulation of temperature according to the recommendation of the genetic algorithms
for configuration A.

Figure 11. Simulation of temperature according to the recommendation of the genetic algorithms for
configuration A.

Symmetry 2021, 13, x FOR PEER REVIEW 11 of 14

Figure 12. Simulation of temperature according to the recommendation of the genetic algorithms
for configuration B.

Figure 13. Simulation of temperature according to the recommendation of the genetic algorithms
for configuration C.

In Figure 11, configuration A, both algorithms have similar behavior. However,
NSGA II produces lower values than GA. Figure 12, configuration B, shows that NSGA II
has lower temperature values than GA and both algorithms have considerably different
behavior. Finally, Figure 13 shows an almost identical behavior for both algorithms with
a slight tendency for the NSGA II to produce lower temperatures than GA.

The satisfaction level increases when the room temperature is closer to the minimum
user desired temperature 𝑇 . As stated before, we live in a warm environment; thus, we
require a cooling scheme for the air conditioning system. Therefore, the algorithm that
keeps closer to 𝑇 provides greater satisfaction for the user.

Therefore, to measure user satisfaction, we created a satisfaction ratio, defined as the
sum of the absolute differences between the current simulated temperature and 𝑇 for
each moment of the day; this is because values lower than 𝑇 are unwanted.

A lower satisfaction ratio implies a higher level of satisfaction. Table 2 presents the
satisfaction ratios calculated for each algorithm for all the configurations.

Table 2. Satisfaction ratio for each algorithm.

Configuration NSGA II GA
A 698.10343 993.36546
B 316.98898 1058.35429
C 313.84696 313.88824

Figure 12. Simulation of temperature according to the recommendation of the genetic algorithms for
configuration B.

Symmetry 2021, 13, x FOR PEER REVIEW 11 of 14

Figure 12. Simulation of temperature according to the recommendation of the genetic algorithms
for configuration B.

Figure 13. Simulation of temperature according to the recommendation of the genetic algorithms
for configuration C.

In Figure 11, configuration A, both algorithms have similar behavior. However,
NSGA II produces lower values than GA. Figure 12, configuration B, shows that NSGA II
has lower temperature values than GA and both algorithms have considerably different
behavior. Finally, Figure 13 shows an almost identical behavior for both algorithms with
a slight tendency for the NSGA II to produce lower temperatures than GA.

The satisfaction level increases when the room temperature is closer to the minimum
user desired temperature 𝑇 . As stated before, we live in a warm environment; thus, we
require a cooling scheme for the air conditioning system. Therefore, the algorithm that
keeps closer to 𝑇 provides greater satisfaction for the user.

Therefore, to measure user satisfaction, we created a satisfaction ratio, defined as the
sum of the absolute differences between the current simulated temperature and 𝑇 for
each moment of the day; this is because values lower than 𝑇 are unwanted.

A lower satisfaction ratio implies a higher level of satisfaction. Table 2 presents the
satisfaction ratios calculated for each algorithm for all the configurations.

Table 2. Satisfaction ratio for each algorithm.

Configuration NSGA II GA
A 698.10343 993.36546
B 316.98898 1058.35429
C 313.84696 313.88824

Figure 13. Simulation of temperature according to the recommendation of the genetic algorithms for
configuration C.

In Figure 11, configuration A, both algorithms have similar behavior. However, NSGA
II produces lower values than GA. Figure 12, configuration B, shows that NSGA II has lower
temperature values than GA and both algorithms have considerably different behavior.
Finally, Figure 13 shows an almost identical behavior for both algorithms with a slight
tendency for the NSGA II to produce lower temperatures than GA.

The satisfaction level increases when the room temperature is closer to the minimum
user desired temperature Tmin. As stated before, we live in a warm environment; thus, we

Symmetry 2021, 13, 344 11 of 13

require a cooling scheme for the air conditioning system. Therefore, the algorithm that
keeps closer to Tmin provides greater satisfaction for the user.

Therefore, to measure user satisfaction, we created a satisfaction ratio, defined as the
sum of the absolute differences between the current simulated temperature and Tmin for
each moment of the day; this is because values lower than Tmin are unwanted.

A lower satisfaction ratio implies a higher level of satisfaction. Table 2 presents the
satisfaction ratios calculated for each algorithm for all the configurations.

Table 2. Satisfaction ratio for each algorithm.

Configuration NSGA II GA

A 698.10343 993.36546
B 316.98898 1058.35429
C 313.84696 313.88824

As we can see, the NSGA II algorithm achieves better performance over the GA in
maintaining the room temperature according to the user preferences. For the configura-
tion where the algorithm prioritizes energy-saving (A), the NSGA II outperformed the
GA’s satisfaction rate by about 295 units. Furthermore, for the second configuration (B),
which prioritizes a balance between energy-saving and user satisfaction, the NSGA II
outperformed the GA’s satisfaction rate by about 741 units. Finally, for the last configu-
ration (C), which prioritizes user satisfaction, both algorithms produced almost the same
satisfaction rate.

To measure the energy consumption, we evaluate the maximum and minimum energy
consumption by simulating two extreme scenarios for the whole test. The first with the air
conditioning system turned off and the second with the air conditioning system turned
on (see Figure 14). According to this simulation and during its execution, there was an
electrical energy use of 0 and 105 kWh, respectively.

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 14

As we can see, the NSGA II algorithm achieves better performance over the GA in
maintaining the room temperature according to the user preferences. For the configura-
tion where the algorithm prioritizes energy-saving (A), the NSGA II outperformed the
GA’s satisfaction rate by about 295 units. Furthermore, for the second configuration (B),
which prioritizes a balance between energy-saving and user satisfaction, the NSGA II out-
performed the GA’s satisfaction rate by about 741 units. Finally, for the last configuration
(C), which prioritizes user satisfaction, both algorithms produced almost the same satis-
faction rate.

To measure the energy consumption, we evaluate the maximum and minimum en-
ergy consumption by simulating two extreme scenarios for the whole test. The first with
the air conditioning system turned off and the second with the air conditioning system
turned on (see Figure 14). According to this simulation and during its execution, there was
an electrical energy use of 0 and 105 kWh, respectively.

Figure 14. Temperature simulation considering the air conditioning always off and always on.

Table 3 shows calculations of the number of kWh used by all the configurations from
Table 1 for both algorithms. Additionally, we estimated the cost of $2.997 Mexican pesos
for each kWh consumed. We took this electric cost from the Mexican Federal Electricity
Commission (CFE). Therefore, for the previous extreme scenario, where the air condition-
ing system is turned on for the whole test, the cost produced would be $314.69.

Table 3. Cost of maintaining the configurations.

Configuration
NSGA II GA

kWh Cost kWh Cost
A 83.74032 $250.97 86.01629 $257.79
B 94.29362 $282.60 93.56877 $280.43
C 89.98913 $269.70 91.99613 $275.71

Table 3 shows that NSGA II outperformed GA in the total cost of the electrical energy
consumption in two of the three configurations. However, in the non-winning configura-
tion, GA improves by a smaller margin to NSGA II than in the other cases.

5. Discussion
As we can see, NSGA II achieved a better performance than GA regarding user pref-

erences while also outperforming GA in two of three configurations regarding the energy
cost.

Although both algorithms adapt to the user preferences and the energy-saving, the
NSGA II algorithm provides greater satisfaction. The neural-network-based simulator
showed that the room temperature values of the NSGA II were closer to the user ideal

Figure 14. Temperature simulation considering the air conditioning always off and always on.

Table 3 shows calculations of the number of kWh used by all the configurations from
Table 1 for both algorithms. Additionally, we estimated the cost of $2.997 Mexican pesos
for each kWh consumed. We took this electric cost from the Mexican Federal Electricity
Commission (CFE). Therefore, for the previous extreme scenario, where the air conditioning
system is turned on for the whole test, the cost produced would be $314.69.

Table 3 shows that NSGA II outperformed GA in the total cost of the electrical energy
consumption in two of the three configurations. However, in the non-winning configura-
tion, GA improves by a smaller margin to NSGA II than in the other cases.

Symmetry 2021, 13, 344 12 of 13

Table 3. Cost of maintaining the configurations.

Configuration
NSGA II GA

kWh Cost kWh Cost

A 83.74032 $250.97 86.01629 $257.79
B 94.29362 $282.60 93.56877 $280.43
C 89.98913 $269.70 91.99613 $275.71

5. Discussion

As we can see, NSGA II achieved a better performance than GA regarding user
preferences while also outperforming GA in two of three configurations regarding the
energy cost.

Although both algorithms adapt to the user preferences and the energy-saving, the
NSGA II algorithm provides greater satisfaction. The neural-network-based simulator
showed that the room temperature values of the NSGA II were closer to the user ideal
temperature for two of three configurations. In this sense, we can conclude that the NSGA
II algorithm produced better results than GA to control the air conditioning systems.

It is worth noting that the experimentation results were on a period of five days with
a single room in our laboratory. However, by extending the experimentation to a longer
time span and more laboratories/rooms, we can easily reach a cost of about $3700 for just
two rooms with the air conditioning turned on for one month. On the other hand, we
can decrease this cost to about $3000 with the NSGA II configured for energy-saving for
the same amount of time. This comparison shows that we can reach an energy-saving of
about nineteen percent by using the NSGA II optimizer, highlighting the impact of using
an intelligent system on electrical energy consumption.

6. Conclusions

In this paper, we tackle the problem of controlling an air conditioning system using
evolutive algorithms to increase energy-saving while considering user satisfaction.

Therefore, we assessed the performance of two genetic algorithms to control an air
conditioning system. The first algorithm was an implementation of a genetic algorithm
(GA) proposed in [8], while the second was our proposed NSGA II algorithm, which is
a multi-objective optimization algorithm. We considered the NSGA II an appropriate
alternative because the air conditioning system intends to increase energy-saving while
considering the user preference. Thus, both objectives are directly opposed, which is a key
identifier of a multi-objective problem, making NSGA II an excellent alternative for solving.

Additionally, we proposed a modification to the definition of the problem, enhancing
it to consider new elements, including the cost of maintaining the same temperature and
the cancellation of the cost of returning to a warmer temperature, which occurs if the room
is colder than the desired temperature.

Furthermore, we designed and implemented a neural-network-based simulator to
measure both algorithms’ performance in equal circumstances. This simulator showed a
relatively low mean average percentage error of 1.07.

Regarding the comparison between GA and NSGA II, the latter showed better energy-
savings and user satisfaction than GA. Therefore, our assumption that a multi-objective
algorithm would produce better results for controlling an air conditioning system with two
objectives proved right.

Finally, we are currently working on expanding the experimentation by adding other
services. As future work, we encourage researchers to develop an intelligent system
prototype using NSGA II as a decision-making engine, integrating different configura-
tions of user preferences and profiles and further studying the air conditioning system’s
energy cost.

Symmetry 2021, 13, 344 13 of 13

Author Contributions: Conceptualization, Methodology, Investigation, A.H.G.R., S.I.M., and J.D.T.V.;
Software, A.H.G.R., J.D.T.V. and A.A.S.P.; Validation, J.A.C.R. and J.D.T.V.; Formal Analysis, Re-
sources, J.A.C.R., and J.L.M.; Writing—Original Draft Preparation, A.H.G.R.; Writing—Review &
Editing, S.I.M., J.D.T.V., and A.A.S.P.; Data Curation, Visualization, Supervision, M.G.T.B., M.P.P.F.;
Project Administration, Funding Acquisition, S.I.M. and J.A.C.R. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was funded by PNPC of the National Council for Science and Technology
(CONACyT) of México, and the Universidad Autónoma de Tamaulipas.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available at https://github.com/
ahgarciar/Air-Conditioner-System-Controllers (accessed on 19 February 2021).

Acknowledgments: A.H.G.R. would like to thank the CONACyT for the scholarship awarded. The
APC was funded by the Universidad Autónoma de Tamaulipas.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Collotta, M.; Pau, G. A Solution Based on Bluetooth Low Energy for Smart Home Energy Management. Energies 2015, 8,

11916–11938. [CrossRef]
2. Attoue, N.; Shahrour, I.; Younes, R. Smart Building: Use of the Artificial Neural Network Approach for Indoor Temperature

Forecasting. Energies 2018, 11, 395. [CrossRef]
3. Chen, Y.; Fu, G.; Liu, X. Air-Conditioning Load Forecasting for Prosumer Based on Meta Ensemble Learning. IEEE Access 2020, 8,

123673–123682. [CrossRef]
4. Treanţă, S. On a Class of Constrained Interval-Valued Optimization Problems Governed by Mechanical Work Cost Functionals. J.

Optim. Theory Appl. 2021, 1–12. [CrossRef]
5. Treanţă, S. Efficiency in uncertain variational control problems. Neural Comput. Appl. 2020, 1–14. [CrossRef]
6. Shah, Z.A.; Sindi, H.F.; Ul-Haq, A.; Ali, M.A. Fuzzy Logic-Based Direct Load Control Scheme for Air Conditioning Load to

Reduce Energy Consumption. IEEE Access 2020, 8, 117413–117427. [CrossRef]
7. Arikiez, M.; Grasso, F.; Kowalski, D.; Zito, M. Heuristic algorithm for minimizing the electricity cost of air conditioners on a

smart grid. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016;
pp. 1–6.

8. Ullah, I.; Kim, D. An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in
Smart Homes. Energies 2017, 10, 1818. [CrossRef]

9. Deb, K.; Kumar, A. Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective
Problems. Complex Syst. 1995, 9, 431–454.

10. Deb, K.; Goyal, M. A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 1996, 26, 30–45.
11. Raquel, C.R.; Naval, P.C. An Effective Use of Crowding Distance in Multiobjective Particle Swarm Optimization. In Proceedings

of the 7th Annual Conference on Genetic and Evolutionary Computation, Washington, DC, USA, 25–29 June 2005; pp. 257–264.
12. Pedersen, G.K.M.; Goldberg, D.E. Dynamic Uniform Scaling for Multiobjective Genetic Algorithms. Comput. Vis. 2004, 3103,

11–23.

https://github.com/ahgarciar/Air-Conditioner-System-Controllers
https://github.com/ahgarciar/Air-Conditioner-System-Controllers
http://doi.org/10.3390/en81011916
http://doi.org/10.3390/en11020395
http://doi.org/10.1109/ACCESS.2020.2994119
http://doi.org/10.1007/s10957-021-01815-0
http://doi.org/10.1007/s00521-020-05353-0
http://doi.org/10.1109/ACCESS.2020.3005054
http://doi.org/10.3390/en10111818

	Introduction
	Algorithm Design
	Problem Definition
	GA and NSGA II

	Simulator
	Experimental Results
	Discussion
	Conclusions
	References

