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Abstract: In secret image sharing, the image is divided into several stego images, which are man-
aged by corresponding participants. The secret image can be recovered only when the number of
authorized participants is no less than the threshold. Thus, it is widely used to protect essential
images, such as engineering drawings and product design drawings. In the traditional secret image
sharing scheme, the threshold is fixed and unique. However, in practice, the security policy and
the adversarial structure may change; therefore, the threshold must be adjusted dynamically. In
this paper, we propose a novel secret image sharing scheme with a changeable threshold capability.
Our scheme eliminates the limit of the changeable threshold and reduces the computation required.
Also, our scheme is the first threshold changeable secret image sharing scheme that can recover an
undistorted cover image. The theoretical analysis shows that our scheme is safe even if the threshold
is changed. The experiments demonstrated that the stego image generated by our algorithm has
better quality than other changeable-threshold, secret image sharing algorithms.

Keywords: symmetry; secret image sharing scheme; interpolation polynomial; threshold changeable

1. Introduction

With the rapid development of consumer and communication technologies, data, in-
cluding images, increasingly are collected, transmitted, and disseminated only in electronic
form. However, ensuring the security of images-in-transit and images-at-rest is challenging.
In order to solve the security problem of private images, symmetric or public-key cryptog-
raphy encryption images, which needs a key, are often used [1–3]. If the key is lost or the
encrypted image is damaged, the secret information cannot be recovered. Secret sharing
technology can provide private images with better security and fault tolerance. Using
the secret image sharing technology, the private image is split into multiple shares and
each share is distributed to authorized participants. Only a certain number of authorized
participants can recover the original private image.

In 1979, Shamir [4] proposed a secret sharing scheme using the principle of polynomial
interpolation. In the same year, Blakey [5] independently designed a secret sharing scheme
based on space geometry. Since then, research on secret sharing has attracted the attention
of researchers. In 1994, Naor and Shamir [6] proposed a secret image sharing scheme,
generally, secure (t, n) image sharing schemes divide the secret image into n shares. No
complicated calculations are required, and the secret image can be reconstructed by stacking
t shares. However, the share, a random-noise-like image, can be noticed very easily by
attackers. To reduce the probability of discovery, Lin and Tsai [7] proposed a new secret
image sharing scheme, in which stenography is used to embed the secret share into the
cover image. Then, their scheme uses watermarking to provide the capability to verify
shares, thereby preventing share spoofing attacks. Secret sharing can effectively ensure
the security of secret information, but the traditional secret sharing schemes (e.g., [8–12])
cannot adjust the threshold value. However, in reality, the threshold value must be adjusted
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when the security policy or the adversary model changes. Here, we describe three example
situations in which (1) the importance of the secret information must be changed, (2) some
participants have left or joined the system, and (3) attackers have obtained one or more
secret shares.

Inspired by the work of Yuan et al. [13], we propose a novel, adjustable, threshold
image-sharing scheme. In our method, the threshold value is no longer fixed and can
be adjusted dynamically and in a timely fashion according to the actual situation and
security policy. By improving the polynomial generation method and the steganography
of Guo et al.’s scheme [14], we achieve the following three features:

(1) There is no limit on the adjustable threshold values; therefore, the scheme can be
used in more complex applications.

(2) By improving the polynomial generation algorithm, the secret can be recovered by
calculating only one polynomial.

(3) We improved Guo et al.’s image hiding scheme [14] by using the location map to
void the overflow pixel, which makes our scheme the first scheme to recover the cover
image without distortion and to have the highest quality stego images compared to other
threshold-changeable secret sharing schemes.

The remainder of the paper is organized as follows. In the next section, we intro-
duce related work; in Section 3, we briefly revisit the work of Yuan et al. [13], before
presenting our proposed scheme in Section 4; and in Section 5, we present our security and
performance evaluations. Our conclusions are presented in the last section.

2. Related Work

In 1989, Laih et al. [15] proposed the first secret sharing scheme that had a changeable
threshold. Desmedt and Jajodia’s scheme [16] incorporated the use of the redistribution
of shares, which removed the requirement for the dealer to be online. Before the secret
can be recovered, participants must maintain a secure channel with each other. In 1999,
Martin et al. [17] designed a general model of sharing secret information with adjustable
thresholds. In 2005, Barwick et al. [18] proposed a new secret sharing scheme with change-
able thresholds that used broadcast communication to minimize the costs. In recent years,
researchers have used different technologies to implement secret sharing schemes with
adjustable threshold values. For example, based on polynomial interpolation, in 2012,
Zhang et al. [19] designed a secret sharing scheme with an adjustable threshold capability
that also resists conspiratorial attacks launched by malicious participants using historical
shares. In 2016, Yuan et al. [13] proposed a dealer-free adjustable threshold secret sharing
scheme that was designed to defend against a historical share attack by introducing a
two-variable function. In 2017, Pilaram et al. [20] proposed an adjustable-threshold multi-
secret sharing scheme based on a lattice design. In 2018, Jia et al. [21] proposed a secret
sharing scheme with an adjustable threshold. The core of the scheme was to construct
a new prime-number matrix, and the generation and reconstruction of the shares were
achieved using the Chinese remainder theorem.

With the wide application of images, researchers began to regard images as secret
information and introduced secret sharing into the field of images. In 2007, Yang et al. [22]
improved Lin and Tsai’s [7] scheme by designing a scheme to achieve enhanced authentica-
tion using a Galois field. In a separate work, Lin and Chan [8] proposed an invertible secret
image sharing scheme that achieved improved quality of the stego image, that provided
larger embedding capacity, and that allowed for the reconstruction of an undistorted secret
image. In 2012, Guo et al. [23] proposed the first hierarchical secret image sharing scheme.
In their scheme, the stego images are partitioned into several levels, and each level has a
corresponding threshold. The access structure is determined by a sequence of threshold
requirements. Only when each threshold meets the current requirements and all of the
thresholds are satisfied can the secret image be recovered without distortion. Hierarchical
secret image sharing extends the boundary of secret image sharing, and such schemes
are constantly being proposed [11,24,25]. To improve the quality of stego images, in 2013,
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Ulutas et al. [26] proposed a novel secret image sharing scheme that uses the exploiting
modification direction (EMD) technique and the modulus operator to hide shares. The
approach ensures higher visual quality stego images for the cover image. In addition to
hierarchical schemes, many researchers have proposed various multi-secret image sharing
schemes based on different technologies. For example, the Chinese remainder theorem [10],
Boolean [27–29], and cellular automaton [30] have been proposed. In 2017, Yuan et al. [31]
first applied the adjustable threshold into secret image sharing, and they proposed the first
adjustable-threshold secret image scheme. Their scheme can adjust the threshold values
securely before recovering the secret image. However, their scheme has some limitations,
e.g., the threshold value is conditional, the secret share requires large storage space, and
a significant amount of calculation is required during recovery. By extending Thien and
Lin’s scheme [32], Liu et al. [33] proposed a threshold-changeable secret image sharing
scheme in 2019. However, their scheme does not use image steganography and cannot
resist collusion attacks.

3. Preliminaries

Here, we introduce the ({t1, t2, . . . , tN}, n) adjustable-threshold secret sharing scheme
of Yuan et al. [13], which is the two-variable one-way function used in our scheme.

3.1. Two-Variable One-Way Function

A two-variable one-way function f (r, s) is a function of the variables r and s that can
be mapped to a fixed range of values in a finite field. It has the following properties as
described by Chien et al. [34]:

(1) Given r and s, it is easy to compute f (r, s);
(2) Given s and f (r, s), it is hard to compute r;
(3) Having no knowledge of s, it is hard to compute f (r, s) for any r;
(4) Given s, it is hard to find two different values r1 and r2 such that f (r1, s) = f (r2, s);
(5) Given r and f (r, s), it is hard to compute s;
(6) Given pairs of ri and f (ri, s), it is hard to compute f (rj, s) for rj 6= ri.
He and Dawson [35] introduced the concept of the two-variable one-way function

through the existing one-way function and gave some theoretical proofs. In addition,
they gave some examples of constructing two-variable one-way functions, such as using
hash functions as follows: Let A be a secure signature scheme [36]. For a message m,
the signature with secret key k is denoted by A(k, m). Let h be a universal one-way hash
function, the existence of which is based on any one-to-one, one-way function [37]. Let
f (x, y) = h(A(x, y)). Then f is a two-variable one-way function that satisfies the properties
of (1)–(6).

In our scheme, the two-variable one-way function is used mainly to defend against
the historical share attack. At the same time, the real share, si, can be used in the next secret
sharing process, which can improve efficiency.

3.2. Yuan et al.’s Secret Sharing Scheme with a Changeable Threshold

In 2016, Yuan et al. [13] proposed a novel ({t1, t2, . . . , tN}, n)-threshold secret sharing
scheme. Their scheme does not have a limit on the value of the changeable threshold, and
its computations are less complex. We briefly introduce the process of their scheme, which
includes two procedures, i.e., the sharing procedure and the recovery procedure.

3.2.1. Sharing Procedure
To share secret s, the dealer constructs polynomial h(x) as

hN(x) = (s + a1x + a2x2 + . . . + atN−1 xtN−1 ) mod q (1)
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where q is a large prime number and a1, a2, . . . , atN−1 ∈ GF(q) are chosen randomly.
Polynomial hj(x), which corresponds to the threshold tj(1 ≤ j ≤ N), can be generated
as follows:

h(N−1)(x) = (s + a1x + . . . + atN−1−1xtN−1−1) mod q

h(N−2)(x) = (s + a1x + . . . + atN−2−1xtN−2−1) mod q

...

h1(x) = (s + a1x + . . . + at1−1xt1−1) mod q.

(2)

Then, the dealer chooses different random integers, i.e., r1, r2, . . . , rN , corresponding
to the thresholds t1, t2, . . . , tN one to one. The shares can be calculated as follows:

yj
i = hj( f (rj, si)) (1 ≤ i ≤ n, 1 ≤ j ≤ N), (3)

where f (r, s) is a two-variable one-way function and si is the real identification of the
participant, Pi.

3.2.2. Recovering Procedure
Before recovering, if tj participants or more than tj participants want to recover the

secret s, the combiner will broadcast the corresponding key, rj. For a general description,
we assume that participants P1, P2, . . . , Ptj want to recover the secret. Then, the secret s can
be recovered as follows:

s = hj(0) = ∑
tj

i=1yj
iä

tj

k=1,k 6=i
− f (rj, sk)

f (rj, si)− f (rj, sk)
mod q. (4)

4. Proposed Scheme

In this section, we introduce the process of our scheme, which is divided into two
phases, i.e., the secret image sharing phase and the recovery phase.

In the secret sharing procedure, the dealer generates the secret shares from the secret
image and embeds them in the cover image to form the stego images. Then, the dealer
adjusts the threshold value according to the actual environment and security policy. If the
number of authorized participants is more than or equal to the threshold value, it enters
the recovery phase and reconstructs the secret image and cover image. The abstract flow of
our scheme is shown in Figure 1, and the main notations of this paper are listed in Table 1.

Figure 1. Abstract flow of our scheme.
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Table 1. Summary of Notations.

Notation Meaning

S Gray-scale secret image S
C Gray-scale cover image C

sh× sw sh and sw are the width and height of secret image S
ch× cw ch and cw is the width and height of cover image C

n The number of participants
Pi Participant i
Si The stego images holed by participant Pi
N The number of changeable thresholds
tj The value of the jth changeable threshold
m A prime number, and m ∈ [0, 255]

hj(x) The polynomial corresponding to threshold tj
f (r, s) A two-variable one-way function

si The identification of participant Pi
rj The key corresponding to threshold tj[
xk
]

Coefficient operator. If h(x) = ∑i≥0 aixi, then
[

xk
]

h(x) = ak

d·e The ceiling function
b·c The flooring function
D Converted data of secret image
R Cover data of the cover image
M Non-embedded location map m-ary data
Li Location map share data of participan Pi

4.1. Secret Sharing Procedure

In the secret sharing procedure, the dealer generates secret shares from secret image
S and then embeds them in cover image C to form stego images S1, S2, . . . Sn. The secret
sharing procedure is divided into two parts, i.e., (1) the share generation phase and (2) the
stego image generation phase. Figure 2 shows the flow diagram of the secret image sharing
phase.

4.1.1. Share Generation Phase

In this phase, the secret image is processed to generate the shares of n participants.
The work steps are as follows:

Step 1: According to the order from left to right and top to bottom, the dealer converts
every pixel of secret image S into m-ary digits and forms the converted data D and
m ∈ [0, 255]. Every pixel is converted to dlogm255e digits.

Step 2: The dealer selects N changeable thresholds according to their needs and in
ascending order (ti−1 < ti, 2 ≤ i ≤ N).

Step 3: The dealer selects t1 digits d0, d1, . . . , dt1−1 from converted data D and con-
structs original polynomial hN(x) as follows:

hN(x) = a0 + a1x + . . . + atN−1xtN−1 mod m, (5)

where ai = di(0 ≤ i ≤ t1 − 1) and tN − t1 different integers at1 , at1+1, . . . , atN−1 are chosen
randomly in GF(m).

Step 4: According to Algorithm 1, the polynomials h1(x), h2(x), . . . , hN−1(x) corre-
sponding to the thresholds t1, t2, . . . , tN−1 can be generated as follows:

h(N−1)(x) = (a0 + a1x + . . . + atN−1−1xtN−1−1) mod m

h(N−2)(x) = (a0 + a1x + . . . + atN−2−1xtN−2−1) mod m

...

h1(x) = (a0 + a1x + ... + at1−1xt1−1) mod m.

(6)
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Step 5: The dealer selects n distinct and nonzero random integers s1, s2, . . . , sn to
identify participants P1, P2, . . . , Pn, and the dealer randomly selects N different integers
r1, r2, . . . , rN as the key. Then, shares y1

i , y2
i , . . . , yN

i (1 ≤ i ≤ n) can be calculated as follows:

yj
i = hj( f (rj, si))(1 ≤ j ≤ N), (7)

where yj
i is participant Pi’s share corresponding to the jth threshold and f (r, s) is a function

with two-variable one-way.
Step 6: Repeat steps 3–5 until the converted data are completely processed.

Figure 2. Flow diagram of the secret image sharing phase.
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Algorithm 1 Polynomial generator.

Input: hN(x), j, tj, tN

Output: hj(x)

hj(x) = hN(x);

d = tN − tj;

while d > 0 do

c = [xtj+d−1]h(x)

hj(x) = hj(x)− cxtj+d−1

end while

4.1.2. Stego Images Generation Phase

In this phase, the dealer embeds every participant’s share into the cover image and
generates a corresponding stego image. The steps are as follows.

Step 1: Non-location map generation and hiding
The embedded pixel value may overflow (The reason is explained in

Section 5); therefore, we need to generate the non-embedded location map. According to
the principle of symmetry, a non-embedded location map is generated for the cover image
as follows. First, we set a map of the same size as the cover image, and the default value
for each position in the map is 0. Then, if the pixel c, which comes from cover image C, is
not within the range of [d(m− 1)/2e, 255− b(m− 1)/2c], the corresponding position in
map is modified to 1. As shown in Figure 3, we can obtain a corresponding non-embedded
location map based on the 3× 3 block from the gray-scale image “Crowd”, where m = 7
and the range of embeddable pixels is [3, 252].

Figure 3. Example of generating a non-embedded location map when m = 7.

In order to reduce the amount of embedded data, we used the secret image sharing
method to generate shares of the non-embedded location map data as follows:

1© The non-embedded location map is converted to m-ary data (called location map
data M).

2© The dealer selects t1 digits m0, m1, . . . , mt1−1 from data M and constructs the fol-
lowing polynomial:

g(x) = m0 + m1x + . . . + mt1−1xt1−1 mod m. (8)

Then, the share g(si)(1 ≤ i ≤ n) of participant Pi is calculated, where si is participant
Pi’s identification. Share g(si) is converted to binary data and saved to location map share
data Li.

3© Repeat step 2© until data M are processed.
4©We used the LSB(Least Significant Bit) algorithm to embed Li into the cover image.

Assume that the w-bit data in the pixel are replaced with the location map share data. The
dealer selects unembedded pixel c from cover image C in the order from left to right and
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top to bottom and saves cw−1, cw−2, . . . , c0 to cover data R, where pixel c is represented in
8-bit binary as c7, c6, . . . , c0. Then, the dealer selects w digits l0, l1, . . . , lw−1 from the location
map share data, Li, and replaces cw−1, cw−2, . . . , c0 with ci = lw−1−i(0 ≤ i ≤ w− 1).

5© Repeat step 4© until the location map share data, Li, are embedded.
Step 2: Hiding Shares
According to the non-embedded location map, the dealer selects N embeddable pixels

c1, c2, . . . , cN from cover image C. Then, the dealer computes b1, b2, . . . , bN and saves them
to cover data R, where bj = cj mod m (1 ≤ j ≤ N). The pixel values, i.e., sp1

i , sp2
i , . . . , spN

i
(1 ≤ i ≤ n), used to replace c1, c2, . . . , cN can be calculated as

spj
i =



c′j −m i f (−m < σ
j
i < −

⌊
m−1

2

⌋
)

c′j i f (−
⌊

m−1
2

⌋
≤ σ

j
i ≤

⌈
m−1

2

⌉
),

c′j + m i f (
⌈

m−1
2

⌉
< σ

j
i < m)

(9)

where c′j = cj − bj + yj
i , and σ

j
i = bj − yj

i , y1
i , y2

i , . . . , yN
i are the shares of participant Pi

(1 ≤ i ≤ n).
Then, the dealer repeats the above processes until all of the shares of data are embed-

ded.
Step 3: Cover data hiding
To recover the cover image without distortion, cover data R must be embedded into

the cover image. The dealer selects an unembedded pixel c from cover image C and
calculates b = c mod m. Then, the dealer selects t1 − 1 digits r0, r1, . . . , rt1−1 ∈ GF(m) from
cover data R and constructs polynomial g(x) as

g(x) = r0 + r1x + ... + rt1−2xt1−2 + bxt1−1 mod m. (10)

Then, the dealer computes every participant’s share gi = g(si), where si is the identifi-
cation of participant Pi(1 ≤ i ≤ n) and c′ = c− b + gi. Stego image pixel spi is calculated
as

spi =



c′ −m i f (−m < b− gi < −
⌊

m−1
2

⌋
)

c′ i f (−
⌊

m−1
2

⌋
≤ b− gi ≤

⌈
m−1

2

⌉
).

c′ + m i f (
⌈

m−1
2

⌉
< b− gi < m)

(11)

The dealer repeats the above processes until cover data R are embedded into cover
image C, and then, the dealer generates all stego image S1, S2, . . . , Sn. The composition of
the stego image is shown in Figure 4.

Last, the dealer sends stego image Si and identification si to participant Pi through the
secure channel and destroys secret image S and all of the stego images, i.e., S1, S2, . . . , Sn, to
avoid a situation in which the attacker can attain the secrete image S by attacking the dealer.
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Figure 4. Composition of the stego image.

4.2. Recovery Procedure

When the security strategy or the adversary model changes, the threshold must be
adjusted to maintain the original security level. Assume that the threshold value is changed
to tj (1 ≤ j ≤ N). Then, if the number of participants who agree to join in the recovery
phase is greater than or equal to tj, the dealer broadcasts key rj and the secret image S can
be recovered.

Without loss of generality, we assume that participants P1, P2, . . . , Ptj agree to recover
secret image S. Then, the authorized participants recover secret image S and cover image C
through three steps, i.e., (1) extraction of the non-embedded location map, (2) reconstruction
of the secret image, and (3) recovery of the cover image. Figure 5 shows the flow diagram
of the recovery phase.

Step 1: Extraction of the non-embedded location map
1© The authorized participants select t1(t1 ≤ tj) stego pixels from corresponding stego

images S1, S2, . . . , St1 (note: since t1 = min{t1, t2, . . . , tN}, at least t1 participants participate
in the recovery phase regardless of the current threshold).

2© For each stego image Si (1 ≤ i ≤ t1), the authorized participants select pixel spi in
the order from left to right and top to bottom and represent pixel spi as c7

i , c6
i , . . . , c0

i . Then,
they extract the embedding data cw−1

i , cw−2
i , . . . , c0

i .
3© Repeat step 2© to obtain the location map share data Li.
4© The share g(si) of stego image Si is extracted from Li. Then, the polynomial g(x)

can be reconstructed as [38]:

g(x) =
t1

∑
i=1

g(si)
t1

∏
j=1,j 6=i

x− si
si − sj

mod m. (12)

From the coefficient of polynomial g(x), we can obtain the recovery digits, i.e., m0, m1, . . . , mt1−1.
5© Repeat step 4© until the non-embedded data of the location map are

recovered.
Step 2: Reconstruction of the secret image
According to the extracted, non-embedded location map, the corresponding stego

pixels, i.e., spj
1, spj

2, . . . , spj
tj

, can be obtained from stego images S1, S2, . . . , Stj . By using
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keys rj and tj and the participants’ identifications, i.e., s1, s2, . . . , stj , the polynomial hj(x)
can be reconstructed as [38]

hj(x) = ∑
tj

i=1yj
i∏

tj

k=1,k 6=i
x− f (rj, sk)

f (rj, si)− f (rj, sk)
mod m, (13)

where yj
i = spj

i mod m.
By repeating the processes above, all converted data, D, can be extracted, and the

secret image, S, can be recovered by converting data, D.
Step 3: Recovery of the cover image
The authorized participants select t1(t1 ≤ tj) stego pixels from the correspond-

ing stego images. We assumed that the authorized participants selected stego pixels
sp1, sp2, . . . , spt1 from the stego images S1, S2, . . . , St1 . Then, polynomial g(x) can be recon-
structed as

g(x) =
t1

∑
i=1

g(si)
t1

∏
j=1,j 6=i

x− si
si − sj

mod m, (14)

where g(si) = spi mod m. From the coefficient of polynomial g(x), we can obtain cover
digits r0, r1, . . . , rt1−2 and b. Digits r0, r1, . . . , rt1−2 can be used to recover the cover image
pixels of the location map area and the share area, and digit b can be used to recover the
cover image pixel of the cover data area. Then, the participants repeat these processes to
obtain cover data R. Because the LSB algorithm normally is used, we only represent how
to recover cover pixels used to embed the share and the cover data.

Assume that we use stego images S1, S2, . . . , Stj to recover the area of cover image
C used to embed the share. Then, we select N stego image pixels sp1

i , sp2
i , . . . , spN

i from
the corresponding area of stego image Si

(
1 ≤ i ≤ tj

)
and select N digits r1, r2, . . . , rN from

cover data R. As we know, bj = cj mod m, where cj is the cover image pixel value

corresponding to stego image pixel spj
i . (See the details in Section 4.1) Stego image pixel

spj
i(1 ≤ j ≤ N) can be computed as

spj
i =



c′j −m i f (−m < σ
j
i < −

⌊
m−1

2

⌋
)

c′j i f (−
⌊

m−1
2

⌋
≤ σ

j
i ≤

⌈
m−1

2

⌉
),

c′j + m i f (
⌈

m−1
2

⌉
< σ

j
i < m)

(15)

where c′j = cj − bj + yj
i and σ

j
i = bj − yj

i , where yj
i = spj

i mod m. Thus, the cover image
pixel cj can be recovered as

cj =



spj
i + σ

j
i + m i f (−m < σ

j
i < −

⌊
m−1

2

⌋
)

spj
i + σ

j
i i f (−

⌊
m−1

2

⌋
≤ σ

j
i ≤

⌈
m−1

2

⌉
),

spj
i + σ

j
i −m i f (

⌈
m−1

2

⌉
< σ

j
i < m).

(16)

After recovering the cover pixel used to embed the share, we can use the same method
to recover the cover pixel used to embed the cover data. Then, we can recover the cover
image without distortion.
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Figure 5. Flow diagram of the recovery phase.

5. Experiment and Analysis

In this section, we describe the experiments that were conducted on the scheme. Then,
the performance of the experiments are analyzed in detail, and finally, the security of the
scheme is discussed.

In the experiments, we use the peak signal-to-noise ratio (PSNR) as a measure of
performance [39]:

PSNR = 10 log10

(
2552

MSE

)
dB. (17)

The mean square error (MSE) is defined in an H ×W-sized image [39]:

MSE =
1

H ×W

H

∑
i=1

W

∑
j=1

(
pij − p

′

ij

)2
, (18)

where pij is the original pixel value before embedding and p′ ij is the pixel value of the
stego image.

5.1. Simulation Results

In our experiment, the parameters were set as follows: N = 3, n = 6, m = 7, t1 = 3,
t2 = 4, and t3 = 5, which is a ({3, 4, 5}, 6) threshold-changeable secret image sharing
scheme. We chose a gray-scale baboon of 128× 128 pixels as the secret image, as shown in
Figure 6.
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Figure 6. Secret image of a baboon.

Initially, we used the classic standard test image, Lena, at 512× 512 pixels, as the cover
image. In our ({3, 4, 5}, 6) scheme, six stego images were obtained, and then, t2 = 4 was
used as the changed threshold and the key, r2, was broadcast. For simplicity, we choose
to use images (a), (b), (c), and (d) to recover the secret image, and Figure 7 shows the
experimental results, i.e., the average PSNR of the stego image was 47.15 dB. The results
showed that this scheme has a good quality image, i.e., the difference between the stego
image and the cover image could not be detected by the human eye, and the secret image
can be recovered without any distortion.

(a) Stego image 1,
PSNR = 47.14 dB

(b) Stego image 2,
PSNR = 47.13 dB

(c) Stego image 3,
PSNR = 47.16 dB

(d) Stego image 4,
PSNR = 47.17 dB

(e) Stego image 5,
PSNR = 47.13 dB

(f) Stego image 6,
PSNR = 47.14 dB

(g) Cover image (h) Recoverd secret

Figure 7. Stego images, recovered secret image baboon, and cover image Lena.
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In addition, the influence of the cover image on the quality of the stego image was
considered. We used 9 different 512× 512-pixel gray-scale images as the cover image. This
group of images is shown in Figure 8, and the experimental results are shown in Table 2. It
was apparent that the difference between the results of different cover images was small;
therefore it was concluded that the cover image has little effect on the quality of the stego
images.

(a) Lena (b) Peppers (c) Boat

(d) Fruits (e) Couple (f) Crowd

(g) Airplane (h) Tiffany (i) Barbara

Figure 8. Nine cover images.
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Table 2. Peak signal-to-noise ratio (PSNR) values (dB) of the stego images tested in nine cover images.

Cover Images Stego 1 Stego 2 Stego 3 Stego 4 Stego 5 Stego 6 Average

Lena 47.14 47.13 47.16 47.17 47.13 47.14 47.15
Peppers 47.20 47.19 47.22 47.20 47.23 47.22 47.21

Boat 47.22 47.13 47.22 47.24 47.15 47.20 47.19
Fruits 47.03 47.12 47.00 47.14 47.03 47.10 47.07

Couple 47.15 47.22 47.22 47.13 47.15 47.22 47.18
Crowd 47.17 47.16 47.15 47.17 47.13 47.15 47.15

Airplane 47.11 47.12 47.13 47.13 47.12 47.11 47.12
Tiffany 47.03 47.14 47.11 47.14 47.06 47.03 47.08
Barbara 47.16 47.19 47.19 47.18 47.17 47.20 47.18

5.2. Performance Analysis

In this section, we focus on analyzing the parameter m and thresholds t1, t2, . . . , tN
because these two parameters have important influences on the secret capacity and the
quality of secret images in our scheme.

For the analysis of m, our experimental parameters are as follows: N = 3, n = 6,
t1 = 3, t2 = 4, and t3 = 5. The baboon is still the secret image, and Lena is used as the
cover image; Table 3 shows the results of the experiment, i.e., the relationship between
the different values of m and the secret capacity. Based on the experimental data, we
concluded the following: (1) as m increases, the value of PSNR decreases; (2) the secret
embedding capacity increases as the factor m increases. For the first point, we can obtain it
from the range of pixels. As the range of pixels changes and becomes larger, the difference
between the pixels of the stego image and the pixels of the cover image increases; therefore,
the PSNR value increases. Also, as the factor m increases, there is a lower share of data
after conversion. That is to say, there are fewer areas on the cover image where changes
occurred; therefore, the embeddable capacity increases. In our scheme, there were t1
converted digits in the polynomial that was constructed, and it was embedded in N
cover pixels (i.e., N × dlogm255e/t1 pixel); similarly, t1 − 1 cover data occupy one cover
pixel. For a cover image with Hc ×Wc pixels and considering the embedded pixels of
the location map (the size of which is

⌈⌈
logm Hc×Wc

t1

⌉
× log2m

w

⌉
), the embedding capacity is

t1(t1−1)
[N(t1−1)+t1]×dlogm255e × (Hc ×Wc −

⌈⌈
logm Hc×Wc

t1

⌉
× dlog2me

w

⌉
).

Table 3. Relationship of the capacity distortion for different m values.

m Pixel Change Range PSNR

7 [−3, 3] 47.15
11 [−5, 5] 43.32
13 [−6, 6] 41.81
17 [−8, 8] 39.33
19 [−9, 9] 38.34
23 [−11, 11] 36.55

The value of the thresholds is another important factor in the scheme. We chose
different thresholds in the experiment, and Table 4 shows the results of the experiment. In
the experiment, there were five different sets of potential thresholds, i.e., {2, 3, 4}, {2, 4, 7},
{3, 4, 5}, {3, 5, 7}, {6, 7, 8}, and m = 7; other parameters were set as above.

In our scheme, t1 data were embedded for each secret sharing; therefore, the greater
the threshold t1, the greater the embedding capacity. The data in Table 4 are consistent with
our theoretical analysis. Analyzing the thresholds {2, 3, 4}, {2, 4, 7}, {3, 4, 5}, and {3, 5, 7}
with fixed m and N, it was apparent that the quality of the image had little relationship
with tN . It is worth noting that the value of the minimum threshold and the value of the
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potential threshold are important factors that determine the quality of the stego images.
This is because the minimum threshold and the number of thresholds affect the amount
of embedded data. Then, by analyzing the data that correspond to the numbers 1, 3, and
5 in Table 4, it was found that the PSNR increases gradually as the factor, t1, increases.
The increase in the embedding capacity means fewer shares of fixed secret data, i.e., the
number of pixels in the original cover image is modified less; therefore, the quality of the
stego image is better.

Table 4. Performance comparisons of different potential thresholds.

Number Thresholds PSNR (dB)

1 {2, 3, 4} 44.25
2 {2, 4, 7} 44.24
3 {3, 4, 5} 47.15
4 {3, 5, 7} 47.15
5 {6, 7, 8} 51.18

Table 5 shows the comparison of our scheme with other secret image sharing schemes in
recent years. We still used the baboon with 256× 256 pixels as the secret image and Lena with
1024× 1024 pixels as the cover image and set the thresholds as {2, 3, 4}, m = 5. The results
shown in Table 5 indicate that the PSNR value of our scheme was slightly lower than the PSNR
values of the single-threshold, secret image sharing schemes. This occurred because our scheme
embedded redundant shares and non-embedded location map information. However, in all
secret image sharing schemes with changeable thresholds, our scheme had the best quality
images. Although the embedding method was optimized, a location map also was embedded
in order to recover the cover image; therefore, compared with Yuan et al.’s scheme [31], the
improvement in the quality of the stego image was not obvious. In addition, since Liu et al.’s
scheme [33] does not use steganography to hide the shared data, the shadow image is generated
directly in their scheme; therefore, there is no meaningful reference to PSNR.

We also compared and analyzed the actual running performance. Considering that
different types of secret image sharing schemes were not suitable for comparison, we
experimented on the same type schemes, such as Yuan et al.’s scheme and Liu et al.’s
scheme. The secret image was the baboon with 128× 128 pixels, and the cover image was
Lena with 512× 512 pixels. The other parameters were N = 3, t1 = 3, t2 = 4, t3 = 5, m = 7,
and n = 6. The adjusted threshold value t2 = 4 was chosen for the actual performance
test. The execution time of Liu et al.’s scheme is 32 s, that of Yuan et al.’s scheme is 151
s, and that of our scheme is 147 s. Liu et al.’s scheme does not have the steganography
operation; therefore, its execution time is shorter than our scheme. Yuan et al.’s scheme
needs to recover multiple polynomials layer by layer to recover the secret image, but our
scheme only needs to compute a polynomial. Meanwhile, our scheme needs to generate
and embed a location map, which Yuan et al.’s scheme does not need. Thus, our scheme’s
execution time is shorter but close to Yuan et al.’s. Compared with other methods, our
work has the following advantages and contributions:

(1) No limit on thresholds. In Yuan et al.’s scheme [31], the threshold can be changed
only once. However, in our scheme, N potential thresholds do not need to satisfy ti+1 − ti ≤
t1(i = 1, 2, . . . , N − 1). Meanwhile, the threshold value of our scheme can be changed more
than once.

(2) Less calculation. In Yuan et al.’s scheme [26], if the threshold is adjusted to
tj(1 ≤ j ≤ N), they must use polynomial interpolation to determine the polynomial hj(x)
and then to determine the polynomial hj+1(x),hj+2(x), . . . , hN(x) to obtain the secret from
the polynomial hN(x). When recovering, our scheme does not have the process of iterating
the polynomials, and only one polynomial has to be recovered.

(3) Recoverable cover image. In the same type of scheme, Yuan et al.’s scheme [31]
cannot recover the cover image and Liu et al.’s scheme [33] does not use steganography;
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however, our proposed method can reconstruct the cover image and completely recover
the secret image without distortion.

5.3. Security Analysis

In this part, we prove the applicable pixel range of the proposed method, and the
security of the scheme is analyzed theoretically.

Theorem 1. In our scheme, the difference ∆j
i between original pixel cj and the corresponding stego

pixel spj
i must satisfy −d(m− 1)/2e ≤ ∆j

i ≤ b(m− 1)/2c, where m is a prime number and
m ∈ [0, 255].

Proof. In our scheme, stego pixel spj
i is calculated as

spj
i =



c′j −m i f (−m < σ
j
i < −

⌊
m−1

2

⌋
)

c′j i f (−
⌊

m−1
2

⌋
≤ σ

j
i ≤

⌈
m−1

2

⌉
),

c′j + m i f (
⌈

m−1
2

⌉
< σ

j
i < m)

(19)

where c′j = cj − bj + yj
i , σ

j
i = bj − yj

i , and yj
i = spj

i mod m. Then, there are three cases to
consider:

(1) −m < bj − yj
i < −b(m− 1)/2c

If there exists −m < bj − yj
i < −b(m− 1)/2c, then, ∆j

i = spj
i − cj = −bj + yj

i − m.

Since −m < bj − yj
i < −b(m− 1)/2c, it is easy to prove that b(m− 1)/2c −m < ∆j

i < 0.

The equation can be expressed as −d(m− 1)/2e ≤ ∆j
i < 0 because ∆j

i is an integer.

(2) −b(m− 1)/2c ≤ bj − yj
i ≤ d(m− 1)/2e

The difference ∆j
i can be expressed as ∆j

i = spj
i − cj = −bj + yj

i when−b(m− 1)/2c ≤
bj− yj

i ≤ d(m− 1)/2e. Thus, taking the opposite of−b(m− 1)/2c ≤ bj− yj
i ≤ d(m− 1)/2e,

we can conclude that −d(m− 1)/2e ≤ ∆j
i ≤ b(m− 1)/2c.

(3) d(m− 1)/2e < bj − yj
i < m

The difference ∆j
i can be expressed as ∆j

i = spj
i− cj = −(bj− yj

i)+m whend(m− 1)/2e <
bj − yj

i < m. Then, we can obtain 0 < ∆j
i < m− d(m− 1)/2e, which can be transferred to

0 < ∆j
i ≤ b(m− 1)/2c because ∆j

i is an integer.

In summary, we can prove that −d(m− 1)/2e ≤ ∆j
i ≤ b(m− 1)/2c.

Theorem 2. Let the original pixel, cj, satisfy d(m− 1)/2e ≤ cj ≤ 255− b(m− 1)/2c, where

m ∈ [0, 255] is a prime number. Then, we can ensure that the generated stego pixel, spj
i , satisfies

spj
i ∈ [0, 255].

Proof. In view of Theorem 1, there exists −d(m− 1)/2e ≤ ∆j
i ≤ b(m− 1)/2c, where

∆j
i = spj

i − cj. Since spj
i ∈ [0, 255], there are two cases to consider:

(1) spj
i ≤ 255

In this case, spj
i can be expressed as spj

i = cj + ∆j
i . Thus, the original pixel cj

must satisfy cj ≤ 255− b(m− 1)/2c because −d(m− 1)/2e ≤ ∆j
i ≤ b(m− 1)/2c and

cj + ∆j
i ≤ 255.

(2) spj
i ≥ 0

Since −d(m− 1)/2e ≤ ∆j
i ≤ b(m− 1)/2c andcj + ∆j

i ≥ 0, we can prove that the
original pixel, cj, must satisfy cj ≥ d(m− 1)/2e.



Symmetry 2021, 13, 286 17 of 21

To summarize, the original pixel, cj, must satisfy d(m− 1)/2e ≤ cj ≤ 255−b(m− 1)/2c,
which can ensure that stego pixel spj

i calculated through formula (19) does not exceed the
range [0, 255].

According to Theorem 2, we embed the data into the original pixels that satisfy
d(m− 1)/2e ≤ cj ≤ 255− b(m− 1)/2c and use the non-embedded location map to record
the original pixels that do not meet this condition.

Theorem 3. Before broadcasting the key, no participant can calculate her/his share point pairs,
which can be used to recover the polynomial by Lagrange interpolation.

Proof. Assuming that the current threshold is tj ∈ {t1, t2, . . . , tN}, the corresponding key
is rj (1 ≤ j ≤ N), and participant Pi(1 ≤ i ≤ n) wants to recover her/his first share point

pair
(

xj
i , yj

i

)
, where xj

i = f
(
rj, si

)
, and si is Pi’s identification. According to feature (2)

of the two-variable one-way function, i.e., f (r, s) presented in Section 3.1, participant Pi

cannot calculate ( f (rj, si), yj
i) without key rj. Similarly, participant Pi cannot recover the

rest of her/his share point pairs and the other participants also cannot recover their share
point pairs. Thus, no participant can obtain her/his share point pairs before broadcasting
the key.

Theorem 4. If the number of authorized participants is less than the current threshold, the secret
image cannot be recovered.

Proof. According to the people who take part in the recovery phase, there are two cases to
consider when recovering:

(1) Only authorized participants take part in the recovery phase.
Assuming that the threshold is tj ∈ {t1, t2, . . . , tN}, if only authorized participants

take part in the recovery phase, the ideal situation is that tj − 1 participants want to
recover the secret image. In our scheme, only if not less than tj participants want to
recover the secret will the dealer broadcast the corresponding key, rj. By Theorem 3, we
know that no participant can calculate her/his share of point pairs before broadcasting
the key. Thus, less than tj authorized participants cannot calculate their share point pairs,
which means they cannot recover the secret image. Similarly, participants whose numbers
are less than tj cannot recover their share point pairs that correspond to threshold tk
(k ∈ {1, 2, . . . , j− 1, j + 1, . . . , N}) because only the dealer can broadcast the current key, rj.

(2) Malicious and authorized participants both take part in the recovery phase.
Assuming that the current threshold is tjand that tj ∈ {t1, t2, . . . , tN} if malicious and

authorized participants both take part in the recovery phase, the ideal situation is that
k(1 ≤ k ≤ n− tj + 1) malicious participants and tj − 1 authorized participants want to
recover the secret image. The malicious participants can disguise themselves as authorized
participants. Without loss of generality, it is assumed that both malicious participants
{M1, M2, . . . , Mk} and authorized participants {P1, P2, . . . , Ptj−1} take part in the recovery
phase. After broadcasting key rj, authorized participants {P1, P2, . . . , Ptj−1} can calculate

their share point pairs, i.e., ( f (rj, s1), yj
1), ( f (rj, s2)

j, yj
2), and ( f (rj, stj−1)

j, yj
tj−1), where

s1, s2, . . . , stj−1 is their identification. According to feature (3) of the two-variable one-way
function f (r, s) presented in Section 3.1, malicious participants {M1, M2, . . . , Mk} cannot
calculate their share point pairs without legal identification. Only if recovery have tj share
point pairs or more can the polynomial of degree tj − 1, where secret data can be hidden,
be recovered by the Lagrange interpolation formula. Thus, the secret image cannot be
recovered in this situation.

To summarize, the secret image cannot be recovered when the number of authorized
participants is less than the current threshold.
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Table 5. Comparison of related secret image sharing schemes.

Functionality Yang et al. [22] 2007 Lin et al. [7] 2010 Ulutas et al. [26] 2013 Yuan et al. [31] 2016 Guo et al. [14] 2018 Liu et al. [33] 2019 Ours

Threshold {t, n} {t, n} {t, n} {t1, t2, . . . , tN} {t, n} {t′, t, t′′} {t1, t2, . . . , tN}
(ti+1 − ti ≤ t1)

Threshold changeability No No No Yes No Yes Yes
Collusion Attack Resistance Yes Yes Yes Yes Yes No Yes

Number of recovering polynomials 1 1 1 N+1
2 − 1 1

Meaningful stego image Yes Yes Yes Yes Yes No Yes
Quality of stego images 46.0 dB 48.36 dB 52.79 dB 46.02 dB 48.0 dB − 46.65 dB

Lossless secret image Yes Yes Yes Yes Yes No Yes
Lossless cover image No Yes Yes No No No Yes

Maximum capacity (pixels) H×W
4

(t−1)×H×W
3

(t−2)×H×W
4

tN×H×W
N×dlogm255e

H×W
dlogm255e − *

− The scheme does not have this function; * The maximum capacity of our scheme is
t1(t1−1)×(Hc×Wc−

⌈⌈
logm Hc×Wc

t1

⌉
× dlog2me

w

⌉
)

[N(t1−1)+t1 ]×dlogm255e .
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Theorem 5. Even if attackers steal the dealer’s keys, they cannot recover the secret image without
being able to identify the legal participants.

Proof. Let us assume that the threshold is tj ∈ {t1, t2, . . . , tN} and that the attackers want

to recover participant Pi’s (1 ≤ i ≤ n) first share point pair (xj
i , yj

i). According to feature (3)
of the two-variable one-way function, i.e., f (r, s), presented in Section 3.1, attackers cannot
calculate ( f (rj, si), yj

i) without participant Pi’s identification, si. Similarly, attackers cannot
recover the rest of Pi’s share point pairs and they cannot recover any participant’s share
point pairs without her/his identification.

In view of Theorem 4, attackers can recover the secret image only if they can obtain no
less than tj participants’ share point pairs. Thus, attackers cannot recover the secret image
without legal participants’ identification even if they steal the dealer’s keys.

Theorem 6. Even if attackers obtain the keys and all of the share point pairs used to recover the
secret image, they cannot calculate any participant’s identification.

Proof. Assume that the current threshold is tj and that the attackers want to calcu-
late participant Pi’s (1 ≤ i ≤ n) identification, si, from key rj and Pi’s first share point

(xj
i , yj

i). According to feature (5) of the two-variable one-way function, f (r, s), presented in

Section 3.1, attackers cannot calculate si from rj and xj
i . Similarly, attackers cannot obtain si

from the rest of Pi’s share point pairs and they cannot calculate any participant’s identifica-
tion.

By Theorem 6, we know that attackers cannot obtain any participant’s identification
even if they obtain the keys and all share point pairs. Thus, participant’s identification can
be reused in subsequent secret image sharing procedures, which can improve the efficiency
of our scheme.

6. Conclusions

This paper proposes a novel threshold-changeable secret image sharing scheme. The
experiment shows that this scheme can produce high-quality stego images and can recover
the cover image with loss. The theoretical analysis proved that our scheme can resist
historical secret share attacks and collusion attacks, which means our scheme can adjust the
threshold and recover the secret image securely. Thus, our scheme is safe and easy to use.

In the future, we will improve the stego image’s quality by following these two aspects.
One is to improve the share generation mechanism, which can reduce the amount of share;
on the other hand, we will also design a high-capacity image hiding algorithm based on
pixel prediction and compression sensing.
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