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Abstract: We investigate the statistical distribution for ideal Bose gases with constant particle density
in the 3D box of volume V = L3. By changing linear size L and imposing different boundary condi-
tions on the system, we present a numerical analysis on the characteristic temperature and condensate
fraction and find that a smaller linear size is efficient to increase the characteristic temperature and
condensate fraction. Moreover, there is a singularity under the antiperiodic boundary condition.
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1. Introduction

The Bose–Einstein condensation (BEC) is a purely quantum-statistical phase transi-
tion characterized by the appearance of macroscopic population in ground state below
the critical temperature Tc, and it plays an important role in condensed matter [1–9],
optics [10,11], atomic and molecular physics [12–15], etc. It is emphasized that the tran-
sition actually occurs at the thermodynamic limit, or when the discrete level structure is
approximated by a continuous density of states [14,16–21].

However, the experimental observations of BEC on cold gases [16,17,19,22–28] were
performed in the finite volume that neither of the above approximations methods seems to
inherently justify [18,29]. Subsequently, some scholars wondered whether this would lead
to deviations from the theoretical predictions and began to pay attention to BEC in finite
systems [18,29–31]. The boundary conditions are of great importance to finite systems, such
as periodic, Neumann, and Dirichlet conditions [29,30,32–36]. The results imply that the
shift of the condensation temperature depends only on the total number of particles [18,29].

From the theoretical point of view, the only requirement is that the Hamiltonian of
the finite system should be Hermitian, and the above boundary conditions are just some
special cases. These inspire us to explore the physics of BEC in finite volume systems by
focusing on the finite-size behaviors and twisted boundary conditions [37]. For simplicity,
in this paper, we model the finite system with a 3D box of volume V = L3 that consists of
ideal Bose gases, keeping particle density fixed. We characterize BEC phase transition with
characteristic temperature and condensate fraction, and then numerically calculate them
under different linear sizes and boundary conditions.

This paper is organized as follows. In Section 2, the specific formulas for the statis-
tical distribution of ideal Bose gases are directly given. In Section 3, through numerical
calculations, finite-size effects on characteristic temperature and condensate fraction are
investigated. In Section 4, the changes on characteristic temperature and condensate frac-
tion are also obtained in the presence of twisted boundary conditions. Finally, in Section 5,
conclusions and discussions are briefly given.
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2. The Ideal Bose Gases in the Cubic Box

In this section, the BEC statistics of ideal Bose gases with fixed particle density n,
which is confined in the cubic box of volume V = L3, are directly given. According to the
Bose–Einstein distribution, the population N(εi) of a state with energy εi is

N(εi) =
1

eβ(εi−µ) − 1
=

ze−βεi

1− ze−βεi
(1)

and the particle density n is

n =
1
V ∑

i

1
eβ(εi−µ) − 1

=
1
V ∑

i

ze−βεi

1− ze−βεi
, (2)

where β = 1/(kBT) and kB denotes the Boltzmann’s constant. The fugacity z related to
chemical potential µ can be expressed by z = exp(βµ). By splitting off the ground-state
particle density n0, the finite sum over the excited states nε is replaced by an integral:

nε = n− n0 =
1
V

∞

∑
j=1

zj
∫ ∞

ε
D(ε) exp(−jβε)dε, (3)

where n0 = ze−βε0

1−ze−βε0
. D(ε) represents the density of states, usually taken to be 2πV

h3 (2m)
3
2 ε

1
2 .

h and m denote the Planck constant and the mass of boson, respectively. Assuming the
ground state ε0 as zero, the result is:

1
V

z
1− z

+
1

λ3 g3/2(z) = n, (4)

with λ = h
(2πmkBT)1/2 and the Bose function gn(z) = ∑∞

m=1 zm/mn. The physical meaning

of the second term in Equation (4) implies that, as the fugacity z reaches its maximum
exp(βε0), the number of the excited particles reaches the maximum, and all particles that
exceeding this maximum must drop into the ground state. Namely, the critical temperature
Tc can now be found by setting n0 = 0 and z = 1 as:

2π

h3 (2m)
3
2

∫ ∞

0

ε
1
2 dε

e
ε

kBTc − 1
= n. (5)

We now consider the extension of an ordinary BEC, by confining ideal Bose gases
into a finite cubic box with linear size L. For finite volume systems, it is always crossover
rather than phase transition. We thus define characteristic temperature [36] Tc,L of the finite
system with linear size L by:

1
V ∑

i

1
z−1

0 eεi/kBTc,L − 1
= n, (i = 1, 2, · · · ) (6)

with z0 = exp(ε0/kBTc,L). This temperature becomes the critical temperature only in the
limit when system size goes to infinity. Additionally, as for small systems, boundary
conditions are of crucial importance as they can affect the symmetries of the system
and consequently modify the fundamental properties, such as ground state energies and
conserved quantities [38]. The components of energy and momentum are quantized
when particular physical boundary conditions are imposed on the finite system, and the
discussions of BEC statistics should use summation instead of integral.

For simplicity, we consider particles confined in a 3D cubic box of dimensions Lx, Ly,
Lz ∈ [− L

2 , and L
2 ]. Theoretically, to ensure the momentum operators p̂x, p̂y, and p̂z in the
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systems are Hermitian, the quantum probability density ρ = |ψ|2 should be constant on
the boundary of the cubic box. Namely,

ρ(x, y, z = −L/2) = ρ(x, y, z = L/2). (7)

Therefore, the arbitrary wave function should meet ψk(
L
2 )/ψk(− L

2 ) = eiα.
These twisted boundary conditions are parameterized by a twist angle α at each boundary,
with range 0 ≤ α ≤ 2π. The use of twisted boundary conditions for the BEC in the cubic
box, which is equivalent to realizing the BEC in the presence of a constant background mag-
netic potential coupled with bosons. The twist angles characterizing the twisted boundary
condition are only obtained at the discrete values of the eigenstates energies, which corre-
sponds to the magnetic flux quanta Nφ. The stronger is the magnetic potential, the larger is
the twisted angle. Especially, the discrete twist angles are related to the linear size L, energy
levels are shifted, and finite-volume corrections can be generated [39]. Experimentally,
according to the superfluid behavior of a BEC [40,41], the achievement of BEC in the cubic
of side length L characterized with twisted boundary conditions may be realized in terms
of the non-classical response of the system to an infinitesimal boost or rotation. The boost
can be provided by imposing extremely small velocity field such as slow rotation of the
cubic box, and the rotation can be equivalently produced by introducing disclinations and
screw dislocations [42]. Therefore, the allowed components of particle’s momenta inside
the box are px,y,z =

2π
L N + α

L , where N is an integer. The corresponding energy eigenvalues
of bosons in the cubic box are expressed as [43,44]:

εn1n2n3 =
h̄2[(2n1π + α)2 + (2n2π + α)2 + (2n3π + α)2]

2mL2 , (8)

where the quantum states are characterized by the quantum numbers (n1, n2, n3),
(n1, n2, n3 = 0,±1,±2, · · · ). Consequently, we can absorb the effect of α into twist bound-
ary conditions for the wavefunctions, to study different physical boundary conditions [45]
on BEC in finite volume systems. Substituting Equation (8) into Equation (6), with the
volume V = L3, results:

1
L3 ∑

n1

∑
n2

∑
n3

1

z−1
0 e

εn1n2n3
kBTc,L − 1

= n. (9)

Note that the most significant difference among different boundary conditions is the
difference in the ranges in Equation (9), in which the quantum numbers (n1, n2, n3) vary.
Particularly, the ground state energy which depends sensitively on α needs to be excluded
during the calculation. For clarity, here we define α = kπ (k∈ [0, 2]).

(i) k ∈ [0, 1), the ground state (0, 0, 0) should be excluded.
(ii) k ∈ (1, 2], the ground state (−1,−1,−1) should be excluded.
(iii) k = 1, the ground state (−1,−1,−1), (−1,−1, 0), (−1, 0,−1), (0,−1,−1),

(0, 0,−1), (0,−1, 0), (−1, 0, 0), (0, 0, 0) should be excluded.
Obviously, the BEC statistics in the finite volume system not only depends on the

linear size but also on the boundary conditions. We do some detailed calculations in
following sections.

3. Finite-Size Effects on Bose–Einstein Condensation in the Cubic Box

In this section, performing the BEC statistics for the finite system of ideal Bose gases in
the box traps of different linear sizes under periodic, antiperiodic, and Dirichlet boundary
conditions, we compare their statistics and conclude on the finite-size effects on them.

(a) Periodic boundary condition (α = 0)
According to our analyses, the discontinuous energy values of single-state can be

given by:

εn1n2n3 =
2h̄2π2(n2

1 + n2
2 + n2

3)

mL2 . (10)
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The characteristic temperature can be determined by:

1
L3 ∑

n1

∑
n2

∑
n3

1

e
2h̄2π2(n2

1+n2
2+n2

3)

mL2kBTc,L − 1

= n. (11)

The numerical results under the periodic boundary condition are shown in
Figures 1 and 2 and Table 1.
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Figure 1. (Color online) The characteristic temperature Tc,L versus L for an ideal Bose gases enclosed in the cubic
box under the periodic, antiperiodic, and Dirichlet boundary conditions. L0 is the unit length and Tc,L0 is the
corresponding characteristic temperature.
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Figure 2. (Color online) The ground state particle density n0/n versus T in the cubic box, with L =

L0, 1.5L0, 2.5L0, 10L0, 100L0, under the periodic boundary condition. Here, h̄2

mkB
n

2
3 is taken as a unit of T.

(b) Antiperiodic boundary condition (α = π)
The quantum state energy is given by:

εn1n2n3 =
h̄2[(2n1π + π)2 + (2n2π + π)2 + (2n3π + π)2]

2mL2 . (12)
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As a result, the characteristic temperature can be calculated by:

1
L3 ∑

n1

∑
n2

∑
n3

1

e
h̄2π2 [(2n1+1)2+(2n2+1)2+(2n3+1)2−3]

2mL2kBTc,L − 1

= n. (13)

Similarly, the corresponding results are shown in Figures 1 and 3 and Table 1.
(c) Dirichlet condition
This can be described by requiring that the wave function of the particle is identically

zero outside the box. Hence, an impenetrable barrier can be interpreted as a boundary
condition. The Dirichlet condition requires ψ = 0 on each side of the cubic box, ψk(

L
2 ) =

ψk(− L
2 ) = 0 (k = x, y, z). In this case, the single-state energy is:

εn1n2n3 =
h̄2π2(n2

1 + n2
2 + n2

3)

2mL2 . (14)

The characteristic temperature can be derived by:

1
L3

∞

∑
n1=1

∞

∑
n2=1

∞

∑
n3=1

1

e
h̄2π2(n2

1+n2
2+n2

3−3)

2mL2kBTc,L − 1

= n. (15)

Here, note that the ranges of the quantum numbers (n1, n2, n3) under Dirichlet bound-
ary condition are from 1 to ∞. Therefore, the nonvanishing ground state (1, 1, 1), ε0 = 3h̄2π2

2mL2

should be excluded. Figures 1 and 4 and Table 1 depict the corresponding results.

Table 1. The characteristic temperature Tc,L versus L for an ideal Bose gases enclosed in the cubic
box of L = 0.2L0, 0.5L0, 10L0, 50L0, 100L0, under the periodic, antiperiodic, and Dirichlet boundary
conditions.

L/L0 0.2 0.5 1 10 50 100

(a) kBTc,L(
h̄2

m n
2
3 ) 74.5 20.1 9.279 3.67 3.38 3.35

(b) kBTc,L(
h̄2

m n
2
3 ) 123.3 30 12.13 3.68 3.37 3.34

(c) kBTc,L(
h̄2

m n
2
3 ) 62.4 18.2 9.42 4.168 3.57 3.463
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Figure 3. (Color online) The ground state particle density n0/n versus T in the cubic box, with L =

L0, 1.5L0, 2.5L0, 10L0, 100L0, under the counter-periodic boundary condition. Here, h̄2

mkB
n

2
3 is taken as a unit

of T.
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Figure 4. (Color online) The ground state particle density n0/n versus T in the cubic box, with L =

L0, 1.5L0, 2.5L0, 10L0, 100L0, under the Dirichlet boundary condition. Here, h̄2

mkB
n

2
3 is taken as a unit of T.

By calculating numerically, the changes of Tc,L with L, under periodic, antiperiodic,
and Dirichlet conditions are shown in Figure 1. It is easy to check that, no matter which
boundary condition is taken, at a fixed particle number density, Tc,L considerably in-
creases as L decreases in the region L/L0 < 1. Since Tc,L describes an approach to
condensed state from the non-condensed one, the smaller linear size allows BEC to oc-
cur at higher temperature. When L > 10L0, the values of Tc,L agree with the results
obtained within the thermodynamic limit results [35], as shown in Table 1, where we
choose h̄2

mkB
n

2
3 as the Tc,L unit. To illustrate this clearly, we numerically discuss the par-

ticle density for the ground state n0 under the three boundary conditions sketched in
Figures 2–4, respectively. It is clear that, as the linear size decreases the slope of the curves
gradually becomes slower, condensate fraction n0/n appears to increase. Namely, the
smaller linear size is effective to increase the condensate fraction. Meanwhile, the inter-
section point of the curve and the horizontal axis Tc,L, being shifted to high value. The
behavior further illustrates that Tc,L describes the crossover behavior between ground and
excited states, and Tc,L becomes the critical temperature Tc when the volume of the system
tend to infinity. These results are due to the fact that the coupling between energy level
and linear size as Equation (9) can significantly alter the nature of BEC in the finite system.
The smaller linear size can produce a stronger restrictions, and accordingly lower the mean
energy, which can greatly facilitate the realization of BEC [46], increasing Tc,L and n0/n.

Consequently, the finite-size effects play an important role in the small volume systems,
allowing for L-dependence of the shift of Tc,L and n0/n. The smaller is the linear size (the
larger is the confinement), the higher is the Tc,L and the greater is the n0/n.

4. The Influences of Boundary Conditions on Bose–Einstein Condensation in a
Cubic Box

To study the influence of α on condensation under twisted boundary conditions, we
numerically calculate Tc,L and n0/n versus with α in the cases of L = L0, L = 10L0, and
L = 100L0, respectively. The numerical results are plotted in Figures 5–10, respectively.

As shown in Figures 5–7, obviously, in the interval [0, 2π], the change of Tc,L with α is
symmetric about α = π, which can be derived from Section 2. In the interval [0, π), Tc,L
gradually becomes lower, but, when α reaches π, Tc,L takes the maximum. This singular
behavior is due to a significant fact that changes in boundary conditions disproportionately
adds or removes single-states with the zero quantum numbers [47], and the contribution
from that group of single-state to the non-condensed occupation is quite large. Compared
with other boundary conditions, the antiperiodic boundary conditions remove more single-
state with the zero quantum numbers, which can be derived in Section 2. As a result, the



Symmetry 2021, 13, 300 7 of 11

fixed particle number density determines that the characteristic temperature Tc,L takes its
maximum at α = π. Additionally, comparing Figures 5–7, as L increases until it is large
enough, the influence of the boundary conditions on Tc,L becomes negligible.

/2 3 /2 2
0

2

4

6

8

10

12

14

T
c

Figure 5. (Color online) The characteristic temperature Tc,L versus α with L = L0 in the cubic box. Here, h̄2

mk n
2
3

is taken as a unit of Tc,L.

/2 3 /2 2
0

1

2

3

4

5

6

T
c

Figure 6. (Color online) The characteristic temperature Tc,L versus α with L = 10L0 in the cubic box. Here, h̄2

mk n
2
3

is taken as a unit of Tc,L.

Apart from this, the condensate fraction n0/n versus T with various α in different
linear sizes are presented in Figures 8–10. The condensate fraction become less sensitive
to the boundary conditions as L increases. Particularly, Figure 10 demonstrates that the
signature of BEC in finite systems become independent of the boundary conditions when
the linear size is large enough. In the case of small volume systems, as α changes from 0 to
π, the major difference is a retarded onset of the occupation of the ground state, while, at
α = π, the antiperiodic boundary condition is more conductive for bosons to condensation.
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Figure 7. (Color online) The characteristic temperature Tc,L versus α with L = 100L0 in the cubic box.

Here, h̄2

mk n
2
3 is taken as a unit of Tc,L.
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Figure 8. (Color online) The ground state particle density n0/n versus T with L = L0, with

α = 0.3π, 0.5π, 0.7π, 0.9π, π in the cubic box. Here, h̄2

mk n
2
3 is taken as a unit of T.
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Figure 9. (Color online) The ground state particle density n0/n versus T with L = 10L0, with

α = 0.3π, 0.5π, 0.7π, 0.9π, π in the cubic box. Here, h̄2

mk n
2
3 is taken as a unit of T.
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Figure 10. (Color online) The ground state particle density n0/n versus T with L = 100L0, with α =

0.3π, 0.5π, 0.7π, 0.9π, π in the cubic box. Here, h̄2

mk n
2
3 is taken as a unit of T.

As a consequence, in a system of small volume, the characteristic temperature and con-
densate fraction are sensitive to boundary conditions, especially in the case of antiperiodic
boundary condition.

5. Conclusions

In this paper, we study ideal Bose gases with fixed particle density confined in the
cubic box. By means of the theoretical analyses, we derive the specific formulas of the
Bose distribution confined in the cubic box. Through numerical calculation, we analyze
the influence of the finite-size and boundary conditions on characteristic temperature Tc,L
and condensate fraction n0/n. We find that, in the case of finite volume system, the smaller
linear size can increase Tc,L and n0 and the crossover behavior between the ground and
excited states will advance as the linear size decreases. More importantly, the smaller is the
volume, the more are sensitive Tc,L and n0/n to antiperiodic boundary conditions.

Additionally, superconductivity and superfluidity that have a lot in common with BEC
can be described by similar theories. Therefore, the finite size effect is expected to have an
important impact on superconductivity and superfluidity, which requires further research.
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