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Abstract: The oscillation of non-linear neutral equations contributes to many applications, such as
torsional oscillations, which have been observed during earthquakes. These oscillations are generally
caused by the asymmetry of the structures. The objective of this work is to establish new oscillation
criteria for a class of nonlinear even-order differential equations with damping. We employ different
approach based on using Riccati technique to reduce the main equation into a second order equation
and then comparing with a second order equation whose oscillatory behavior is known. The new
conditions complement several results in the literature. Furthermore, examining the validity of the
proposed criteria has been demonstrated via particular examples.

Keywords: even-order equations; non-linear equations; oscillation; Riccati substitution; compari-
son technique

1. Introduction

In the present paper, an attempt is made to study the oscillation properties of the
non-linear even-order neutral differential equations with damping(

a(t)
(

y(j−1)(t)
)α)′

+ p1(t)
(

y(j−1)(t)
)α

+ p2(t)xα(γ(t)) = 0, (1)

where t ≥ t0 and
y(t) := x(t) + q(t)x(β(t)). (2)

Our novel outcomes are obtained by considering the following suppositions:

(L1) a ∈ C1([t0, ∞)), a(t) > 0, a′(t) ≥ 0, q, p1, p2 ∈ C([t0, ∞)), p1(t) > 0, p2(t) > 0,
0 ≤ q(t) < q0 < 1, p2 is not identically zero for large t, β ∈ C1([t0, ∞)), γ ∈
C([t0, ∞)), β′(t) > 0, β(t) ≤ t and limt→∞ β(t) = limt→∞ γ(t) = ∞.

(L2) The following relations are satisfied

γ(t) < β(t), γ′(t) ≥ 0, (3)

and ∫ ∞

t0

(
1

a(s)
exp

(
−
∫ s

t0

p1(y)
a(y)

dy
))1/α

ds = ∞, (4)

where j ≥ 4 is an even natural number and α is a quotient of odd natural numbers.

Non-linear neutral differential equations have been extensively utilized to mathemat-
ically model several interesting phenomena that are observed in many areas of science
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and technology such as economics, biology, fluid dynamics, physics, differential geome-
try, engineering,control theory, materials science, and quantum mechanics. Asymptotic
properties of solutions of non-linear neutral differential equations have been the objective
of many researchers. Oscillation theory, however, has gained particular attention due to
its widespread applications in mechanical oscillations, earthquake structures, clinical ap-
plications, frequency measurements and harmonic oscillators, which involve symmetrical
properties; see the remarkable monograph of Hale [1].

Exploring the past few years, the asymptotic behavior of non-linear neutral differen-
tial equations has become a significant research area in different disciplines. In context
of oscillation theory, it has been the object of research for many academics, who have
investigated this notion for non-linear neutral differential and difference equations; the
reader can refer to [2–11].

In [12], Liu et al. used the integral averaging technique to establish oscillation condi-
tions for the solutions of the equation

L′x + p1(t)
∣∣∣(x(j−1)(t)

)∣∣∣p1−2
x(j−1)(t) + p2(t)|(x(β(t)))|θ1−2x(β(t)) = 0, (5)

where Lx = a(t)
∣∣∣(x(j−1)(t)

)∣∣∣p1−2
x(j−1)(t). On the other hand, in [13], the authors obtained

oscillation criteria for equations with damping via comparing with first-order equations.
Continuing the investigation, the authors in [14,15] considered equation of the form

y(j)(t) + p2(t)x(γ(t)) = 0, (6)

and used the Riccati method to ensure that the equation is oscillatory if

lim inf
t→∞

∫ t

γ(t)
Π(s)ds >

(j− 1)2(j−1)(j−2)

e
, (7)

and

lim inf
t→∞

∫ t

γ(t)
Π(s)ds >

(j− 1)!
e

, (8)

where Π(t) := γj−1(t)(1− θ1(γ(t)))p2(t)

The purpose of this paper is to improve and extend the results in [14,15] and establish
new oscillation criteria for Equation (1). Our approach is based on the use of Riccati
substitution to reduce Equation (1) into a second order equation and then compare it with
a second order equation whose oscillatory behavior is known. For examining the validity
of the proposed criteria, two examples with particular values are constructed.

2. Oscillation Conditions

The following lemmas are essential in the sequel.

Lemma 1 ([16]). Let x ∈ Cj([t0, ∞), (0, ∞)). Assume that x(j)(t) is of fixed sign and not
identically zero on [t0, ∞) and that there exists a t1 ≥ t0 such that x(j−1)(t)x(j)(t) ≤ 0 for all
t ≥ t1. If limt→∞ x(t) 6= 0, then for every µ ∈ (0, 1), there exists tµ ≥ t1 such that

x(t) ≥ µ

(j− 1)!
tj−1

∣∣∣x(j−1)(t)
∣∣∣ for t ≥ tµ,

for every µ ∈ (0, 1).

Lemma 2 ([17]). If x(i)(t) > 0, i = 0, 1, . . . , j, and x(j+1)(t) < 0, then

x(t)
tj/j!

≥ x′(t)
tj−1/(j− 1)!

.
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Lemma 3 ([18]). Let
x is an eventually positive solution of (1). (9)

Then, we have these cases:

(I1) : y(t) > 0, y′(t) > 0, y′′(t) > 0, y(j−1)(t) > 0 and y(j)(t) < 0,
(I2) : y(t) > 0, y(m)(t) > 0, y(m+1)(t) < 0 for some odd integer

m ∈ {1, 2, . . . , j− 3}, y(j−1)(t) > 0 and y(j)(t) < 0,

for t ≥ t1, where t1 ≥ t0 is sufficiently large.

For the sake of simplification, we use some notations.

µt0(t) : = exp
(∫ t

t0

θ1(y)
a(y)

dy
)

,

µ̃0(t) : =

(
1

µt1(t)a(t)

∫ ∞

t
p2(s)µt1(s)q

α
2(γ(s))ds

)1/α

µ̃k(t) : =
∫ ∞

t
µ̃k−1(s)ds, k = 1, 2, . . . , j− 2

and

qm(t) :=
1

q(β−1(t))

(
1−

(
β−1(β−1(t)

))m−1

(β−1(t))m−1q(β−1(β−1(t)))

)
, m = 2, j.

Lemma 4. Let (9) hold. Then(
µt0(t)a(t)

(
y(j−1)(t)

)α)′
+ µt0(t)p2(t)(1− q(γ(t)))αyα(γ(t)) ≤ 0, for q0 < 1 (10)

and (
µt0(t)a(t)

(
y(j−1)(t)

)α)′
+

µt0 p2(t)
qα(β−1(γ(t)))

(
y
(

β−1(γ(t))
)
− y(β−1(β−1(γ(t))))

q(β−1(β−1(γ(t))))

)α

≤ 0,
(11)

for t ≥ t1, where t1 ≥ t0 is sufficiently large.

Proof. Let (9) hold. It is not difficult to see that

1
µt0 (t)

d
dt

(
µt0(t)a(t)

(
y(j−1)(t)

)α)
= 1

µt0 (t)

(
µt0(t)

(
a(t)

(
y(j−1)(t)

)α)′
+ µ′t0

(t)a(t)
(

y(j−1)(t)
)α
)

=
(

a(t)
(

y(j−1)(t)
)α)′

+
µ′t0

(t)
µt0 (t)

a(t)
(

y(j−1)(t)
)α

=
(

a(t)
(

y(j−1)(t)
)α)′

+ p1(t)
(

y(j−1)(t)
)α

.

(12)

Since j is even, by Lemma 3, ω(ρ) > 0 and from (2), we get that x(t) ≥ (1− q(t))y(t).
Thus, from (1) and (12), we conclude that (10) holds.

On the other hand, from (2), we obtain

q
(

β−1(t)
)
x(t) = y

(
β−1(t)

)
− x
(

β−1(t)
)

= y
(

β−1(t)
)
−
(

y(β−1(β−1(t)))
q(β−1(β−1(t)))

− x(β−1(β−1(t)))
q(β−1(β−1(t)))

)
≥ y

(
β−1(t)

)
− 1

q(β−1(β−1(t)))
y
(

β−1(β−1(t)
))

,

(13)

which with (1), (12) and (13) give (11). The proof is complete.
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It is well known (see [19]) that the equation[
r(t)

(
x′(t)

)α
]′
+ p2(t)xα(β(t)) = 0‚ t ≥ t0, (14)

where α > 0 , r, θ2 ∈ C[t0, ∞), is nonoscillatory if and only if the inequality

υ′(t) + αr
−1
α (t)(υ(t))(1+α)/α + p2(t) ≤ 0‚ on [t, ∞)

is satisifed.

Theorem 1. Assume that (3) and (4) hold. If(
((j− 2)!)ααµt1(γ(t))a(γ(t))(

ε1γ′(t)γj−2(t)
)α

(
x′(t)

)α

)′
+ µt1(t)q

α
j (γ(t))p2(t)xα(t) = 0 (15)

and
1

γ′(t)
x′′(t) + µ̃j−3(t)x(t) = 0 (16)

are oscillatory for some constant ε1 ∈ (0, 1). Then (1) is oscillatory.

Proof. Let (9) hold. From Lemma 3, we have two possible cases (I1) and (I2).
Let (I1) hold. From Lemma 2, we see y(t) ≥ 1

(j−1) ty′(t) and then
(
t1−jy(t)

)′ ≤ 0.
Thus, we obtain

y
(

β−1
(

β−1(t)
))
≤
(

β−1(β−1(t)
))j−1

(β−1(t))j−1 y
(

β−1(t)
)

. (17)

By Lemma 4, we have (11). Thus, (17) gives(
µt1(t)a(t)

(
y(j−1)(t)

)α)′
+ µt1(t)p2(t)qα

j (γ(t))y
α
(

β−1(γ(t))
)
≤ 0. (18)

Define

w(t) = µt1(t)a(t)

(
y(j−1)(t)

)α

yα(γ(t))
, w(t) > 0.

Differentiating w and using (18), we get

w′(t) ≤ −µt1(t)θ2(t)qα
j (γ(t))

yα(β−1(γ(t)))
yα(γ(t))

− µt1 (t)a(t)(y(j−1)(t))
α

y2α(γ(t)) αyα−1(γ(t))y′(γ(t))γ′(t).
(19)

From Lemma 1, we see

y′(γ(t)) ≥ ε

(j− 2)!
γj−2(t)y(j−1)(γ(t)). (20)

Since µt1(t)a(t)
(

y(j−1)(t)
)α

is decreasing, we obtain

µt1(t)a(t)
(

y(j−1)(t)
)α
≤ µt1(γ(t))a(γ(t))

(
y(j−1)(γ(t))

)α
, for all t ≥ γ(t), (21)

which implies

1

µ1/α
t1

(γ(t))a1/α(γ(t))
(µt1(t)a(t))1/αy(j−1)(t) ≤ y(j−1)(γ(t)). (22)
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From (20) and (22), we have

y′(γ(t)) ≥ ε

(j− 2)!
γj−2(t)

µ1/α
t1

(γ(t))a1/α(γ(t))
(µt1(t)a(t))1/αy(j−1)(t). (23)

Since β−1(t) > t and y′(t) > 0, we have y
(

β−1(t)
)
> y(t) and so

y
(

β−1(γ(t))
)

y(γ(t))
> 1. (24)

By using (23) and (24) in (19), we have

w′(t) ≤ −µt1(t)θ2(t)qα
j (γ(t))

− µt1 (t)a(t)(y(j−1)(t))
α+1

yα+1(γ(t)) α
εγ′(t)γj−2(t)

(j−2)!

(
µt1 (t)a(t)

µt1 (γ(t))a(γ(t))

)1/α
.

(25)

From the definition of w, we have

w′(t) ≤ −µt1(t)θ2(t)qα
j (γ(t))−

αεγ′(t)γj−2(t)

(j− 2)!(µt1(γ(t))a(γ(t)))1/α
w(α+1)/α(t),

which yields,

w′(t) +
αεγ′(t)γj−2(t)

(j− 2)!(µt1(γ(t))a(γ(t)))1/α
w(α+1)/α(t) + µt1(t)q

α
j (γ(t))p2(t) ≤ 0. (26)

Thus, we conclude that (26) is nonoscillatory for every constant ε ∈ (0, 1). From [19],
we see that (15) is nonoscillatory, which is a contradiction.

Let (I2) hold. From Lemma 2, we obtain

y(t) ≥ ty′(t) (27)

and then
(
t−1y(t)

)′ ≤ 0. Hence, since β−1(t) ≤ β−1(β−1(t)
)
, we get

y
(

β−1
(

β−1(t)
))
≤

β−1(β−1(t)
)

β−1(t)
y
(

β−1(t)
)

, (28)

which with (11) yield(
µt1(t)a(t)

(
y(j−1)(t)

)α)′
+ p2(t)µt1(t)q

α
2(γ(t))y

α
(

β−1(γ(t))
)
≤ 0. (29)

Integrating (29) from t to ∞, we obtain

−y(j−1)(t) ≤ −
(

1
µt1(t)a(t)

∫ ∞

t
θ2(s)µt1(s)q

α
2(γ(s))y

α
(

β−1(γ(s))
)

ds
)1/α

≤ −µ̃0(t)y
(

β−1(γ(t))
)

.

Integrating this inequality j− 3 times from t to ∞, we get

y′′(t) + µ̃j−3(t)y
(

β−1(γ(t))
)
≤ 0. (30)

Define

ϕ(t) =
y′(t)

y(γ(t))
, w(t) > 0.
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Differentiating w, we obtain

ϕ′(t) =
y′′(t)

y(γ(t))
− y′(t)

y2(γ(t))
y′(γ(t))γ′(t).

Since y′′(t) < 0,, we see y′(γ(t)) > y′(t) for all t ≥ γ(t). Thus

ϕ′(t) ≤ y′′(t)
y(γ(t))

−
(

y′(t)
y(γ(t))

)2

γ′(t). (31)

From (30), we get

ϕ′(t) ≤ −
µ̃j−3(t)y

(
β−1(γ(t))

)
y(γ(t))

−
(

y′(t)
y(γ(t))

)2

γ′(t).

Since β−1(t) > t and y′(t) > 0, we have y
(

β−1(t)
)
> y(t) and so

ϕ′(t) ≤ −µ̃j−3(t)−
(

y′(t)
y(γ(t))

)2

γ′(t). (32)

From the definition of ϕ, we have

ϕ′(t) ≤ −µ̃j−3(t)− γ′(t)ϕ2(t),

that is,
ϕ′(t) + γ′(t)ϕ2(t) + µ̃j−3(t) ≤ 0. (33)

Thus, we conclude that (33) is nonoscillatory. From [19], we see that (16) is nonoscilla-
tory, which is a contradiction. Thus, the proof is complete.

Corollary 1. Let (4) hold. If

lim inf
t→∞

∫ t

γ(t)
(1− q(γ(s)))α p2(s)

µt0(s)
µt0(γ(s))

(
εγj−1(s)

a1/α(γ(s))

)α

ds >
((j− 1)!)α

e
, (34)

then (1) is oscillatory.

Corollary 2. Let (3) and (4) hold. If

lim inf
t→∞

∫ t

β−1(γ(t))
p2(s)

µt0(s)
µt0(β−1(γ(s)))

 ε
(

β−1(γ(s))
)j−1qj(γ(s))

a1/α(β−1(γ(s)))

α

ds >
((j− 1)!)α

e
, (35)

and

lim inf
t→∞

∫ t

β−1(γ(t))
β−1(γ(s))µ̃j−3(s)ds >

1
e

, (36)

then (1) is oscillatory.

It is well known (see [20]) that if∫ ∞

t0

1
r(t)

dt = ∞, and lim inf
t→∞

(∫ t

t0

1
r(s)

ds
) ∫ ∞

t
θ2(s)ds >

1
4

,

then (14) is oscillatory.
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Corollary 3. Let (4) hold and α = 1. If

∫ ∞

t0

ε1γ′(t)γj−2(t)
(j− 2)!µt1(γ(t))a(γ(t))

dt = ∞,

lim inf
t→∞

(∫ t

t0

ε1γ′(s)γj−2(s)
(j− 2)!µt1(γ(s))a(γ(s))

ds
) ∫ ∞

t
p2(s)µt1(s)q

α
j (γ(s))ds >

1
4

,

∫ ∞

t0

γ′(t)dt = ∞,

and

lim inf
t→∞

(∫ t

t0

∫ ∞

t0

γ′(s)ds
) ∫ ∞

t
µ̃j−3(s)ds >

1
4

,

then (1) is oscillatory.

3. Applications

For the sake of demonstrating the validity of the above hypotheses, this section
presents some particular examples in correspondence with Equation (1).

Example 1. Consider the equation(
x(t) +

1
2

x
(

1
2

t
))(4)

+
θ0

t4 x
(

9
10

t
)
= 0, t ≥ 1. (37)

Note that α = 1, j = 4, a(t) = 1, p2(t) = θ0/t4, γ(t) = 9t/10 and β(t) = t/2.
Applying the conditions (7) and (8) to Equation (37), we get

Condition (7) (8)

Condition θ0 > 1839.2 θ0 > 59.5

By Corollary 1, all solutions of (37) are oscillatory if θ0 > 57.5. From this, we conclude that
our results are better than those of [14,15].

Example 2. For t ≥ 1, consider the equation(
x(t) +

1
2

x
(

t
3

))(4)
+

1
t

y(3)(t) +
θ0

t4 x
(

t
2

)
= 0, (38)

where θ0 > 0 is a constant. Let α = 1, j = 4, a(t) = 1, p1(t) = 1/t, p2(t) = θ0/t4, γ(t) =
t/2, β−1(t) = (3/2)t and β(t) = t/3. Then

µt0(t) = t, µt0(γ(t)) = t/2.

Thus, we see that

lim inf
t→∞

∫ t

γ(t)
(1− q(γ(s)))α p2(s)

µt0(s)
µt0(γ(s))

(
εγj−1(s)

a1/α(γ(s))

)α

ds

= lim inf
t→∞

∫ t

t/2

θ0

t4

(
t3

8

)
ds =

θ0

8
ln 2.

It follows that

θ0 >
48

e ln2
. (39)

Using Corollary 1, we deduce that all solutions of (38) are oscillatory if θ0 > 25.5.
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4. Conclusions

In this paper, we establish new oscillation criteria for a certain class of even-order
non-linear differential equation with damping of the form (1). Our approach is different
and obtained by using Riccati technique and comparing it with second-order equations.
The new proposed conditions complement several results in the literature. Furthermore,
some interesting examples are presented to examine the applicability of theoretical out-

comes. Establishing oscillation criteria if
∫ ∞

t0

(
1

a(s) exp
(
−
∫ s

t0

p1(y)
a(y) dy

))1/α
ds < ∞ could be

a promising topic for future work.
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