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1. Introduction and Preliminaries

We first introduce and review some spaces that will be used in this paper. In what
follows, for any d ∈ N (the set of positive integers), we denote Zd and Rd by

Kd = K×K× · · · × K︸ ︷︷ ︸
d times

= {α = (α1, α2, . . . , αd) : αi ∈ K, 1 ≤ i ≤ d},

where K = Z (the set of integers) or R (the set of real numbers). Recall that the discrete
space lp(Z) is defined by

lp(Z) =

c = (ck)k∈Z :

(
∑
k∈Z
|ck|p

) 1
p

< ∞

 if 1 ≤ p < ∞,

and

lp(Z) =
{

c = (ck)k∈Z : sup
k∈Z
|ck| < ∞

}
if p = ∞.

For c = (ck)k∈Z ∈ lp(Z), we define lp(Z)-norm of c by

‖c‖lp =


(

∑
k∈Z
|ck|p

) 1
p
, if 1 ≤ p < ∞;

supk∈Z |ck|, if p = ∞.
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Let p ∈ [1, ∞]. The Wiener amalgam spaces (WL)p(Rd) is the set of all measurable
functions g on Rd such that their norms ‖g(x)‖(WL)p(Rd) defined by

‖g(x)‖(WL)p(Rd) =


(

∑k∈Zd esssupx∈[0,1]d |g(x + k)|p
) 1

p
< ∞, if 1 ≤ p < ∞;

supk∈Zd

(
esssupx∈[0,1]d |g(x + k)|

)
< ∞. if p = ∞.

Throughout this paper, we denote

[1, ∞]d = {(r1, . . . , rd) : 1 ≤ ri ≤ ∞ for i = 1, 2, . . . , d}.

The following mixed-norm spaces will be discussed in this paper.

Definition 1 (see [1,2]). Let ~p = (p1, . . . , pd) ∈ [1, ∞]d be a mixed-norm index. The mixed-norm
discrete space l~p(Zd) is defined by

l~p
(
Zd
)
=

{
c :
∥∥∥(. . . ‖c(k1, k2, . . . , kd)‖lp1(k1)

. . .
)∥∥∥

lpd(kd)
< ∞

}

with its norm

‖c‖l~p =
∥∥∥(. . . ‖c(k1, k2, . . . , kd)‖lp1(k1)

. . .
)∥∥∥

lpd(kd)
for c ∈ l~p

(
Zd
)

.

Definition 2 (see [1,2]). Let ~p = (p1, . . . , pd) ∈ [1, ∞]d be a mixed-norm index. The mixed-norm
Lebesgue space L~p(Rd) is the set of all measurable functions g on Rd such that

∫
R
· · ·

∫
R

[∫
R

(∫
R
|g(x1, x2, . . . , xd)|p1 dx1

) p2
p1

dx2

] p3
p2

dx3 . . . dxd


1

pd

< ∞.

For g ∈ L~p(Rd), we define L~p(Rd)-norm of g by

‖g‖L~p(Rd) =

∫
R
· · ·

∫
R

[∫
R

(∫
R
|g(x1, x2, . . . , xd)|p1 dx1

) p2
p1

dx2

] p3
p2

dx3 . . . dxd


1

pd

=

∥∥∥∥. . .
∥∥∥‖g(x1, x2, . . . , xd)‖Lp1 (x1)

∥∥∥
Lp2 (x2)

. . .
∥∥∥∥

Lpd (xd)

. (1)

If pi = ∞ for i = 1, . . . , d, then the relevant Lpi -norms in (1) are replaced by L∞-norms. To simplify
the notation ‖g‖L~p(Rd), we also abbreviate this to ‖g‖L~p or ‖g‖~p.

The mixed-norm Lebesgue space L~p(Rd) is a generalization of the classical Lebesgue
space Lp(Rd). This class of function spaces focus on independent variables of possibly
different meanings. Mixed-norm Lebesgue space studies can be traced back to the years of
1960s in [1,2]. The space such like L~p(Rd) has many practical or theoretical applications.
For example, functions in partial differential equations defined by spacial and time variables
may be in some mixed-norm spaces. In addition, inhomogeneous Besov spaces based
on mixed Lebesgue norms are studied recently in [3–5]. Moreover, mixed-norm Triebel–
Lizorkin spaces or Hardy spaces are also studied in [6,7]. Besides, sampling theory is also
studied based on mixed-norm theories in [8], which only distinguishes variables in time
and space. With the help of [9], we will give a generalization of such sampling problem



Symmetry 2021, 13, 331 3 of 14

in sbuspaces of L~p(Rd) cases. That is to say, the results in this paper unify and extend the
revelent existing results in [8,9] and so on.

Definition 3 (see [8,9]). Let ~p = (p1, . . . , pd) ∈ [1, ∞]d be a mixed-norm index. The mixed-norm
Wiener amalgam spaces (WL)~p(Rd) is the set of all measurable functions g on Rd such that∥∥∥· · · ‖g(x1, x2, · · · , xd)‖(WL)p1 (x1)(R) · · ·

∥∥∥
(WL)pd (xd)(R)

< ∞.

For g ∈ (WL)~p(Rd), we define (WL)~p(Rd)-norm of g by

‖g‖(WL)~p(Rd) =
∥∥∥· · · ‖g(x1, x2, · · · , xd)‖(WL)p1 (x1)(R) · · ·

∥∥∥
(WL)pd (xd)(R)

,

where

‖g(x)‖(WL)p(x)(R) =

[
∑
k∈Z

esssupx∈[0,1]|g(x + k)|p
] 1

p

if 1 ≤ p < ∞,

and
‖g(x)‖(WL)∞(x)(R) = sup

k∈Z
esssupx∈[0,1]|g(x + k)| if p = ∞.

Remark 1.

(i) In fact, we have (WL)~p(Rd) ⊂ L~p(Rd), but the converse L~p(Rd) ⊂ (WL)~p(Rd) is not true.
Indeed, since

‖g(x)‖Lp(R) =

(∫
R
|g(x)|pdx

) 1
p
=

(
∑
k∈Z

∫
[0,1]
|g(x + k)|pdx

) 1
p

≤
(

∑
k∈Z

∫
[0,1]

esssupx∈[0,1]|g(x + k)|pdx

) 1
p

=

(∫
[0,1]

∑
k∈Z

esssupx∈[0,1]|g(x + k)|pdx

) 1
p

= ‖g(x)‖(WL)p(R),

by induction on ~p, one has

‖g(x)‖L~p(Rd) ≤ ‖g(x)‖(WL)~p(Rd). (2)

Hence (WL)~p(Rd) ⊂ L~p(Rd).
(ii) It is worth mentioning that when ~p = (p, p, · · · , p), we only get

‖g(x)‖(WL)~p(Rd) ≤ ‖g(x)‖(WL)p(Rd)

and hence
(WL)p(Rd) ⊂ (WL)~p(Rd).

For example, when ~p = (1, 1, · · · , 1) =~1, we have

(WL)1(Rd) ⊂ (WL)~1(R
d).

In classical sampling theory, Shannon sampling theorem [10] shows the basic theory of
signal analysis and communication system, which mainly used the bandlimited functions.
In shift-invariant spaces, it is known that sampling that are not bandlimited is a realistic
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model for a large number of scientific applications [11]. Especially, sampling study of
subspaces generated by wavelets was fascinating in 1990s–2000s (see [12,13]). Until now,
the study of sampling in shift-invariant subspaces of Lp(Rd) (see [9]) has aroused many
mathematicians [14–16]. Therefore, a natural research path is to extend the sampling theory
to the mixed-norm Lebesgue space L~p(Rd). Of course, L~p(Rd) is a kind of Banach space
which inherits many outstanding properties of the traditional Lp(Rd) space. However,
due to the non-commutability of the integral order in the definition of L~p(Rd), this has
brought various challenges to scholars in studying related mathematical problems. For
example, due to the non-commutative order of integrals, it is very difficult to characterize
the relevant mixed-norm spaces (see, e.g., [6,17]).

In this article, motivated by the above studies, we explore the promotion of the results
known in the literature in shift-invariant subspaces of mixed-norm Lebesgue spaces L~p(Rd)
and establish new results to unify and refine these existing results. We establish generalized
sampling theorems, generalized stability theorems and new inequalities in the setting of
shift-invariant subspaces of Lebesgue and Wiener amalgam spaces with mixed-norms. A
convergence theorem of general iteration algorithms for sampling in some shift-invariant
subspaces of L~p(Rd) are also given. Our new results promotes the existing conclusions of
shift-invariant subspaces, such as [8,9]. We hope that it can be used in the study of frame
or random sampling under mixed norms in the future.

2. New Stability Theorems in L~p(Rd) and (WL)~p(Rd)

In this section, we import a series of results for supporting stability theorem in the
setting of L~p(Rd) and (WL)~p(Rd). The following known lemma ([18], Theorem 6.18) is
fundamental for our proofs.

Lemma 1. Let 1 ≤ p ≤ ∞, c ∈ lp and h ∈ l1, then ‖∑k c(k)h(l − k)‖lp ≤ ‖c‖lp‖h‖l1 .

With the help of Lemma 1, we now have a estimation of upper bound for stability
theorem in Theorem 3, which calls the help of (WL)1(Rd) (the upper bound positive
constant is ‖η(x1, x2)‖(WL)1(Rd)(R2)).

Theorem 1. Assume ~p ∈ [1, ∞]d, c ∈ l~p and η(x) ∈ (WL)~1(R
d). Then∥∥∥∥∥∑k

ckη(x− k)

∥∥∥∥∥
L~p(Rd)

≤ ‖c‖l~p‖η‖(WL)~1(R
d).

Proof. For 1 ≤ p1 < ∞, by Lemma 1, we have∥∥∥∥∥∑k1

ck1,k2 η(x1 − k1, x2 − k2)

∥∥∥∥∥
p1

Lp1 (x1)(R)
=
∫
R |∑k1

ck1,k2 η(x1 − k1, x2 − k2)|p1 dx1

=
∫
[0,1] ∑l1∈Z |∑k1

ck1,k2 η(x1 − k1 − l1, x2 − k2)|p1 dx1

≤
∫
[0,1] ‖ck1,k2‖

p1
lp1 (k1)

‖η(x1 − k1 − l1, x2 − k2)‖
p1
l1(k1)

dx1

= ‖ck1,k2‖
p1
lp1 (k1)

‖η(x1, x2 − k2)‖
p1
(WL)1(x1)(R)

,

which leads to∥∥∥∥∥∑k1

ck1,k2 η(x1 − k1, x2 − k2)

∥∥∥∥∥
Lp1 (x1)(R)

≤ ‖ck1,k2‖lp1 (k1)
‖η(x1, x2 − k2)‖(WL)1(x1)(R).
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A similar argument could be made for p1 = ∞. So we can obtain∥∥∥∥∥∑k2

∑
k1

ck1,k2 η(x1 − k1, x2 − k2)

∥∥∥∥∥
L(p1,p2)

(R2)

≤
∥∥∥∑k2

‖∑k1
ck1,k2 η(x1 − k1, x2 − k2)‖Lp1 (x1)(R)

∥∥∥
Lp2 (x2)(R)

≤
∥∥∥∑k2

‖ck1,k2‖lp1 (k1)
‖η(x1, x2 − k2)‖(WL)1(x1)(R)

∥∥∥
Lp2 (x2)(R)

≤
∥∥∥‖ck1,k2‖lp1 (k1)

∥∥∥
lp2 (k2)

∥∥∥‖η(x1, x2)‖(WL)1(x1)(R)

∥∥∥
(WL)1(x2)(R)

≤ ‖ck1,k2‖l(p1,p2)
‖η(x1, x2)‖(WL)~1(R

2).

Therefore the conclusion holds by induction on ~p.

It is easy to see that when (WL)~1 is replaced by (WL)1, we have the same results as in
Theorem 1 and its proof is similar because of ‖g‖(WL)~1(R

d) ≤ ‖g‖(WL)1(Rd):

Corollary 1. Assume ~p ∈ [1, ∞]d, c ∈ l~p and η(x) ∈ (WL)1(Rd). Then∥∥∥∥∥∑k
ckη(x− k)

∥∥∥∥∥
L~p(Rd)

≤ ‖c‖l~p‖η‖(WL)1(Rd).

The shift-invariant subspace Span(η) (we usually call this space generated by η) is
defined by

Span(η) :=

{
f = ∑

k
ckη(x− k) : c ∈ l~p(Zd), η ∈ (WL)1(Rd)

}
.

The following two known results are important for proving our new stability theorem.

Lemma 2 ([19]). (Mixed-norm Hölder inequality) Let 1 ≤ ~p,~q ≤ ∞ with 1
pi
+ 1

qi
= 1 for

i = 1, 2, · · · , d. Let g1(x) ∈ L~p(Rd) and g2(x) ∈ L~q(Rd). Then

‖g1(x)g2(x)‖L1(Rd) ≤ ‖g1(x)‖L~p(Rd)‖g2(x)‖L~q(Rd).

Theorem 2 ([9]). Let η ∈ (WL)1(Rd) and C1 and C2 be positive constants. Then

C1‖c‖l2 ≤ ‖∑
k

ckη(x− k)‖L2(Rd) ≤ C2‖c‖l2

holds if and only if one of the following conditions holds:

(i) There exists a function h ∈ Span(η) such that

〈η(x− l), h(x)〉 = δ0,l , l ∈ Zd,

and δ0,l is defined by δ = 1 for l = 0, δ = 0 for l 6= 0;
(ii) ∑l |η̂(ξ + 2πl)|2 > 0 for every ξ ∈ Rd.

Now, we establish the following new stability theorem.
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Theorem 3. Let ~p ∈ [1, ∞]d, c ∈ l~p(Zd) and η ∈ (WL)1(Rd). Suppose that ∑l |η̂(ξ + 2πl)|2 >

0 for every ξ ∈ Rd. Then

C1‖c‖l~p ≤ ‖∑
k

ckη(x− k)‖L~p(Rd) ≤ C2‖c‖l~p (3)

and
C1‖c‖l~p ≤ ‖∑

k
ckη(x− k)‖(WL)~p(Rd) ≤ C2‖c‖l~p (4)

hold for some positive constants C1 and C2.

Proof. We first verify (3). On one hand, by Theorem 1, it leads to∥∥∥∥∥∑k
ckη(x− k)

∥∥∥∥∥
L~p(Rd)

≤ ‖c‖l~p‖η‖(WL)~1(R
d).

This means C2 = ‖η‖(WL)~1(R
d) ≤ ‖η‖(WL)1(Rd) and the upper bound of (3) is obtained.

For lower bound on the other hand, let hη(x) = ∑k ckη(x− k). By applying Theorem 2,
we can find a function h ∈ Span(η) such that

〈η(x− l), h(x)〉 = δ0,l , l ∈ Zd.

Then ∫
Rd

hη(x)h(x− k)dx

=
∫
Rd(∑m cmη(x−m))h(x− k)dx

= ∑m cm
∫
Rd η(x−m + k)h(x)dx = ck.

Let {(c̃k)k} ∈ l~q with 1
pi
+ 1

qi
= 1 for i ∈ {1, 2, · · · , d}. Thus

|〈c, c̃〉| =
∣∣∣∣∣∑k

ck c̃k

∣∣∣∣∣
=

∣∣∣∣∣∑k
c̃k

∫
Rd

hη(x)h(x− k)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rd

hη(x)∑
k

c̃kh(x− k)dx

∣∣∣∣∣.
With the help of Lemma 2 and Theorem 1, one has

|〈c, c̃〉| ≤ ‖hη(x)‖L~p(Rd)‖∑
k

c̃kh(x− k)‖L~q(Rd)

≤ ‖hη(x)‖L~p(Rd)‖c̃‖l~q‖h(x)‖(WL)~1(R
d).

It follows that

‖c‖l~p ≤ ‖hη(x)‖L~p(Rd)‖h(x)‖(WL)~1(R
d) ≤ ‖hη(x)‖L~p(Rd)‖h(x)‖(WL)1(Rd).

Therefore, we get
1

‖h(x)‖(WL)1(Rd)

‖c‖l~p ≤ ‖hη(x)‖L~p(Rd).

Take C1 = 1
‖h(x)‖

(WL)1(Rd)
and hence the lower bound is arrived.
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Next, we prove (4). Using Lemma 1, we obtain

‖hη(x)‖(WL)(p1,p2)
(R2)

= {∑k2
esssupx2∈[0,1][∑k1

esssupx1∈[0,1]|hη(x1 − k1, x2 − k2)|p1 ]
p2
p1 }

1
p2

= {∑k2
esssupx2∈[0,1][∑k1

esssupx1∈[0,1](∑l1,l2 |cl1,l2 ||η(x1 − k1 − l1, x2 − k2 − l2)|)p1 ]
p2
p1 }

1
p2

≤ {∑k2
[∑k1

(∑l1 ∑l2 |cl1,l2 |esssupx1,x2∈[0,1]|η(x1 − k1 − l1, x2 − k2 − l2)|)p1 ]
p2
p1 }

1
p2

≤ ‖cl1,l2‖l(p1,p2)
∑k2

[∑k1
(esssupx1,x2∈[0,1]|η(x1 − k1, x2 − k2)|)]

= ‖cl1,l2‖l(p1,p2)
‖η(x1, x2)‖(WL)1(R2),

So the upper bound of (4) is arrived. Moreover, by (2),

‖hη(x)‖L(p1,p2)
(R2) ≤ C‖hη(x)‖(WL)(p1,p2)

(R2).

Putting this with the lower bound of (3), we have the lower bound of (4).
A similar argument could be extended to the case of p = (p1, p2, · · · , pd} with d ≥ 3.

The proof is completed.

Remark 2. Here, from the proof of upper bound in (4), we cannot have the same result by η ∈
(WL)~1(R

d) because we only have ‖g(x)‖(WL)~1(R
d) ≤ ‖g(x)‖(WL)1(Rd). In fact, we have another

proof of (3) in [19]. In fact, in [19], we use the condition of η ∈ L−→∞ (Rd), not η ∈ (WL)1(Rd).
Note that

‖g‖L~∞(Rd) = esssupxd∈[0,1]

(
∑

kd∈Z

{
. . .

[
esssupx1∈[0,1]

(
∑

k1∈Z
|g(x1 + k1, . . . , xd + kd)|

)]
. . .

})
.

Then ‖g(x)‖L−→∞ (Rd) ≤ ‖g(x)‖(WL)~1(R
d) by their definitions.

3. Sampling Theorems in Span(η) with Mixed-Norms

In order to conduct sampling studies, we usually assume that the objective function
or signal g(x) is continuous. Furthermore, we also need the help of 1-order modulus of
continuity of g(x) to establish the convergence of the summation of sampling series.

Definition 4 (see [8,9]). Let t > 0 and g(x) be a continuous function on Rd. Then 1-order
modulus of continuity of g(x) is defined by

m(g)t(x) = sup
|h|≤t
|g(x + h)− g(x)|.

The following result will show that Definition 4 is well-defined.

Proposition 1. Let g ∈ (WL)1(Rd). If g is continuous, then m(g)t(x) ∈ (WL)~1(R
d) and

m(g)t(x) ∈ (WL)1(Rd).
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Proof. Assume 0 < t < 1. Then

m(g)t(x1 + l1, x2 + l2, · · · , xd + ld)

= sup|h|≤t |g(x1 + l1 + h1, x2 + l2 + h2, · · · , xd + ld + hd)− g(x1 + l1, x2 + l2, · · · , xd + ld)|

≤ sup|h|≤t |g(x1 + l1 + h1, x2 + l2 + h2, · · · , xd + ld + hd)|

+ sup|h|≤t |g(x1 + l1, x2 + l2, · · · , xd + ld)|

It is easy to see that

∑
ld

sup
xd∈[0,1]

· · ·∑
l1

sup
x1∈[0,1]

sup
|h|≤t
|g(x1 + l1, x2 + l2, · · · , xd + ld)|

= ∑ld supxd∈[0,1] · · ·∑l1 supx1∈[0,1] |g(x1 + l1, x2 + l2, · · · , xd + ld)|

= ‖g‖(WL)~1(R
d).

On the other hand, since

sup
x1∈[0,1]

|g(x1 + l1 + h1, x2 + l2 + h2, · · · , xd + ld + hd)|

≤ supx1∈[−1,2] |g(x1 + l1, x2 + l2 + h2, · · · , xd + ld + hd)|,

which leads to

∑
l1∈Z

sup
x1∈[0,1]

|g(x1 + l1 + h1, x2 + l2 + h2, · · · , xd + ld + hd)|

≤ ∑l1∈Z supx1∈[−1,2] |g(x1 + l1, x2 + l2 + h2, · · · , xd + ld + hd)|

≤ ∑l1∈Z ∑k1∈[−1,2]
⋂
Z supx1∈[0,1] |g(x1 + l1 + k1, x2 + l2 + h2, · · · , xd + ld + hd)|

= ∑k1∈[−1,2]
⋂
Z ∑l1∈Z supx1∈[0,1] |g(x1 + l1 + k1, x2 + l2 + h2, · · · , xd + ld + hd)|

≤ 4 ∑l1∈Z supx1∈[0,1] |g(x1 + l1, x2 + l2 + h2, · · · , xd + ld + hd)|.

So, we have

∑
ld

sup
xd∈[0,1]

· · ·∑
l1

sup
x1∈[0,1]

sup
|h|≤t
|g(x1 + l1 + h1, x2 + l2 + h2, · · · , xd + ld + hd)|

≤ 4d ∑ld supxd∈[0,1] · · ·∑l1 supx1∈[0,1] |g(x1 + l1, x2 + l2, · · · , xd + ld)|

≤ C‖g‖(WL)~1(R
d),

where C = 4d for 0 < t < 1.
Put all the above together, we get

‖m(g)t(x)‖(WL)~1(R
d) ≤ C‖g(x)‖(WL)~1(R

d).
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Similarly, since

∑
l=(l1,··· ,ld)∈Zd

sup
x∈[0,1]d

sup
|h|≤t
|m(g)(x1 + l1 + h1, x2 + l2 + h2, · · · , xd + ld + hd)|

≤ ∑l∈Zd supx∈[0,1]d sup|h|≤t |g(x1 + l1 + h1, x2 + l2 + h2, · · · , xd + ld + hd)|

+∑l∈Zd supx∈[0,1]d sup|h|≤t |g(x1 + l1, x2 + l2, · · · , xd + ld)|

≤ 2 ∑l∈Zd supx∈[−1,2]d |g(x1 + l1, x2 + l2, · · · , xd + ld)|

= 2 ∑l∈Zd ∑k∈[−1,2]d
⋂
Zd supx∈[0,1]d |g(x1 + l1 + k1, x2 + l2 + k2, · · · , xd + ld + kd)|

= 2 ∑k∈[−1,2]d
⋂
Zd ∑l∈Zd supx∈[0,1]d |g(x1 + l1 + k1, x2 + l2 + k2, · · · , xd + ld + kd)|

= 2 · 4d ∑l∈Zd supx∈[0,1]d |g(x1 + l1 + k1, x2 + l2 + k2, · · · , xd + ld + kd)|

= C‖g‖(WL)1(Rd),

we obtain
‖m(g)t(x)‖(WL)1(Rd) ≤ C‖g(x)‖(WL)1(Rd).

The proof is completed.

Proposition 2. Let g ∈ (WL)1(Rd). If g is continuous, then

lim
t→0+

‖m(g)t(x)‖(WL)1(Rd) = 0.

Proof. By Proposition 1, for every fixed ε > 0, there exists M ∈ N, such that

∑
|l|≥M

sup
x∈[0,1]d

|m(g)(x + l)| ≤ ε.

Since g is continuous, there exists some tM > 0 satisfying the following estimation:

sup
x∈[0,1]d

sup
|h|<tM

|g(x + l + h)− g(x + l)| ≤ ε

Md

with |l| < M and t < tM. Thus,

∑
|l|<M

sup
x∈[0,1]d

sup
|h|<tM

|g(x + l + h)− g(x + l)| ≤ ∑
|l|<M

ε

Md ≤ 2ε.

Observe that for any 0 < t < tM,

‖m(g)t(x)‖(WL)1(Rd) = ∑
|l|≥M

sup
x∈[0,1]d

|m(g)t(x+ l)|+ ∑
|l|<M

sup
x∈[0,1]d

sup
|h|<tM

|g(x+ l + h)− g(x+ l)| ≤ 3ε,

this shows limt→0+ ‖m(g)t(x)‖(WL)1(Rd) = 0. The proof is completed.

Theorem 4. Let η ∈ (WL)1(Rd) and g ∈ Span(η). If η is continuous, then the following hold:

(i) m(g)t(x) ∈ L~p;
(ii) for any ε > 0, there exists some T > 0 such that

‖m(g)t(x)‖L~p(Rd) ≤ ε‖g‖L~p(Rd)

for 0 < t < T.
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Proof. Since g ∈ Span(η), g = ∑k ckη(x− k) for c ∈ l~p. So

m(g)t(x) = sup
|h|≤t
|g(x + h)− g(x)|

≤ sup
|h|≤t

∑
k
|ck||η(x− k + h)− η(x− k)|

≤∑
k
|ck| sup

|h|≤t
|η(x− k + h)− η(x− k)|

= ∑
k
|ck|m(η)t(x− k).

By Theorem 3, one has

‖m(g)t(x)‖L~p(Rd) ≤ ‖c‖l~p‖m(η)t(x)‖(WL)1(Rd).

Combining this with (3) yield

‖m(g)t(x)‖L~p(Rd) ≤ C‖g‖L~p(Rd)‖m(η)t(x)‖(WL)1(Rd),

which means m(g)t(x) ∈ L~p(Rd). Hence (i) is proved. To see (ii), let ε > 0 be given. Then,
by Proposition 2, there exists T > 0 such that

‖m(g)t(x)‖L~p(Rd) ≤ ε‖g‖L~p(Rd)

for 0 < t < T. The proof is completed.

Definition 5 (see [8]). Let ∆1, ∆2, · · · , ∆d be countable index sets. The sampling point set

S = {xk = (xk1 , xk2 , · · · , xkd
) : k = (k1, k2, · · · , kd) ∈ (∆1, ∆2, · · · , ∆d)}

is said to be strongly separated if infki 6=kj
|xki
− xkj

| ≥ ε > 0, where ε is fixed.

Before presenting the sampling theorem in this section, we will show some strongly
separated properties of the sampling points meticulously.

Theorem 5. Let ∆1, ∆2, · · · , ∆d be countable index sets. Suppose that the sampling point set S =
{xk = (xk1 , xk2 , · · · , xkd

) : k = (k1, k2, · · · , kd) ∈ (∆1, ∆2, · · · , ∆d)} is strongly separated. Then

‖g(xk1 , xk2 , · · · , xkd
)‖l~p ≤ Cε,~p‖g‖(WL)~p(Rd)

for a continuous function f ∈ (WL)~p(Rd) and some positive constant Cε,~p.

Proof. Note that ‖g(xk1 , xk2 , · · · , xkd
)‖l~p :=

∥∥∥· · · ‖g(xk1 , xk2 , · · · , xkd
)‖lp1 (k1)

· · ·
∥∥∥

lpd (xd)
. So,

we have
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‖g(xk1
, xk2 , · · · , xkd

)‖lp1 (k1)

= [∑k1∈∆1
|g(xk1

, xk2 , · · · , xkd
)|p1 ]

1
p1

= [∑l1∈Z ∑xk1∈[l1,l1+1] |g(xk1
, xk2 , · · · , xkd

)|p1 ]
1

p1

≤ [∑l1∈Z ∑xk1∈[l1,l1+1] supx1∈[l1,l1+1] |g(x1, xk2 , · · · , xkd
)|p1 ]

1
p1

≤ [∑l1∈Z(b
1
ε c+ 1) supx1∈[l1,l1+1] |g(x1, xk2 , · · · , xkd

)|p1 ]
1

p1

≤ [∑l1∈Z(b
1
ε c+ 1) supx1∈[0,1] |g(x1 + l1, xk2 , · · · , xkd

)|p1 ]
1

p1

= (b 1
ε c+ 1)

1
p1 [∑l1∈Z supx1∈[0,1] |g(x1 + l1, xk2 , · · · , xkd

)|p1 ]
1

p1 ,

with bxc is the biggest integer less than or equals to x. By induction, we get∥∥∥· · · ‖g(xk1 , xk2 , · · · , xkd
)‖lp1 (k1)

· · ·
∥∥∥

lpd (xd)

≤ (b 1
ε c+ 1)

1
p1 · · · (b 1

ε c+ 1)
1

pd

∑ld∈Z

[
· · · [∑l1∈Z supx1∈[0,1] |g(x1 + l1, · · · , xd + ld)|p1 ]

1
p1 · · ·

] pd
pd−1


1

pd

= Cε,~p‖g‖(WL)~p(Rd).

The proof is completed.

Definition 6 (see [8]). The sampling points S is called r-dense if the balls Br(x) satisfy⋃
x∈S

BR(x) = Rd for any R > r.

Let ∆1, ∆2, · · · , ∆d be countable index sets. Recall that the collection {uk(x)}k∈(∆1,∆2,··· ,∆d)

is a partition of unity if it satisfies the following three conditions:

(1) 0 ≤ uk(x) ≤ 1 for k = (k1, k2, · · · , kd) ∈ (∆1, ∆2, · · · , ∆d);
(2) Suppuk(x) ⊆ Br(x), where Br(x) is the open ball centered at x = (x1, x2, · · · , xd) with

radius r > 0;
(3) ∑k uk(x) = 1.

Let {uk(x)}k∈(∆1,∆2,··· ,∆d)
is a partition of unity. Then we can define the sampling

operator by
PSg(x) = ∑

k∈(∆1,∆2,··· ,∆d)

g(xk)uk(x)

with the sampling sequence g(xk) = g(xk1 , xk2 , · · · , xkd
). Usually, we take the sampling

point set S as strongly separated.
Finally, applying Theorem 4, we establish the following new sampling theorem.

Theorem 6. Let η ∈ (WL)1(Rd), g ∈ Span(η) and p ∈ [1, ∞]d. If η is continuous and S is
R0-dense and strongly separated, then for each ε > 0,

‖g(x)− PSg(x)‖L~p(Rd) ≤ ε‖g‖L~p(Rd)

for any 0 < r < R0.
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Proof. Since

g(x)− PSg(x) = ∑
k∈(∆1,··· ,∆d)

(
g(x1, · · · , xd)− g(xk1 , · · · , xkd

)
)
uk(x)

= ∑
k∈(∆1,··· ,∆d)

(
g(x1, · · · , xd)− g(x1 + hxk1

, · · · , xd + hxkd
)
)

uk(x),

by Theorem 4, we have

‖g− PSg(x)‖L~p

≤
∥∥∥∑k∈(∆1,··· ,∆d)

∣∣∣(g(x1, · · · , xd)− g(x1 + hxk1
, · · · , xd + hxkd

)
)∣∣∣uk(x)

∥∥∥
L~p(Rd)

≤ ‖∑k∈(∆1,··· ,∆d)
sup|h|≤r

∣∣∣(g(x1, · · · , xd)− g(x1 + hxk1
, · · · , xd + hxkd

)
)∣∣∣uk(x)‖L~p(Rd)

≤ ‖m(g)r(x)∑k∈(∆1,··· ,∆d)
uk(x)‖L~p(Rd)

= ‖m(g)r(x)‖L~p

≤ ε‖g‖L~p(Rd),

where h = (hxk1
, · · · , hxkd

). The proof is completed.

Remark 3. An new iterative algorithm can be established as follows:
Define

g1(x) := PSg

and
gn+1(x) := PS(g− gn)(x) + gn(x) for n ∈ N,

where S is a fixed sampling point set with 0 < ε < 1 in Theorem 6. It is easy to see g− g1 ∈
Span(η). Hence, by induction, we get g− gn ∈ Span(η). Applying Theorem 6, we obtain

‖g− gn+1‖L~p(Rd) = ‖g− gn − PS(g− gn)‖L~p(Rd)

≤ ε‖g− gn‖L~p(Rd)

≤ εn−1‖g− g1‖L~p(Rd)

≤ εn‖g‖L~p(Rd),

which imply
lim

n→+∞
‖g− gn‖L~p(Rd) = 0.

This proves the strong convergence of our iterative algorithm.

Remark 4. As an example, let

η(x1, x2, · · · , xd) = ϕ1(x1)⊗ ϕ2(x2)⊗ · · · ⊗ ϕd(xd),

where ⊗ means the traditional tensor product. In wavelet theory, we can take the functions ϕi,
1 ≤ i ≤ d, as the orthonormal or biorthogonal scaling functions with compact support. It is not
hard to verify that these scaling functions satisfy ‖η‖(WL)~1(R

d) < ∞ or ‖η‖(WL)1(Rd) < ∞ and

∑l |η̂(ξ + 2πl)|2 > 0 for every ξ ∈ Rd.
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4. Conclusions

It is well-known that sampling theory and stability theory are fascinating theories
that has a wide range of applications in different branches of mathematics. In this article,
inspired by previous research, we explore the promotion of the results known in the
literature in shift-invariant subspaces of mixed-norm Lebesgue spaces L~p(Rd) and establish
new results to unify and refine these existing results. We establish generalized stability
theorems, generalized sampling theorems and new inequalities in shift-invariant subspaces
of Lebesgue and Wiener amalgam spaces with mixed-norms. A convergence theorem of
general iteration algorithms for sampling in some shift-invariant subspaces of L~p(Rd) is
also given. Our new results promote the existing conclusions in shift-invariant subspaces.
We hope that these new results can be used in the investigation of frame or random
sampling under mixed norms in the future. Furthermore, the study of mathematical
models and numerical experiment results is also an important goal of our future research.
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