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Abstract: The last years have revealed the importance of the inverse Lomax distribution in the un-
derstanding of lifetime heavy-tailed phenomena. However, the inverse Lomax modeling capabilities
have certain limits that researchers aim to overcome. These limits include a certain stiffness in the
modulation of the peak and tail properties of the related probability density function. In this paper, a
solution is given by using the functionalities of the half logistic family. We introduce a new three-
parameter extended inverse Lomax distribution called the half logistic inverse Lomax distribution.
We highlight its superiority over the inverse Lomax distribution through various theoretical and
practical approaches. The derived properties include the stochastic orders, quantiles, moments,
incomplete moments, entropy (Rényi and q) and order statistics. Then, an emphasis is put on the
corresponding parametric model. The parameters estimation is performed by six well-established
methods. Numerical results are presented to compare the performance of the obtained estimates.
Also, a simulation study on the estimation of the Rényi entropy is proposed. Finally, we consider
three practical data sets, one containing environmental data, another dealing with engineering data
and the last containing insurance data, to show how the practitioner can take advantage of the new
half logistic inverse Lomax model.

Keywords: mathematical model; probability distributions; half logistic distribution; inverse lomax
distribution; entropy; estimation; data analysis

MSC: 60E05; 62E15; 62F10

1. Introduction

Over the last century, many significant distributions have been introduced to serve
as models in applied sciences. Among them, the so-called generalized beta distribution
introduced by [1] is at the top of the list in terms of usefulness. The main feature of the gen-
eralized beta distribution is to be very rich; It includes a plethora of named distributions (to
our knowledge, over thirty). In this paper, we focus our attention on one of the most attrac-
tive of these distributions, known as the inverse Lomax (IL) distribution. Mathematically,
it also corresponds to the distribution of Y = X−1, where X is a random variable following
the famous Lomax distribution (see [2]). Thus, the cumulative distribution function (cdf)
of the IL distribution is given by

G(x; α, λ) =

(
1 +

x−1

λ

)−α

, x > 0, (1)
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where λ is a positive scale parameter and α is a positive shape parameter, and G(x; α, λ) = 0
for x ≤ 0. The reasons for the interest of the IL distribution are the following ones. It
has proved itself as a statistical model in various applications, including economics and
actuarial sciences (see [3]) and geophysics (see [4]). Also, the mathematical and inferential
aspects of the IL distribution are well developed. See, for instance, Reference [5] for
the Lorenz ordering of order statistics, Reference [6] for the parameters estimation in
a Bayesian setting, Reference [7] for the parameters estimation from hybrid censored
samples, Reference [8] for the study of the reliability estimator under type II censoring and
Reference [9] for the Bayesian estimation of two-component mixture of the IL distribution
under type I censoring. Despite an interesting compromise between simplicity and accuracy,
the IL model suffers from a certain rigidity in the peak (punctual and roundness) and tail
properties. This motivates the developments of diverse parametric extensions, such as the
inverse power Lomax distribution introduced by [10], the Weibull IL distribution studied
by [11] and the Marshall-Olkin IL distribution studied by [12].

In this paper, we introduce and discuss a new extension of the IL distribution based
on the half logistic generated family of distributions studied by [13]. This general family is
defined by the following cdf:

F(x; β, ξ) =
1− [1− G(x; ξ)]β

1 + [1− G(x; ξ)]β
, x ∈ R, (2)

where β is a positive shape parameter and G(x; ξ) denotes a cdf of a continuous univariate
distribution. Here, ξ represents a vector of parameter(s) related to the corresponding
parental distribution. The main motivations behind the half logistic generated family are
as follows. First, it is proved in [13] that the combined effect of the considered ratio and
power transformations can significantly enrich the parental distribution, improving the
flexibility of the mode, median, skewness and tail, with a positive impact on the analyses of
practical data sets. The normal, Weibull and Fréchet distributions have been considered as
parents in [13]. Recent studies have also pointed out these facts in other practical settings.
See, for instance, References [14–16] which consider the generalized Weibull, Topp-Leone
and power Lomax distributions as parental distributions, respectively. However, the half
logistic generated family remains underexploited and, based on the previous promising
studies, needs more thorough attention. In this paper, we contribute in this direction of
work, with the consideration of the IL distribution as a parent.

Thus, we introduce a new attractive lifetime distribution with three parameters called
the half logistic IL (HLIL) distribution. The cdf of the HLIL distribution with parameter
vector φ = (α, λ, β) is obtained by inserting (1) into (2) as

F(x; φ) =

1−
[

1−
(

1 + x−1

λ

)−α
]β

1 +
[

1−
(

1 + x−1

λ

)−α
]β

, x > 0, (3)

where λ is a positive scale parameter, and α and β are two positive shape parameters, and
F(x; φ) = 0 for x ≤ 0. With various theoretical and practical developments, we show how
the functionalities of the half logistic generated family confer new application perspectives
to the IL distribution. In particular, the preference of the HLIL distribution over the IL
distribution is motivated by the following findings: (i) the decay rate of convergence of the
probability density function (pdf) of the HLIL distribution can be modulated by adjusting
β contrary to the fixed one of the IL distribution, (ii) the mode of the HLIL distribution is
positively affected by β on the numerical point of view, (iii) the almost constant hazard
rate shape is reachable for the HLIL distribution, this is not the case of the IL distribution,
(iv) the skewness of the HLIL distribution is more flexible to the IL distribution, with the
observation of an ‘almost symmetric shape’ for some parameter values, and (v) the kurtosis
of the HLIL distribution varies between the mesokurtic and leptokurtic cases, with a specific
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‘roundness shape property’ for some parameter values. Thus, from the modeling point
of view, in the category of heavy right-tailed distributions, the HLIL distribution is very
flexible on the peak and tails, and its pdf allows the ‘almost symmetric shape and/or round
shape fitting’ of the histogram of the data, which is not possible with the IL distribution, for
instance. In this study, after developing the mathematical features of the HLIL distribution,
we emphasize its inferential aspects, which are of comparable complexity with those of
the IL distribution. In particular, from the related HLIL model, we develop the parameters
estimation by six various well-established methods. Also, a simulation study on the
estimation of the Rényi entropy is proposed. Then, three applications in environment,
engineering and insurance are given; Three data sets in these fields are analysed in the
rules of the art, revealing the superiority of the HLIL model over some known competitors,
including the reference IL model.

The remainder of this article is arranged as follows. The important functions related
to the HLIL distribution are presented in Section 2. Section 3 investigates some properties
of the HLIL distribution such as stochastic orders, moments, Rényi and q-entropies, and
order statistics. Section 4 studies parameter estimates for the HLIL model based on six
different methods, namely: maximum likelihood (ML), least squares (LS), weighted least
squares (WLS), percentile (PC), Cramér-von Mises (CV) and maximum product of spacing
(MPS) methods, with practical guarantees via a simulation study. Two real life data sets are
presented and analyzed to show the benefit of the HLIL model compared with some other
known models in Section 5. The article ends with some concluding remarks in Section 6.

2. Important Functions

This section is devoted to some important functions of the HLIL distribution, with ap-
plications.

2.1. The Probability Density Function

Upon differentiation of F(x; φ) with respect to x, the pdf of the HLIL distribution is
given by

f (x; φ) =

2βα
λ x−2

(
1 + x−1

λ

)−α−1
[

1−
(

1 + x−1

λ

)−α
]β−1

{
1 +

[
1−

(
1 + x−1

λ

)−α
]β
}2 , x, λ, α, β > 0. (4)

An analytical study of this function is proposed below. First, the following equivalence
holds. As x → 0, we have f (x; φ) ∼ (βαλα/2)xα−1, and, as x → +∞, we have f (x; φ) ∼
(2βαβ/λβ)x−β−1. Thus, for α ∈ (0, 1), we have limx→0 f (x; φ) = +∞, for α = 1, we have
limx→0 f (x; φ) = βλ/2 and for α > 1, we have limx→0 f (x; φ) = 0. Furthermore, without
special constraints on the parameters, we have limx→+∞ f (x; φ) = 0 with a converge
rate depending on the parameter β making the difference with the former IL distribution.
The obtained equivalence results are also crucial to determine the existence of moment
measures and functions (raw moments, moment generating function, entropy. . . )

A change point of f (x; φ), say xm, satisfies f ′(xm; φ) = 0 or, equivalently,
{log[ f (xm; φ)]}′ = 0. After some developments, we arrive at the following equation:

− 2
xm

+ (α + 1)
1

xm(λxm + 1)
− α(β− 1)

λ

x−2
m

(
1 + x−1

m
λ

)−α−1

1−
(

1 + x−1
m
λ

)−α

+
2αβ

λ

x−2
m

(
1 + x−1

m
λ

)−α−1
[

1−
(

1 + x−1
m
λ

)−α
]β−1

1 +
[

1−
(

1 + x−1
m
λ

)−α
]β

= 0.
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Clearly, from this equation, we can not derive an analytical formula for xm. It is
however clear that it is modulated by the parameter β, offering a certain flexibility in this
regard. Also, the presence of several change points is not excluded. However, for a given
φ, it can be determined numerically by using any standard mathematical software, as
Mathematica, Matlab or R.

From the theoretical point of view, the fine shape properties of f (x; φ) are given by
the study of the signs of the first and second order derivatives of f (x; φ) with respect to
x. However, the expressions obtained are very complex and do not make it possible to
determine the exact range of values of the parameters characterizing the different shapes.
This obstacle motivates a graphic study. Figure 1 displays some plots of f (x; φ) for some
different values of the parameters.
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Figure 1. Plots of the pdf of the half logistic inverse Lomax (HLIL) distribution for various choices of
α, β and λ.

From Figure 1, we notice that the pdf of the HLIL distribution can be reversed J,
right-skewed and almost symmetrical shaped. Based on several empirical observations,
we conjecture that the J shapes are mainly observed for α ∈ (0, 1). The various forms of
the curves also indicate a certain versatility in mode, skewness and kurtosis with is clearly
a plus in terms of modeling; the pdf allows the ‘almost symmetric shape and/or round
shape fitting’ of the histogram of heavy-tailed data. This specificity is not observed for the
IL distribution, as attested by Figure 2.
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Figure 2. Plots of the pdf of the IL distribution for various choices of α and λ.
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2.2. Reliability Functions

Here, we present the main reliability functions of the HLIL distribution, which are of
importance for various applications. The survival function (sf) and cumulative hazard rate
function (chrf) of the HLIL distribution are, respectively, given by

R(x; φ) = 1− F(x; φ) =

2
[

1−
(

1 + x−1

λ

)−α
]β

1 +
[

1−
(

1 + x−1

λ

)−α
]β

, x > 0, (5)

and R(x; φ) = 1 for x ≤ 0, and

H(x; φ) = − log[R(x; φ)]

= − log(2)− β log

[
1−

(
1 +

x−1

λ

)−α
]
+ log

1 +

[
1−

(
1 +

x−1

λ

)−α
]β
,

and H(x; φ) = 0 for x ≤ 0. Also, the hazard rate function (hrf) is obtained as

h(x; φ) =
f (x; φ)

R(x; φ)
=

βα
λ x−2

(
1 + x−1

λ

)−α−1{
1 +

[
1−

(
1 + x−1

λ

)−α
]β
}[

1−
(

1 + x−1

λ

)−α
]

and h(x; φ) = 0 for x ≤ 0. The analytical study of this hrf is important to understand the
modeling capacity of the HLIL model. First, the following equivalences are true. As x → 0,
we have h(x; φ) ∼ (βαλα/2)xα−1 and, as x → +∞, we have h(x; φ) ∼ βx−1. We deduce
the following asymptotic properties, which are similar to those for f (x; φ). For α ∈ (0, 1),
we have limx→0 h(x; φ) = +∞, for α = 1, we have limx→0 h(x; φ) = βλ/2 and for α > 1,
we have limx→0 h(x; φ) = 0. Furthermore, we always have limx→+∞ h(x; φ) = 0. As an
alpha remark, based on the obtained asymptote as x → 0, for α close to 1, constant shapes
for the h(x; φ) can be observed for small values of x.

On the other side, a change point of h(x; φ), say xc, satisfies {log[h(xc; φ)]}′ = 0.
Some algebraic manipulations give the following equation:

− 2
xc

+ (α + 1)
1

xc(λxc + 1)
+

α

λ

x−2
c

(
1 + x−1

c
λ

)−α−1

1−
(

1 + x−1
c
λ

)−α

+
αβ

λ

x−2
c

(
1 + x−1

c
λ

)−α−1
[

1−
(

1 + x−1
c
λ

)−α
]β−1

1 +
[

1−
(

1 + x−1
c
λ

)−α
]β

= 0.

For a given φ, the critical points for h(x; φ) can be determined numerically by using
a mathematical software. Also, the fine shape analysis for h(x; φ) requires its first and
second order derivatives with respect to x. The complexity of these functions is an obstacle
to determine the exact range of values of the parameters characterizing the different shapes.
A graphic approach is thus preferred. Thats is, in order to illustrate its flexibility, Figure 3
displays some plots of h(x; φ) for some different values of the parameters.

We notice that the hrf shows decreasing, ‘concave increasing’ and upside down
bathtub shapes, as well as almost constant shapes. It is worth mentioning that the ‘concave
increasing’ and almost constant shapes are not clearly observed for the IL distribution, as
illustrated in Figure 4.



Symmetry 2021, 13, 309 6 of 26

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

x

h
rf

α = 1.5  β = 3  λ = 1.5
α = 1.1  β = 1.3  λ = 0.8
α = 0.5  β = 0.8  λ = 3
α = 8  β = 8  λ = 2.5

Figure 3. Plots of the hrf of the HLIL distribution for various choices of α, β and λ.
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Figure 4. Plots of the hrf of the IL distribution for various choices of α and λ.

2.3. Quantile Function with Applications

The quantile function (qf) of the HLIL distribution, say Q(u, φ), is given by the
following non-linear equation: F(Q(u; φ); φ) = u with u ∈ (0, 1). After some algebra,
we get

Q(u; φ) =
1
λ


[

1−
(

1− u
1 + u

)1/β
]−1/α

− 1


−1

, u ∈ (0, 1), λ, α, β > 0. (6)

The quartiles are given by Q1 = Q(1/4; φ), Q2 = Q(1/2; φ) and Q3 = Q(3/4; φ). In
particular, the median of the HLIL distribution is given by

M = Q2 =
1
λ


[

1−
(

3
4

)1/β
]−1/α

− 1


−1

.
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Skewness and kurtosis measures can be defined from the qf such as the Bowley skew-
ness described by [17] and the Moors kurtosis introduced by [18]. They are, respectively,
defined by

B(φ) =
Q(1/4; φ)− 2Q(1/2; φ) + Q(3/4; φ)

Q(3/4; φ)−Q(1/4; φ)

and

M(φ) =
Q(7/8; φ)−Q(5/8; φ) + Q(3/8; φ)−Q(1/8; φ)

Q(6/8; φ)−Q(2/8; φ)
.

The sign of B(φ) is informative on the ‘direction’ of the skewness (left skewed if
B(φ) < 0, right-skewed if B(φ) > 0 and almost symmetrical if B(φ) = 0). As a comple-
mentary indicator, the value of M(φ) indicates the ‘tailedness’ of the distribution. The
advantages of these measures are that they always exist and that they are easy to calculate.
Also, they are not influenced by possible extreme tails of the distribution, contrary to the
skewness and kurtosis measures defined via the moments.

3. Statistical Properties

This section deals with some fundamental properties of the HLIL distribution.

3.1. Stochastic Orders

We now investigate a first-order stochastic dominance property satisfied by the HLIL
distribution, according to the concept described in [19]. Let φ1 = (α1, λ1, β1) and φ2 =
(α2, λ2, β2). Then, if α2 ≤ α1, λ1 ≤ λ2 and β1 ≤ β2, we have

F(x; φ1) ≤ F(x; φ2). (7)

The proof of (7) is given in the Appendix A. Thus, under the considered configuration
on φ1 and φ2, the HLIL distribution with parameter vector φ1 first-order stochastically
dominates the HLIL distribution with parameter vector φ2. Also, we can use this result
to show that, for β ∈ (0, 1], the HLIL distribution with parameter vector φ = (α, λ, β)
first-order stochastically dominates the IL distribution with parameter vector (α, λ). Such
property is not immediate for the case β > 1.

3.2. Two Important Representations

In this subsection, we present two important linear representations of some functions
related to the HLIL distribution. First of all, for any τ ∈ R, the following representa-
tion hold:

f (x; φ)τ =
+∞

∑
k,`=0

u[τ]
k,`x−2τ

(
1 +

x−1

λ

)−α(`+τ)−τ

, (8)

where

u[τ]
k,` =

(
2βα

λ

)τ(−2τ

k

)(
β(k + τ)− τ

`

)
(−1)`

and (b
a) denotes the general binomial coefficient number. The proof of (8) is given in

Appendix A. The decomposition of f (x; φ) follows by taking τ = 1. In this case, note that
we have

u[1]
k,` =

2βα

λ

(
β(k + 1)− 1

`

)
(−1)k+`(k + 1).
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Another important linear representation involving the pdf and sf of the HLIL distribu-
tion is presented below. For any τ ∈ R, we have

R(x; φ)τ f (x; φ) =
+∞

∑
k=0

+∞

∑
`=1

w[τ]
k,`x−2

(
1 +

x−1

λ

)−α`−1

, (9)

where

w[τ]
k,` =

2τ+1α

λ(τ + 1)

(
−(τ + 1)

k

)(
β(k + τ + 1)

`

)
(−1)`+1`.

The proof of (9) is also postponed in Appendix A.

3.3. Moments

The r-th raw moment (about the origin) of the HLIL distribution exists if and only if
r < β. In the next, it is supposed that r can be negative, dealing with the (−r)-th inverse
raw moment. Then, the r-th raw moment is given by

µ′r =
∫ +∞

−∞
xr f (x; φ)dx =

∫ +∞

0

2βα
λ xr−2

(
1 + x−1

λ

)−α−1
[

1−
(

1 + x−1

λ

)−α
]β−1

{
1 +

[
1−

(
1 + x−1

λ

)−α
]β
}2 dx.

Numerical integration method can be used to calculate this integral. Otherwise, if
r < min(1, β), r being possibly negative, the following series expansion holds:

µ′r =
+∞

∑
k,`=0

u[1]
k,`λ

1−rB(1− r, α(`+ 1) + r), (10)

where B(x, y) =
∫ 1

0 tx−1(1 − t)y−1dt (the so-called beta function). The proof of (10) is
also postponed in Appendix A. The advantage of this expression is to be manageable for
the computational point of view with a control of the errors; More N is large, more the
following approximation is precise:

µ′r ≈
N

∑
k,`=0

u[1]
k,`λ

1−rB(1− r, α(`+ 1) + r).

From the raw moments, among others, we can define several measures describing
important features of the HLIL distribution, such as the variance given by σ2 = µ′2 − (µ′1)

2,
as well as the following skewness and kurtosis measures:

skewness =
µ′3 − 3µ′2µ′1 + 2(µ′1)

3

σ3 , kurtosis =
µ′4 − 4µ′3µ′1 + 6µ′2(µ

′
1)

2 − 3(µ′1)
4

σ4 ,

provided that there exist.
Numerical values of first four-moments, variance, skewness and kurtosis of the HLIL

distribution for λ = 0.5 and some choice values of α and β are displayed in Tables 1 and 2.
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Table 1. Moments, variance, skewness and kurtosis of the HLIL distribution for various values of the parameters.

µ′
r (α = 0.5, β = 5) (α = 1, β = 5) (α = 1.5, β = 5) (α = 2, β = 5) (α = 2.5, β = 5) (α = 3, β = 5)

µ′1 0.191 0.723 1.359 2.033 2.725 3.426

µ′2 0.14 1.17 3.487 7.191 12.312 18.864

µ′3 0.26 3.842 16.612 45.03 95.671 175.138

µ′4 1.399 31.772 186.592 640.474 1648 3545

σ2 0.103 0.648 1.64 3.056 4.886 7.126

skewness 5.835 3.955 3.53 3.366 3.287 3.242

kurtosis 114.842 56.072 46.356 42.979 41.411 40.557

Table 2. Moments, variance, skewness and kurtosis of the HLIL distribution for various values of the parameters.

µ′
r (α = 3, β = 6) (α = 3, β = 8) (α = 3, β = 10) (α = 3, β = 12) (α = 3, β = 15) (α = 3, β = 20)

µ′1 2.923 2.331 1.988 1.76 1.53 1.292

µ′2 12.846 7.597 5.31 4.058 2.989 2.077

µ′3 84.961 33.621 18.34 11.753 7.142 3.982

µ′4 923.833 204.7 81.428 42.193 20.498 8.918

σ2 4.304 2.163 1.357 0.959 0.648 0.408

skewness 2.493 1.83 1.51 1.313 1.124 0.936

kurtosis 19.977 10.753 7.947 6.611 5.554 4.697

From Tables 1 and 2, the following remarks can be formulated.

• When λ and β are constant and α increases, the considered measures increase.
• When λ and α are constant and β increases, the considered measures decrease.
• The HLIL distribution is mainly right-skewed with consequent variations on the

skewness coefficient.
• The HLIL distribution is mainly leptokurtic; the value of the kurtosis can be close to 3

(the mesokurtic case) and have very large value; It is observed the value of 114.842 for
λ = 0.5, α = 0.5 and β = 5.

3.4. Incomplete Moments

The r-th incomplete moment of the HLIL distribution with positive truncated parame-
ter t always exists, and it is given by

µ′r(t) =
∫ t

−∞
xr f (x; φ)dx =

∫ t

0

2βα
λ xr−2

(
1 + x−1

λ

)−α−1
[

1−
(

1 + x−1

λ

)−α
]β−1

{
1 +

[
1−

(
1 + x−1

λ

)−α
]β
}2 dx.

This integral can be managed numerically without problem. As a mathematical
approach involving sums of coefficients, using (8) and proceeding as in (10), we get

µ′r(t) =
+∞

∑
k,`=0

u[1]
k,`λ

1−rB∗(1+λt)−1(1− r, α(`+ 1) + r),

where B∗z (x, y) =
∫ 1

z tx−1(1− t)y−1dt (the so-called upper incomplete beta function). An
approximation of µ′r(t) follows by substituting the infinite bound by any large integer num-
ber.
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The incomplete moments are important tools to express some other quantities, as the
mean deviation about the mean defined by D1 = 2µ′1F(µ′1; φ)− 2µ′1(µ

′
1) and the mean

deviation about the median defined by D2 = µ′1 − 2µ′1(M). One can also mention the
r-th lower conditional moment defined by µ∇r (t) = [F(t; φ)]−1µ′r(t), t ≥ 0 and the r-th
upper conditional moment defined by µ4r (t) = [R(t; φ)]−1[µ′s − µ′r(t)], t ≥ 0. Several other
functions of importance can be expressed in a similar fashion (see, for instance, [20]).

3.5. Rényi and q-Entropies

This section is devoted to the Rényi entropy and the q-entropy of the HLIL distribution.
For the former definitions and applications, we refer the reader to [21,22], respectively.
First of all, the Rényi entropy of the HLIL distribution not always exists; it is required that
δ(1− α) < 1 and δ(β + 1) > 1, and, for δ 6= 1 and δ > 0, it is given by

Iδ = (1− δ)−1 log
[∫ +∞

−∞
f (x; φ)δdx

]

= (1− δ)−1 log

[ ∫ +∞

0

(
2βα

λ

)δ
x−2δ

(
1 + x−1

λ

)−δ(α+1)
[

1−
(

1 + x−1

λ

)−α
]δ(β−1)

{
1 +

[
1−

(
1 + x−1

λ

)−α
]β
}2δ

dx

]
. (11)

A numerical approach of this integral remains possible. Otherwise, for a mathematical
treatment, we can use (8) with τ = δ; By proceeding as (10), there comes

Iδ = (1− δ)−1 log

[
+∞

∑
k,`=0

u[δ]
k,`λ

2δ−1B(2δ− 1, α(`+ δ)− δ + 1)

]
.

Table 3 shows some numerical values for Iδ according to various values for φ and δ.
Wide range of values are obtained, showing the strong effect of the parameters on the

amount of information measured by Iδ.
The q-entropy of the HLIL distribution can be determined in a similar manner. Indeed,

for q(1− α) < 1 and q(β + 1) > 1, and, q 6= 1 and q > 0, it is given by

Hq = (q− 1)−1
[

1−
∫ +∞

−∞
f (x; φ)qdx

]
.

Therefore, by replacing δ by q in some developments for Iδ, we get

Hq = (q− 1)−1

[
1−

+∞

∑
k,`=0

u[q]
k,`λ

2q−1B(2q− 1, α(`+ q)− q + 1)

]
.

As a numerical approach, we present some numerical values for Hq for selected values
of the parameters in Table 4.
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Table 3. Values of the Rényi entropy of the HLIL distribution for some parameter values.

α λ β
Rényi Entropy

δ = 1.2 δ = 1.5 δ = 2

1.2 0.5 1.5 141.958 78.722 57.638

1.5 0.5 1.5 141.07 78.279 57.343

2 0.5 1.5 139.945 77.716 56.968

3 0.5 1.5 138.36 76.924 56.44

4 0.5 1.5 137.236 76.362 56.065

5 0.5 1.5 136.364 75.926 55.774

1.5 0.5 1.8 166.843 91.16 65.929

1.5 0.5 2 184.062 99.767 71.667

1.5 0.5 3 270.459 142.963 100.464

1.5 0.5 4 357.156 186.311 129.363

1.5 0.5 5 444.021 229.744 158.318

Table 4. Values of the q-entropy of the HLIL distribution for some parameter values.

α λ β
q-Entropy

q = 1.2 q = 1.5 q = 2

1.2 2 1.5 1.027 0.757 0.529

1.5 2 1.5 1.230 0.914 0.643

2 2 1.5 1.462 1.075 0.743

3 2 1.5 1.752 1.254 0.833

4 2 1.5 1.938 1.357 0.876

5 2 1.5 2.074 1.426 0.901

1.5 2 1.8 1.002 0.759 0.546

1.5 2 2 0.873 0.665 0.481

1.5 2 3 0.385 0.267 0.155

1.5 2 4 0.048 −0.048 −0.160

1.5 2 5 −0.209 −0.312 −0.464

We also see positive and negative values, with a wide range of possible values. This
indicates that the randomness of the HLIL distribution is very versatile.

3.6. Order Statistics

Order statistics are of importance in several branches of probability and statistics.
Here, we determine some properties of the order statistics in the context of the HLIL
distribution. Let X(1), . . . , X(n) be the order statistics of a random sample of size n from the
HLIL distribution. Then, the pdf of X(s) is given by

f(s)(x; φ) =
1

B(s, n− s + 1)
F(x; φ)s−1R(x; φ)n−s f (x; φ), x > 0. (12)
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Hence, by substituting (3), (4) and (5) into (12), the analytical expression of f(s)(x; φ)
is given by

f(s)(x; φ) =

2n−s+1βα
λ x−2

(
1 + x−1

λ

)−α−1
[

1−
(

1 + x−1

λ

)−α
]β(n−s+1)−1

B(s, n− s + 1)

{
1 +

[
1−

(
1 + x−1

λ

)−α
]β
}n+1

×

1−
[

1−
(

1 +
x−1

λ

)−α
]β


s−1

.

A more tractable approach is the use of series expansions. Indeed, by applying the
binomial theorem, it follows from (12) that

f(s)(x; φ) =
1

B(s, n− s + 1)

s−1

∑
j=0

(
s− 1

j

)
(−1)jR(x; φ)j+n−s f (x; φ).

Now, by letting τ = j + n− s and using (9), we get

f(s)(x; φ) =
s−1

∑
j=0

+∞

∑
k=0

+∞

∑
`=1

z[j+n−s]
k,` x−2

(
1 +

x−1

λ

)−α`−1

,

where

z[j+n−s]
k,` =

1
B(s, n− s + 1)

(
s− 1

j

)
(−1)jw[j+n−s]

k,`

=
2τ+1α

λ(τ + 1)
1

B(s, n− s + 1)

(
s− 1

j

)(
−(τ + 1)

k

)(
β(k + τ + 1)

`

)
(−1)`+j+1`.

From this result, one can determine several measures of interest, as the r-th raw
moment of X(s). Indeed, for r < 1 (possibly negative), by proceeding as in (10), we get

µ′(s) =
∫ +∞

−∞
xr f(s)(x; φ)dx =

s−1

∑
j=0

+∞

∑
k=0

+∞

∑
`=1

z[j+n−s]
k,` λ1−rB(1− r, α`+ r).

Some results with potential interest on the extreme of the HLIL distribution are
presented below.

The limiting distribution of the first order statistic, X(1), is the Weibull distribution
with the following cdf: F∗(x; α) = 1− e−xα

, x > 0, i.e., there exist (an)n∈N∗ and (bn)n∈N∗
such that

lim
n→+∞

P
(

bn(X(1) − an) ≤ x
)
= F∗(x; α). (13)

The proof of (13) is postponed in Appendix A.
Also, the limiting distribution of the last order statistic, X(n), is the Fréchet distribution

with the following cdf: F∗∗(x; β) = e−x−β
, x > 0, i.e., there exist (an)n∈N∗ and (bn)n∈N∗

such that

lim
n→+∞

P
(

bn(X(n) − an) ≤ x
)
= F∗∗(x; β). (14)

The proof of (14) is also given in Appendix A.
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4. Different Methods of Estimation and Simulation

In this section, we turn out the HLIL distribution as a model, and we investigate the
estimation of α, λ and β by different notorious methods.

For the purposes of this study, (x1, . . . , xn) denotes a random sample of size n from
the HLIL distribution. Thus, x1, . . . , xn represent the data, and their ascending ordering
values are denoted by x(1), . . . , x(n).

4.1. Maximum Likelihood Estimates (MLEs)

For its theoretical properties, and its practical properties as well, the most popular
estimation method remains the maximum likelihood method. The maximum likelihood
estimates (MLEs) of φ are given by φ̂MLE = argmaxφ L(φ), where L(φ) denotes the likeli-
hood function defined by L(φ) = ∏n

i=1 f (xi; φ) or, equivalently, φ̂MLE = argmaxφ `(φ),
where `(φ) denotes the log-likelihood function defined by

`(φ) = log[L(φ)] =
n

∑
i=1

log[ f (xi; φ)] = n log(2) + n log(β) + n log(α)− n log(λ)− 2
n

∑
i=1

log(xi)

− (α + 1)
n

∑
i=1

log

(
1 +

x−1
i
λ

)
+ (β− 1)

n

∑
i=1

log

1−
(

1 +
x−1

i
λ

)−α


− 2
n

∑
i=1

log

1 +

1−
(

1 +
x−1

i
λ

)−α
β
.

The differentiability of the above function can provide us the requested estimates
of the parameter vector φ, through the (simultaneously) solution of the three non-linear
equations corresponding to ∂`(φ)/∂φ = 0, with respect to φ. On the basis of the second
partial derivative of `(φ), we determine the inverse observed information matrix whose
diagonal elements correspond to the square of the standard errors (SEs) of the MLEs. The
general formula can be found in [23].

4.2. Ordinary and Weighted Least Squares Estimates (LSEs) and (WLSEs)

The (ordinary) least squares estimates (LSEs) of φ are now investigated. They are
given by φ̂LSE = argminφ LS(φ), where

LS(φ) =
n

∑
i=1

[
F(x(i); φ)− i

n + 1

]2
=

n

∑
i=1


1−

[
1−

(
1 +

x−1
(i)
λ

)−α
]β

1 +

[
1−

(
1 +

x−1
(i)
λ

)−α
]β
− i

n + 1


2

.

They can be obtained by solving simultaneously the three non-linear equations sum-
marized as ∂LS(φ)/∂φ = 0, with respect to φ.

In a similar fashion, the weighted least squares estimates (WLSEs) of φ are defined by
φ̂WLSE = argminφ WLS(φ), where
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WLS(φ) =
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F(x(i); φ)− i

n + 1

]2

=
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)


1−

[
1−

(
1 +

x−1
(i)
λ

)−α
]β

1 +

[
1−

(
1 +

x−1
(i)
λ

)−α
]β
− i

n + 1


2

.

In a similar manner to the LSEs, the WLEs can be obtained by solving simultaneously
the three non-linear equations summarized as ∂WLS(φ)/∂φ = 0, with respect to φ.

We refer to [24] for further detail on least squares methods in full generality.

4.3. Percentile Estimates (PCEs)

The percentile estimates (PCEs) was pioneered by [25] (for the Weibull distribution).
Here, the PCEs of φ are defined by φ̂PCE = argminφ PC(φ), where

PC(φ) =
n

∑
i=1

[
x(i) −Q(pi; φ)

]2
=

n

∑
i=1

x(i) −
1
λ


[

1−
(

1− pi
1 + pi

)1/β
]−1/α

− 1


−1


2

,

where pi = i/(n + 1). They can be obtained by solving simultaneously the three non-linear
equations corresponding to ∂PC(φ)/∂φ = 0, with respect to φ.

4.4. Cramér-Von Mises Minimum Distance Estimates (CVEs)

Following the approach described by [26], the Cramér-von Mises minimum distance
estimates (CVEs) of φ are defined by φ̂CVE = argminφ CV(φ), where

CV(φ) =
1

12n
+

n

∑
i=1

[
F(x(i); φ)− 2i− 1

2n

]2
=

1
12n

+
n

∑
i=1


1−

[
1−

(
1 +

x−1
(i)
λ

)−α
]β

1 +

[
1−

(
1 +

x−1
(i)
λ

)−α
]β
− 2i− 1

2n


2

.

They can be obtained by solving simultaneously the three non-linear equations sum-
marized as ∂CV(φ)/∂φ = 0, with respect to φ.

4.5. Maximum Product of Spacings Estimates (MPSEs)

The method of maximum product of spacings estimation was introduced by [27]. We
now apply it in the context of the HLIL model. Let us set

Di(φ) = F(x(i); φ)− F(x(i−1); φ)

for i = 1, 2, . . . , n + 1, where, by convention, F(x(0); φ) = 0 and F(x(n+1); φ) = 1. The max-
imum product spacings estimates (MPSEs) of φ are defined by φ̂MPSE = argmaxφ G(φ),
where

G(φ) =

[
n+1

∏
i=1

Di(φ)

] 1
n+1

,
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or, equivalently, φ̂MPSE = argmaxφ LG(φ), where

LG(φ) = log[G(φ)] =
1

n + 1

n+1

∑
i=1

log[Di(φ)].

They can be obtained by solving simultaneously the three non-linear equations sum-
marized as ∂LG(φ)/∂φ = 0, with respect to φ.

4.6. Numerical Results

We now investigate the behavior of the ML, LS, WLS, PC, CV and MPS estimates
presented above, as well as entropy estimates. The software Mathcad(14) is used. We
generate 1000 random samples (x1, . . . , xn) of sizes n = 100, 200, 300, 1000 and 2000 from
the HLIL distribution via the so-called inverse transform sampling based on the qf given
by (6) (see [28], for instance). The two following sets of parameters are chosen as: Set1:
(α = 2, λ = 0.5, β = 2) and Set2: (α = 2, λ = 0.5, β = 3).

Then, the mean ML, LS, WLS, PC, CV and MPS estimates (Estim) of α, β and λ are
calculated, as well as their standard mean square errors (MSEs). Numerical results are
shown in Tables 5 and 6 for Set1 and Set2, respectively.

From Tables 5 and 6, we notice the following facts.

• For all estimates, as expected, the MSEs decrease as sample sizes increase.
• The MSEs of the MPSEs of φ take the lowest value among the corresponding MSEs

for the other methods in almost all cases. Other details are given below.

– For the MLEs, when β increases, the MSEs for α and λ decrease but the MSE for
β is increasing.

– For the LSEs, when β increases, the MSEs for α, λ and β are increasing.
– For the WLSEs, when β increases, the MSEs for α and λ are decreasing but the

MSE for β is increasing.
– For the CVEs, when β increases, the MSEs for α and λ are decreasing but the MSE

for β is increasing
– For the the PCEs, when β increases, the MSEs for α, λ and β are increasing except

for α at n = 100 where they decrease.
– For the MPSEs, when β increases, the MSEs for α and λ are decreasing but the

MSE for β is increasing.

We complete this part by performing a simulation study on the estimation of the Rényi
entropy Iδ defined by (11) for various values of δ: δ = 0.5, δ = 1.5 and δ = 2.5. We consider
the same framework as above, the ML estimates of α, β and λ, as well as the plugging
principle. Then, we determine the exact values of the entropy, estimates and the relative
biases (RBs) defined by the generic formula: RB = mean of (Estimate − Exact value)/Exact
value. The numerical results are collected in Tables 7 and 8 for Set1 and Set2, respectively.

As expected, from Tables 7 and 8, we notice that, when the sample sizes increase, the
RBs of the Rényi entropy decrease. Also

• when δ increases, the RBs of the Rényi entropy decrease.
• when β increases, the RBs of the Rényi entropy decrease.
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Table 5. Estimates and mean square errors (MSEs) of HLIL distribution for maximum likelihood (ML), least squares (LS), weighted least squares (WLS), percentile (PC), and maximum
product of spacing (MPS) estimates for Set1: (α = 2, λ = 0.5, β = 2).

n
MLE LSE WLSE CVE PCE MPSE

Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs

100

1.964 1.985 2.34 3.311 2.33 0.96 2.625 3.398 2.083 1.443 2.257 2.645

0.993 1.205 0.664 0.875 0.681 0.232 0.846 1.088 0.615 0.657 0.779 0.559

2.223 0.155 2.098 0.216 1.969 0.185 2.01 0.223 2.334 0.72 2.037 0.104

200

2.051 0.922 2.091 0.343 2.171 0.275 2.465 1.143 1.876 0.379 1.874 0.913

0.646 0.138 0.506 0.042 0.575 0.087 0.712 0.376 0.474 0.142 0.717 0.184

2.082 0.045 2.131 0.142 2.064 0.094 2.045 0.108 2.333 0.611 2.066 0.046

300

2.175 0.68 2.1 0.269 2.035 0.221 2.063 0.192 1.873 0.303 1.938 0.573

0.552 0.076 0.538 0.041 0.538 0.07 0.512 0.025 0.458 0.091 0.64 0.112

2.028 0.029 2.074 0.088 2.021 0.073 2.076 0.09 2.275 0.414 2.034 0.025

1000

2.04 0.061 2.063 0.076 1.968 0.018 2.136 0.09 1.947 0.108 1.976 0.035

0.518 0.013 0.527 0.011 0.472 0.005 0.553 0.015 0.48 0.037 0.503 0.008

2.011 0.023 1.994 0.022 2.06 0.019 1.961 0.016 2.137 0.175 1.974 0.023

2000

2.046 0.026 2.086 0.061 1.979 0.015 2.036 0.016 1.979 0.052 1.942 0.023

0.519 0.006 0.539 0.01 0.489 0.004 0.511 0.004 0.488 0.018 0.474 0.004

1.994 0.008 1.979 0.011 2.03 0.013 2.012 0.012 2.099 0.14 2.037 0.009
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Table 6. Estimates and MSEs of HLIL distribution for ML, LS, WLS, CV, PC and MPS estimates for Set2: (α = 2, λ = 0.5, β = 3).

n
MLE LSE WLSE CVE PCE MPSE

Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs Estimates MSEs

100

1.957 1.01 3.141 3.554 2.302 0.621 2.447 2.234 2.023 1.266 2.182 1.843

0.783 0.449 1.05 0.931 0.639 0.1 0.705 0.505 0.64 0.761 0.682 0.227

3.198 0.223 2.966 0.505 2.951 0.295 2.939 0.363 3.32 1.647 3.037 0.156

200

1.951 0.646 2.571 1.413 2.156 0.27 2.224 0.316 2.076 0.898 1.854 0.539

0.659 0.134 0.761 0.268 0.583 0.062 0.635 0.1 0.579 0.394 0.696 0.19

3.103 0.079 2.857 0.262 2.975 0.265 2.958 0.351 3.39 1.216 3.075 0.086

300

1.86 0.371 2.306 0.651 2.182 0.113 2.297 0.18 2.041 0.288 1.763 0.3

0.626 0.066 0.7 0.253 0.605 0.025 0.638 0.041 0.575 0.127 0.67 0.117

3.092 0.051 2.86 0.257 2.806 0.122 2.888 0.215 3.134 1.039 3.082 0.057

1000

2.039 0.05 2.126 0.048 2.128 0.044 2.202 0.08 2.013 0.097 1.982 0.028

0.52 0.013 0.583 0.014 0.579 0.014 0.611 0.02 0.528 0.037 0.506 0.008

3.015 0.042 2.792 0.104 2.874 0.108 2.836 0.095 2.992 0.327 2.977 0.041

2000

2.044 0.022 2.117 0.039 2.113 0.024 2.136 0.042 2.003 0.043 1.957 0.021

0.521 0.006 0.589 0.014 0.588 0.014 0.578 0.012 0.513 0.017 0.478 0.005

2.984 0.032 2.835 0.06 2.837 0.048 2.843 0.066 3.003 0.271 3.069 0.035
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Table 7. Rényi entropy estimates for Set1.

n
δ = 0.5 δ = 1.5 δ = 2.5

Exact Value Estimates RB Exact Value Estimates RB Exact Value Estimates RB

100

−12.18

−16.078 0.32

99.018

110.569 0.117

61.884

68.301 0.104

200 −13.631 0.119 103.169 0.042 64.19 0.037

300 −12.627 0.037 100.113 0.011 62.492 0.01

1000 −12.406 0.019 99.467 0.005 62.134 0.004

2000 −12.162 0.001 98.741 0.003 61.73 0.002

Table 8. Rényi entropy estimates for Set2.

n
δ = 0.5 δ = 1.5 δ = 2.5

Exact Value Estimates RB Exact Value Estimates RB Exact Value Estimates RB

100

−26.58

−30.078 0.132

141.838

152.297 0.073

85.673

91.483 0.068

200 −28.502 0.072 147.556 0.04 88.849 0.037

300 −28.237 0.062 146.74 0.035 88.396 0.032

1000 −26.808 0.009 142.427 0.004 86 0.004

2000 −26.363 0.008 141.198 0.004 85.361 0.004
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5. Applications

In this section, we show the interest of the HLIL distribution using three real data sets
in the field of environment, engineering and insurance. The data sets are presented below.

The first data set is obtained from [29]. It consists of 30 successive values of March
precipitation in Minneapolis. The measurements are in inches. The data are given by: 0.77,
1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05.

The second data set is the Aircraft Windshield data set by [30]. The data consist of
the failure times of 84 Aircraft Windshield. The unit for measurement is 1000 h.The data
are given by: 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478,
0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981,
2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121,
1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154,
2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449,
1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324,
3.376, 4.663. The third data set is a heavy-tailed real data set from the insurance industry.
This data set represents monthly unemployment insurance measures from July 2008 to
April 2013 including 58 sightings, and it is reported by the ministry of Labor, Licensing and
Regulation (LLR), State of Maryland, USA. The data consist of 21 variables and we analyze
in particular the twelfth variable (number 12). The data are available at: https://catalog.
data.gov/dataset/unemploymentinsurance-data-july-2008-to-april-2013 (accessed on the
3 February 2021).

Then, the fits of the HLIL model are compared with those of some competitive models
such as inverse Lomax (IL), Topp-Leone inverse Lomax (TIL) by [31], Weibull inverse
Lomax (WIL) by [11], Kumaraswamy Lomax (KL) by [32], beta Lomax (BL) by [33] and
exponentiated power Lomax (EPL) by [34]. The maximum likelihood method is considered,
mainly thanks to its attractive theoretical and computational properties. We compute the
well-known statistical measures, namely Akaike information criterion (AIC), Bayesian
information criterion (BIC), Anderson-Darling (AD) and Cramér-von Mises (CVM). As
usual, the model with a lower value for AIC, BIC, CVM and AD should be the preferred
model. The results, described below, are obtained by using the R software.

Tables 9–11 present the MLEs and their SEs (in parentheses) for the first, second and
third data sets, respectively.

Table 9. Maximum Likelihood Estimates (MLEs) with their standard errors (SEs) for the first data set.

Model MLEs and SEs

HLIL 3.3774 7.9710 0.8085 -
(α, β, λ) (0.1673) (0.0245) (0.4986) -
EPL 25.2967 0.7590 12.7190 7.9758
(α, β, λ, a) (4.0719) (0.0341) (12.6748) (0.1906)
WIL 0.0024 2.0529 0.0604 2.5469
(a, b, λ, β) (0.0005) (0.2048) (0.0216) (0.0501)
TIL 11.6699 0.3946 1.0885 -
(α, β, λ) (4.6202) (0.6050) (3.0847) -
IL 0.0210 54.8749 - -
(α, λ) (0.0348) (0.0946) - -

https: //catalog.data.gov/dataset/unemploymentinsurance-data-july-2008-to-april-2013
https: //catalog.data.gov/dataset/unemploymentinsurance-data-july-2008-to-april-2013
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Table 10. MLEs with their SEs for the second data set.

Model MLEs and SEs

HLIL 2.2493 139.8835 0.0532 -
(α, β, λ) (0.2886) (7.0477) (0.0337) -
KwL 3.2372 11.9966 3.2456 9.1600
(α, β, a, b) (2.4802) (16.4620) (1.0686) (5.3663)
BL 165.2269 5.1558 3.5609 43.6788
(c, k, a, b) (5.9677) (0.6954) (0.5250) (8.0152)
WIL 0.0027 1.5655 0.0606 1.1832
(a, b, λ, β) (0.0004) (0.2026) (0.0179) (0.8351)
TIL 3.9207 1.4443 1.0833 -
(α, β, λ) (3.5674) (0.6032) (0.8878) -
IL 0.5031 4.0306 - -
(α, λ) (0.1892) (1.2907) - -

Table 11. MLEs with their SEs for the third data set.

Model MLEs and SEs

HLIL 37.9868 12.1643 0.2301 -
(α, β, λ) (3.9893) (1.2670) (0.2570) -
EPL 25.5454 0.6161 96.1370 15.6028
(α, β, λ, a) (2.7281) (0.7262) (0.3338) (3.0301)
WIL 0.0026 0.6577 0.0116 0.5668
(a, b, λ, β) (0.0005) (0.0476) (0.0044) (0.2457)
TIL 56.5719 1.1760 7.0916 -
(α, β, λ) (5.3292) (0.8181) (0.0656) -
IL 1.5381 40.4936 - -
(β, λ) (1.2669) (3.3980) - -

Tables 12–14 inform on the values of the AIC, BIC, AD and CVM for the first, second
and third data sets, respectively.

Table 12. The Akaike information criterion (AIC), Bayesian information criterion (BIC), Anderson-
Darling (AD), and Cramér-von Mises (CVM) values for the first data set.

Model AIC BIC AD CVM

HLIL 82.3694 86.5730 0.1070 0.0147
EPL 84.8304 90.4352 0.1760 0.0272
WIL 96.1966 101.8014 0.2459 0.0329
TIL 86.9198 91.1234 0.4658 0.0751
IL 96.8127 99.6151 0.5066 0.0817

Table 13. The AIC , BIC, AD and CVM values for the second data set.

Model AIC BIC AD CVM

HLIL 268.8231 276.1510 0.5765 0.0567
KwL 280.4553 290.2259 1.0633 0.1175
BL 285.2487 295.0193 1.3961 0.1662

WIL 331.6880 341.4586 0.5802 0.0552
TIL 328.0861 335.4140 3.9985 0.5999
IL 365.4879 370.3732 5.4250 0.8625
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Table 14. The AIC , BIC, AD and CVM values for the third data set.

Model AIC BIC AD CVM

HLIL 537.6881 543.8695 0.7968 0.1396
EPL 565.9949 574.2367 1.0505 0.1939
WIL 670.4852 678.7270 1.5208 0.2809
TIL 559.5491 565.7304 0.8901 0.1580
IL 613.7669 617.8878 1.2920 0.2223

Since it has the smallest values for all these criteria, one can consider that the HLIL
model is the best. In particular, for all the considered criteria, and the three data sets, we
notice that the HLIL model significantly dominates the former IL model. On the basis
of these criteria, the superiority of the HLIL model over the competitors is particularly
obvious for the fit of the third data set.

Figures 5–7 illustrate the estimated pdfs with superposition over the related his-
tograms for the first, second and third data sets, respectively.
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Figure 5. Plots of the estimated pdfs for the first data set.

x

D
e
n
si

ty

0 1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5 HLIL

KwL
BL
WIL
TIL
IL

Figure 6. Plots of the estimated pdfs for the second data set.
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Figure 7. Plots of the estimated pdfs for the thrid data set.

Visually, it is clear that the fit of the HLIL distribution is more adequate. The high
flexibility of the peak and tails of the pdf of the HLIL distribution is clearly the key to success
in terms of adaptability, far beyond the modeling ability of the former IL distribution.
Moreover, for the third data set, as illustrated by Figure 7, the adaptive power of the HLIL
is particularly dominant.

6. Concluding Remarks

In this article, a new three-parameter distribution, called the HLIL distribution, is
introduced. It aims to provide a workable extension of the IL distribution with more
advantages for the modeling of heavy-tailed data. These advantages include more flexibility
in the peak and tails of the former IL distribution. Some statistical properties of the
proposed distribution such as first-order stochastic dominance, moments, Rényi and q-
entropies and order statistics are determined. The parameters estimation is discussed by
six different methods of estimation, namely the ML, LS, WLS, PC, CV and MPS methods.
By the use of the ML method, three practical data sets show that the new distribution is
superior in terms of fit to other well-known distributions also based on the Lomax and
inverse Lomax distributions. It is particularly adapted to the analysis of asymmetric heavy-
tailed data on the right as often encountered in the field of environment, engineering and
insurance. Thus, we believe that a more in-depth study of the HLIL distribution would be
in the interest of the statistical society, by the motivation of development such as extensions,
generalizations and applications.
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Appendix A

Proof of (7). After some developments, there comes

∂

∂α
F(x; φ) = −

2β log
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1 + x−1

λ

)(
1 + x−1

λ

)−α
[

1−
(

1 + x−1

λ

)−α
]β−1

{
1 +

[
1−

(
1 + x−1

λ

)−α
]β
}2 < 0,

∂

∂λ
F(x; φ) =

2αβ
λ

(
1 + x−1

λ

)−α
[

1−
(

1 + x−1

λ

)−α
]β−1

(1 + λx)

{
1 +

[
1−

(
1 + x−1

λ

)−α
]β
}2 > 0

and

∂

∂β
F(x; φ) = −

2
[

1−
(

1 + x−1

λ

)−α
]β

log
(

1−
(

1 + x−1

λ

)−α
)

{
1 +

[
1−

(
1 + x−1

λ

)−α
]β
}2 > 0.

Therefore, F(x; φ) is decreasing with respect to α, and increasing with respect to the
two other parameters. This implies that, for φ1 = (α1, λ1, β1) and φ2 = (α2, λ2, β2) with
α2 ≤ α1, λ1 ≤ λ2 and β1 ≤ β2, the inequality in (7) is obtained. Also, for β ∈ (0, 1], the
following inequality holds: For x > 0,

F(x; φ) ≤ F(x; (α, 1, λ)) =
G(x; α, λ)

1 +
[

1−
(

1 + x−1

λ

)−α
] ≤ G(x; α, λ).

This proves the first-order stochastic dominance of the HLIL distribution over the IL
distribution in this case.

Proof of (8). We have

f (x; φ)τ =

(
2βα

λ

)τ
x−2τ

(
1 + x−1

λ

)−τ(α+1)
[
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(
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{
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)−α
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}2τ
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The generalized binomial theorem applied two times in a row gives[
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)−α
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[
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(
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]β
}2τ

=
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∑
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(
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(
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)−α
]β(k+τ)−τ

=
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∑
k,`=0

(
−2τ

k

)(
β(k + τ)− τ

`

)
(−1)`

(
1 +

x−1

λ

)−α`

.

We prove the desired result by putting all the equalities above together.
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Proof of (9). We start by considering R(x; φ)τ+1. Then, we have

R(x; φ)τ+1 =

2τ+1
[

1−
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1 + x−1
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)−α
]β(τ+1)

{
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[
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)(
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Therefore,

−(τ + 1)R(x; φ)τ f (x; φ) =
{

R(x; φ)τ+1
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= 2τ+1
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We obtained the desired result.

Proof of (10). Owing to (8) and the interchange of the signs ∑ and
∫

, we get

µ′r =
+∞

∑
k,`=0

u[1]
k,`Uk,`,r,

where

Uk,`,r =
∫ +∞

0
xr−2

(
1 +

x−1

λ

)−α(`+1)−1

dx.

By applying the changes of variables x = (λy)−1 and y = u/(1− u) in a row, we have

Uk,`,r = λ1−r
∫ +∞

0
y−r(1 + y)−α(`+1)−1dy = λ1−r

∫ 1

0
u−r(1− u)α(`+1)+r−1du

= λ1−rB(1− r, α(`+ 1) + r).

The stated result follows by putting the two above equations together.

Proof of (13). Let us recall that, when x → 0, we have f (x; φ) ∼ (βαλα/2)xα−1. Further-
more, we have Q(0; φ) = 0. Hence, it follows from l’Hospital’s rule that

lim
ε→0

F(Q(0; φ) + εx; φ)

F(Q(0; φ) + ε; φ)
= lim

ε→0

F(εx; φ)

F(ε; φ)
= lim

ε→0

x f (εx; φ)

f (ε; φ)
= xα.

From [Theorem 8.3.6] [35], we get the desired result.
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Proof of (14). As previously noticed, when x → +∞, we have f (x; φ) ∼ (2βαβ/λβ)x−β−1.
So, by applying l’Hospital’s rule, we have

lim
t→+∞

1− F(tx; φ)

1− F(t; φ)
= lim

t→+∞

x f (tx; φ)

f (t; φ)
= x−β.

Thus, we can apply [Theorem 1.6.2 and Corollary 1.6.3] [36] which gives the claimed
result.
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