
symmetryS S

Article

Growth Analysis of Meromorphic Solutions of Linear
Difference Equations with Entire or Meromorphic Coefficients
of Finite ϕ-Order

Junesang Choi 1,* , Sanjib Kumar Datta 2 and Nityagopal Biswas 3

����������
�������

Citation: Choi, J.; Datta, S.K.; Biswas,

N. Growth Analysis of Meromorphic

Solutions of Linear Difference

Equations with Entire or Meromorphic

Coefficients of Finite ϕ-Order.

Symmetry 2021, 13, 267. https://doi.

org/10.3390/sym13020267

Academic Editor: Stanisława Kanas

Received: 21 January 2021

Accepted: 3 February 2021

Published: 5 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Dongguk University, Gyeongju 38066, Korea
2 Department of Mathematics, University of Kalyani, Dist. P.O., Kalyani, Nadia, West Bengal 741235, India;

skdattamath@klyuniv.ac.in
3 Department of Mathematics, Chakdaha College, Chakdaha, Nadia, West Bengal 741222, India;

nb.math@chakdahacollege.ac.in
* Correspondence: junesang@dongguk.ac.kr; Tel.: +82-010-6525-2262

Abstract: Many researchers’ attentions have been attracted to various growth properties of mero-
morphic solution f (of finite ϕ-order) of the following higher order linear difference equation
An(z) f (z + n) + ...+ A1(z) f (z + 1) + A0(z) f (z) = 0, where An(z), . . . , A0(z) are entire or meromor-
phic coefficients (of finite ϕ-order) in the complex plane (ϕ : [0, ∞) → (0, ∞) is a non-decreasing
unbounded function). In this paper, by introducing a constant b (depending on ϕ) defined by
lim
r→∞

log r
log ϕ(r) = b < ∞, and we show how nicely diverse known results for the meromorphic solution

f of finite ϕ-order of the above difference equation can be modified.

Keywords: linear difference equations; nevanlinna’s theory; meromorphic solutions; ϕ-order
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1. Introduction and Preliminaries

Throughout this paper, a meromorphic function is meant to be analytic in the whole
complex plane C except possibly for poles. In the following, let C := C∪{∞} and N denote
the extended complex plane and the set of positive integers, respectively. The readers are
assumed to be familiar with the basic results and standard notations of Nevanlinna’s value
distribution theory of meromorphic functions (see, e.g., Reference [1–4]). Yet, here, some
fundamental notations for Nevanlinna theory of meromorphic functions are recalled. Let f
be a meromorphic function and r > 0. For 0 ≤ t ≤ r let n(t, f ) denote the number of poles
of f in the closed disk D(0, t) := {z ∈ C : |z| ≤ t}, counting multiplicities. Then,

N(r, f ) =
∫ r

0

n(t, f )− n(0, f )
t

dt + n(0, f ) log r

is called the (Nevanlinna) counting function of the poles of f . Let R be the set of real
numbers. Define log+ : R→ R by

log+ x :=
{

log x (x ≥ 1),
0 (x ≤ 1).

Let r > 0 and f be meromorphic in D(0, r). Then,

m(r, f ) :=
1

2π

∫ 2π

0
log+

∣∣ f (reiθ)∣∣dθ
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is called the proximity function, and

T(r, f ) := N(r, f ) + m(r, f )

is called the (Nevanlinna) characteristic of f .
Consider the following higher order linear difference (discrete) equation

An(z) f (z + n) + · · ·+ A1(z) f (z + 1) + A0(z) f (z) = 0, (1)

where An(z), . . . , A0(z) are meromorphic (or entire) functions with An(z) · A0(z) 6≡ 0. A
lot of interests in such a difference equation as the Equation (1) have recently been renewed,
in particular, together with Nevanlinna theory [2,4] (see, e.g., Reference [5–14] and the
references cited therein). For a later use, from the Equation (1), we find that, for f ( 6≡ 0),

−A`(z) = ∑
0≤j≤n

j 6=`

Aj(z)
f (z + j)
f (z + `)

;

hence,

|A`(z)| ≤ ∑
0≤j≤n

j 6=`

∣∣Aj(z)
∣∣ ∣∣∣∣ f (z + j)

f (z + `)

∣∣∣∣. (2)

Yet, some notations and results are recalled. The linear measure for a set E ⊂ [0, ∞)
and the logarithmic measure for a set E ⊂ [1, ∞) are defined and denoted by m(E) =

∫
E dt

and m`(E) =
∫

E
dt
t , respectively. The upper density dens E of a set E ⊂ [0, ∞) and the

upper logarithmic density log dens E of a set E ⊂ (1, ∞) are defined as

dens E = lim
r→∞

m(E ∩ [0, r])
r

and

log dens E = lim
r→∞

m`(E ∩ [1, r])
log r

.

Then, some easily-derivable implications among measure, logarithmic measure, upper
density, and upper logarithmic density are given in the following remark.

Remark 1 (Reference [15], Proposition 1). Let E ⊂ [1, ∞). Then,

(i) m`(E) = ∞ implies m(E) = ∞;
(ii) dens E > 0 implies m(E) = ∞;
(iii) log dens E > 0 implies m`(E) = ∞.

For a more refined growth of meromorphic solutions of the Equation (1), the following
(modified) definitions are recalled. Here, and in the following, let ϕ : [0, ∞)→ (0, ∞) be a
non-decreasing unbounded function.

Definition 1 (Reference [13,15–19]). The ϕ-order and the ϕ-lower order of a meromorphic
function f are defined, respectively, as

σ( f , ϕ) = lim
r→∞

log T(r, f )
log ϕ(r)

, and µ( f , ϕ) = lim
r→∞

log T(r, f )
log ϕ(r)

.

For f an entire function, the corresponding orders are

σ( f , ϕ) = lim
r→∞

log log M(r, f )
log ϕ(r)

, and µ( f , ϕ) = lim
r→∞

log log M(r, f )
log ϕ(r)

.
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Definition 2 (Reference [13,17,18]). If f is a meromorphic function (or an entire function)
satisfying 0 < σ( f , ϕ) = σ < ∞, then ϕ-type of f is defined, respectively, as

τ( f , ϕ) = lim
r→∞

T(r, f )
ϕ(r)σ ,

and

τ( f , ϕ) = lim
r→∞

log M(r, f )
ϕ(r)σ .

In addition, the ϕ-lower type of an entire function f with 0 < µ( f , ϕ) = µ < ∞ is defined by

τ( f , ϕ) = lim
r→∞

log M(r, f )
ϕ(r)µ .

It is noted that Definitions 1 and 2, where ϕ(r) = r may become the standard defini-
tions of order, lower order, type, and lower type, respectively.

Definition 3 (Reference [18], and Reference [2], Section 2.4)). For a ∈ C, the deficiency of a
with respect to a meromorphic function f is defined as

δ(a, f ) = lim
r→∞

m
(

r, 1
f−a

)
T(r, f )

= 1− lim
r→∞

N
(

r, 1
f−a

)
T(r, f )

(a 6= ∞),

and

δ(∞, f ) = lim
r→∞

m(r, f )
T(r, f )

= 1− lim
r→∞

N(r, f )
T(r, f )

.

Remark 2 (Reference [19], p. 4). In the following, the non-decreasing unbounded function
ϕ : [0, ∞)→ (0, ∞) is assumed to satisfy the following two conditions:

(i) lim
r→∞

log log r
log ϕ(r) = 0;

(ii) lim
r→∞

log ϕ(αr)
log ϕ(r) = 1 for some α > 1.

Several interesting and important results about (1) are recalled in the following
theorems.

Theorem 1 (Reference [8], Theorem 9.2). Assume that there exists an integer p (0 ≤ p ≤ n)
such that

σ
(

Ap
)
> max

0≤j≤n
j 6=p

σ
(

Aj
)
=: σ, (3)

where Aj(z) (j = 0, . . . , n) are entire functions. If f (z) is a meromorphic solution of the Equa-
tion (1), then σ( f ) ≥ σ

(
Ap
)
+ 1.

Instead of the restriction (3), assuming that among the maximal order σ, exactly one
has its type strictly greater than the others, Laine and Yang (Reference [11], Theorem 5.2)
obtained the following conclusion for any meromorphic solution of the Equation (1):

σ( f ) ≥ σ + 1. (4)

In Theorem 1, the Equation (1) has only one dominating coefficient Ap. The following
two theorems are concerned with the case when there are at least two coefficients which
have the maximal order.
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Theorem 2 (Reference [14], Theorem 1.1). Let Aj(z) (j = 0, 1, . . . , n) be entire functions such
that there exists an integer p (0 ≤ p ≤ n) satisfying

max
{

σ
(

Aj
)
| j = 0, 1, . . . , n, j 6= p

}
≤ µ

(
Ap
)
< ∞,

and
max

{
τ
(

Aj
)
| σ
(

Aj
)
= µ

(
Ap
)
, j = 0, 1, . . . , n, j 6= p

}
< τ

(
Ap
)
.

Then, every meromorphic solution f ( 6≡ 0) of the Equation (1) satisfies µ( f ) ≥ µ
(

Ap
)
+ 1.

Theorem 3 (Reference [20], Theorem 1.3). Let H be a set of complex numbers satisfying
dens{|z| : z ∈ H}> 0, and let Aj(z) (j = 0, 1, . . . , n) be entire functions satisfying max

0≤j≤n
σ(Aj)

≤ σ. In addition, assume that there exists an integer p (0 ≤ p ≤ n) such that, for some constants,
0 ≤ α < β and ε > 0 sufficiently small,∣∣Ap(z)

∣∣ ≥ exp
(

βrσ−ε
)

and ∣∣Aj(z)
∣∣ ≤ exp

(
αrσ−ε

)
(j = 0, . . . , n, j 6= p),

as |z| = r → ∞ for z ∈ H. Then, every meromorphic solution f ( 6≡ 0) of the Equation (1) satisfies
σ( f ) ≥ σ

(
Ap
)
+ 1.

When the coefficients Aj(z) (j = 0, 1, . . . , n) in (1) are meromorphic, Chen and
Shon [21] extended Theorem 1 as in the following theorem.

Theorem 4 (Reference [21], Theorem 11). Let Aj(z) (j = 0, 1, . . . , n) be meromorphic functions
such that there exists an integer p (0 ≤ p ≤ n) such that σ

(
Ap
)
> max

{
σ
(

Aj
)
| 0 ≤ j ≤ n, j 6= p

}
,

δ
(
∞, Ap

)
> 0. Then, for every meromorphic solution f ( 6≡ 0) of the Equation (1), one has

σ( f ) ≥ σ
(

Ap
)
+ 1.

Here, the following natural question is occurred: When the coefficients of the Equa-
tion (1) are entire or meromorphic functions of finite ϕ-order, what would the growth
properties of solutions of the linear difference Equation (1) be like? In this paper, for an
answer to this question, by introducing a constant b, which depends on ϕ, defined by

lim
r→∞

log r
log ϕ(r)

= b < ∞, (5)

we show how nicely diverse known results for the meromorphic solution f of finite ϕ-order
of the difference Equation (1) can be amended.

2. Main Results

In this section, main theorems are provided.

Theorem 5. Let Aj(z) (j = 0, 1, . . . , n) be entire functions such that there exists an integer `
(0 ≤ ` ≤ n) satisfying

max
0≤j≤n

j 6=`

σ
(

Aj, ϕ
)
< σ(A`, ϕ). (6)

Then, every transcendental meromorphic solution f ( 6≡ 0) of the Equation (1) satisfies
σ( f , ϕ) ≥ σ(A`, ϕ) + b.

Theorem 6. Let Aj(z) (j = 0, 1, . . . , n) be entire functions such that there exists an integer `
(0 ≤ ` ≤ n) satisfying

max
{

σ
(

Aj, ϕ
)
| j = 0, 1, . . . , n, j 6= `

}
≤ µ(A`, , ϕ) < ∞ (7)
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and
max

{
τ
(

Aj, ϕ
)
| σ
(

Aj, ϕ
)
= µ(A`, ϕ), j = 0, 1, . . . , n, j 6= `

}
< τ(A`, ϕ). (8)

Then, for every transcendental meromorphic solution f ( 6≡ 0) of the Equation (1), we have
µ( f , ϕ) ≥ µ(A`, ϕ) + b.

Theorem 7. Let H be a set of complex numbers satisfying log dens {|z| : z ∈ H} > 0. In
addition, let Aj(z) (j = 0, 1, . . . , n) be entire functions satisfying max

0≤j≤n
σ
(

Aj, ϕ
)
≤ σ. Further

assume that there exists an integer ` (0 ≤ ` ≤ n) such that, for some constants, 0 ≤ α < β and
δ > 0 sufficiently small,

|A`(z)| ≥ exp
{

β(ϕ(r))σ−δ
}

(9)

and ∣∣Aj(z)
∣∣ ≤ exp

{
α(ϕ(r))σ−δ

}
(0 ≤ j ≤ n, j 6= `), (10)

as |z| = r → ∞ for z ∈ H. Then, every transcendental meromorphic solution f ( 6≡ 0) of the
Equation (1) satisfies σ( f , ϕ) ≥ σ(A`, ϕ) + b.

Remark 3. Under the assumptions of Theorem 7, we find σ(A`, ϕ) = σ. Indeed, obviously
σ(A`, ϕ) ≤ σ. Suppose that σ(A`, ϕ) = η < σ. Let ε

(
0 < ε < σ−η

2

)
be given. From

Definition 1 and (9), we obtain

exp
{

β(ϕ(r))σ−ε
}
≤ |A`(z)| < exp

{
(ϕ(r))η+ε

}
, (11)

as |z| = r → ∞ for z ∈ H (see (iii) in Remark 1). Any ε
(

0 < ε < σ−η
2

)
in (11) can be taken. For

example, take σ−η
4 in (11) to yield

exp
{

β(ϕ(r))
σ−η

2 · (ϕ(r))
σ+3η

4

}
≤ |A`(z)| < exp

{
(ϕ(r))

σ+3η
4

}
, (12)

as |z| = r → ∞ for z ∈ H. Since ϕ : [0, ∞) → (0, ∞) is a non-decreasing unbounded function,
and β > 0 is fixed, we can choose a sufficiently large r so that β(ϕ(r))

σ−η
2 ≥ 1 in (12). This leads

to a contradiction. Therefore, σ(A`, ϕ) = σ.

Theorem 8. Let H be a set of complex numbers satisfying log dens {|z| : z ∈ H} > 0. In
addition, let Aj(z) (j = 0, 1, . . . , n) be entire functions of finite ϕ-order such that there exists an
integer ` (0 ≤ ` ≤ n) satisfying

lim
r→∞ ∑

0≤j≤n
j 6=`

m
(
r, Aj

)
m(r, A`)

< 1 (13)

for |z| = r (z ∈ H). Then, every transcendental meromorphic solution f ( 6≡ 0) of the Equation (1)
satisfies σ( f , ϕ) ≥ σ(A`, ϕ) + b.

Theorem 9. Let Aj(z) (j = 0, 1, . . . , n) be meromorphic functions such that there exists an
integer ` (0 ≤ ` ≤ n) satisfying

max
0≤j≤n

j 6=`

σ
(

Aj, ϕ
)
< σ(A`, ϕ), (14)

and δ(∞, A`) > 0. Then, every transcendental meromorphic solution f ( 6≡ 0) of the Equation (1)
satisfies σ( f , ϕ) ≥ σ(A`, ϕ) + b.
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Theorem 10. Let Aj(z) (j = 0, 1, . . . , n) be meromorphic functions of finite ϕ-order such that
there exists an integer ` (0 ≤ ` ≤ n) satisfying

lim
r→∞ ∑

0≤j≤n
j 6=`

m
(
r, Aj

)
m(r, A`)

< 1, (15)

and δ(∞, A`) > 0. Then, every transcendental meromorphic solution f ( 6≡ 0) of the Equation (1)
satisfies σ( f , ϕ) ≥ σ(A`, ϕ) + b.

3. Preliminary Lemmas

For proof of the main results in Section 2, here, diverse estimations regarding mero-
morphic functions are recalled and established in the following lemmas. We begin with an
elementary fact for the upper and lower limits.

Lemma 1. Let g : (0, ∞) → (1, ∞) be a function. In addition, let {un}∞
n=1 be a sequence with

un > 1 (n ∈ N). Assume that

lim
x→∞

f (x) = σ < ∞ and lim
x→∞

f (x) = µ < ∞.

Then, there exist strictly increasing sequences {xn} and {yn} in (1, ∞) such that unxn <
xn+1 and unyn < yn+1 for each n ∈ N, and xn → ∞ and yn → ∞ as n→ ∞, and

lim
xn→∞

f (xn) = σ and lim
yn→∞

f (yn) = µ.

Proof. We prove only the upper limit case. Let ε > 0 be given. Then, there exists x(ε) ∈
(1, ∞) such that f (x) < σ + ε for all x ∈ (1, ∞) with x > x(ε), and σ − ε < f (x) for
infinitely many x ∈ (1, ∞) with x > x(ε). In particular, let ε = 1

n (n ∈ N). Start to choose
x1 ∈ (1, ∞). Choose x2 ∈ (1, ∞) such that x2 > u1x1, x2 > 2, and σ− 1

2 < f (x2) < σ + 1
2 .

Continuing in the way, we have chosen xn ∈ (1, ∞) for some n ∈ N. Then, we can choose
xn+1 ∈ (1, ∞) such that xn+1 > unxn, xn+1 > n + 1, and σ− 1

n+1 < f (xn+1) < σ + 1
n+1 .

By induction on n, we can choose xn ∈ (1, ∞) which satisfies the above statement for the
upper limit.

For the lower limit case, we consider the following fact: Let ε > 0 be given. Then,
there exists x(ε) ∈ (1, ∞) such that µ − ε < f (x) for all x ∈ (1, ∞) with x > x(ε), and
f (x) < µ + ε for infinitely many x ∈ (1, ∞) with x > x(ε).

Lemma 2 (Reference [8], Theorem 8.2). Let f be a meromorphic function, η a non-zero complex
number, and let γ > 1 be a given real constant. Then, there exist a subset E1 ⊂ (1, ∞) of finite
logarithmic measure and a constant A depending only on γ and η, such that, for all |z| = r /∈
E1 ∪ [0, 1], ∣∣∣∣log

∣∣∣∣ f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ A
(

T(γr, f )
r

+
n(γr)

r
logγ r log+ n(γr)

)
,

where n(t) = n(t, ∞, f ) + n
(

t, ∞, 1
f

)
denotes the sum of zeros and poles, respectively, of f ,

counting multiplicities, which lie in the disk |z| ≤ t.

Lemma 3 (Reference [22], Lemma 7). Let f be a transcendental meromorphic function. In
addition, let j ∈ N0 := N∪ {0}, a ∈ C, and α > 1 be a real constant. Then, there exists a constant
R > 0 such that, for all r ≥ R,

n
(

r, a, f (j)
)
≤ 2j + 6

log α
T(αr, f ).
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Lemma 4 (Reference [8], Theorem 2.4). Let α, R, R′ be real numbers such that 0 < α < 1, and
0 < R < R′. In addition, let η be a non-zero complex number. Then, there is a positive constant
Cα depending only on α such that, for a given meromorphic function f (z), when |z| = r and
max{1, r + |η|} < R < R′, we have the estimate

m
(

r,
f (z + η)

f (z)

)
+ m

(
r,

f (z)
f (z + η)

)
≤ 2|η|R

(R− r− |η|)2

(
m(R, f ) + m

(
R,

1
f

))
+

2R′

R′ − R

(
|η|

R− r− |η| +
Cα|η|α

(1− α) rα

)(
N
(

R′, f
)
+ N

(
R′,

1
f

))
.

Lemma 5 (Reference [18], Lemma 3.2). Let η1, η2 be two arbitrary complex numbers such that
η1 6= η2. In addition, let f be a finite ϕ-order meromorphic function whose order is σ = σ( f , ϕ).
Then, for each ε > 0, we have

m
(

r,
f (z + η1)

f (z + η2)

)
= O

(
(ϕ(r))σ−1+ε

)
.

Lemma 6 (Reference [17], p = q = 1, Lemma 2.4). Let f be a meromorphic function satisfying
µ( f , ϕ) = µ < ∞. Then, there exists a set E2 ⊂ (1, ∞) of infinite logarithmic measure such that,
for all r ∈ E2, we have

µ = lim
r→∞
r∈E2

log T(r, f )
log ϕ(r)

,

and for any given ε > 0 and sufficiently large |z| = r ∈ E2,

T(r, f ) < (ϕ(r))µ+ε.

Lemma 7. Let f be a transcendental meromorphic function which has finite ϕ-order σ. In addition,
let η be a non-zero complex number. Then, there exists a subset E3 ⊂ (1, ∞) of finite logarithmic
measure such that, for any given ε > 0 and all |z| = r /∈ E3 ∪ [0, 1],

exp
{
− (ϕ(r))σ+ε

r

}
<

∣∣∣∣ f (z + η)

f (z)

∣∣∣∣ < exp
{
(ϕ(r))σ+ε

r

}
.

Proof. We begin by recalling that

(a) the Nevanlinna characteristic T(r, f ) is non-decreasing on r > 0,
(b) and, furthermore, if f is a transcendental meromorphic function, then

lim
r→∞

T(r, f )
log r

= ∞.

By Lemma 2, for γ > 1 any given real constant, there exist a subset E3 ⊂ (1, ∞) of
finite logarithmic measure and a constant A depending only on γ and η, such that, for all
|z| = r /∈ E3 ∪ [0, 1],∣∣∣∣log

∣∣∣∣ f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ A
(

T(γr, f )
r

+
n(γr)

r
logγ r log+ n(γr)

)
, (16)

where n(t) = n(t, ∞, f ) + n
(

t, ∞, 1
f

)
. For α > 1 any constant, applying Lemma 3 to the

right member of the inequality in (16), we obtain∣∣∣∣log
∣∣∣∣ f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ A
(

T(γr, f )
r

+
12

log α

T(αγr, f )
r

logγ r log+
(

12
log α

T(αγr, f )
))

(17)
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for |z| = r /∈ E3 ∪ [0, 1] and sufficiently large r. We may choose α = e12 in (17) to get∣∣∣∣log
∣∣∣∣ f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ A
r

(
T(γr, f ) + T

(
e12γr, f

)
logγ r log+

(
T
(

e12γr, f
)))

(18)

for |z| = r /∈ E3 ∪ [0, 1] and sufficiently large r. Since T(r, f ) is non-decreasing on r > 0
and log r is positive and increasing for x > 1, it follows from (18) that∣∣∣∣log

∣∣∣∣ f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ B
e12γ r

T
(

e12γr, f
)(

1 + logγ
(

e12γr
)

log+
(

T
(

e12γr, f
)))

(19)

for |z| = r /∈ E3 ∪ [0, 1] and sufficiently large r and B := e12γ A. Setting e12γr = r′ and
taking r so large that |z|

e12γ
= r

e12γ
/∈ E3 ∪ [0, 1] in (19) and dropping the prime on r, we

find that ∣∣∣∣log
∣∣∣∣ f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ B
r

T(r, f )
(

1 + logγ r log+(T(r, f ))
)

(20)

for |z| = r /∈ E3 ∪ [0, 1] and sufficiently large r. Since T(r, f ) is non-decreasing on r > 0,
T(r, f ) > 1 for sufficiently large r. In view of (a) and (b), we find from (20) that∣∣∣∣log

∣∣∣∣ f (z + η)

f (z)

∣∣∣∣∣∣∣∣ ≤ T(r, f )
r

logγ+1 r log T(r, f ) (21)

for |z| = r /∈ E3 ∪ [0, 1] and sufficiently large r.
Let ε > 0 be given. From Definition 1, we obtain

T(r, f ) < (ϕ(r))σ+ ε
2 (22)

for |z| = r /∈ E3 ∪ [0, 1] and sufficiently large r.
For η > 0 small enough that η(γ + 1) < ε

4 , we find from (i) of Remark 2 that

log r < (ϕ(r))η (23)

for |z| = r /∈ E3 ∪ [0, 1] and sufficiently large r.
Let µ > 0 be given. From Definition 1, we have

log T(r, f ) < log(ϕ(r))σ+µ (24)

for |z| = r /∈ E3 ∪ [0, 1] and sufficiently large r. Let ν > 0 be so small that (σ + µ)ν < ε
4 .

Since ϕ(r) ↑ ∞ as r → ∞,
log ϕ(r) < (ϕ(r))ν (25)

for |z| = r /∈ E3 ∪ [0, 1] and sufficiently large r. Therefore, from (24) and (25) we get

log T(r, f ) < (ϕ(r))(σ+µ)ν ≤ (ϕ(r))
ε
4 (26)

for |z| = r /∈ E3 ∪ [0, 1] and sufficiently large r.
Finally, employing (22), (23), and (26) in the right member of the inequality (21),

we obtain ∣∣∣∣log
∣∣∣∣ f (z + η)

f (z)

∣∣∣∣∣∣∣∣ < (ϕ(r))σ+ε

r
(27)

for |z| = r /∈ E3 ∪ [0, 1] and sufficiently large r. Hence, if necessary, we can make the subset
E3 ⊂ (1, ∞) larger by including the large r’s which may not satisfy the inequalities in the
process of proof. With this enlarged set E3 ⊂ (1, ∞), the inequality (27) is equivalent to that
in this lemma. This completes the proof.
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Lemma 8. Let f be a transcendental meromorphic function of finite ϕ-order σ := σ( f , ϕ). Then,
for any pair of distinct complex numbers η1, η2, and any given ε > 0, there exists a subset
E4 ⊂ (1, ∞) of finite logarithmic measure such that, for all |z| − |η2| /∈ [0, 1] ∪ E4, we have

exp
{
− (ϕ(r))σ+ε

r

}
<

∣∣∣∣ f (z + η1)

f (z + η2)

∣∣∣∣ < exp
{
(ϕ(r))σ+ε

r

}
, (28)

and

m
(

r,
f (z + η1)

f (z + η2)

)
= O

(
(ϕ(r))σ( f ,ϕ)−b+ε

)
(29)

for sufficiently large |z| = r /∈ [0, 1] ∪ E4 ∪ {|η2|}.

Proof. Let η := η1 − η2 6= 0 and r′ := |z + η2| ≥ |z| − |η2|. We observe r′ /∈ [0, 1] ∪ E4.
Now, applying Lemma 7 to

f (z + η1)

f (z + η2)
=

f (z + η2 + η)

f (z + η2)

gives

exp
{
− (ϕ(r′))σ+ε

r′

}
<

∣∣∣∣ f (z + η1)

f (z + η2)

∣∣∣∣ < exp
{
(ϕ(r′))σ+ε

r′

}
, (30)

for any given ε > 0 and all r′ /∈ [0, 1] ∪ E4 with some E4 ⊂ (1, ∞) of a positive finite
logarithmic measure. Then, dropping the prime on r from the chain of the inequalities
in (30) proves (28).

(ϕ(r))b−ε < r (31)

for sufficiently large |z| = r. Using (31) in the second inequality of (28), we obtain that, for
sufficiently such large |z| = r,∣∣∣∣ f (z + η1)

f (z + η2)

∣∣∣∣ < exp
{
(ϕ(r))σ( f ,ϕ)−b+2ε

}
, (32)

which yields (29). Since ε > 0 is arbitrary, 2ε in (32) can be replaced by ε.

By using Lemma 6, as well as Lemmas 2 and 3, we may give an analogue of Lemma 7,
and hence Lemma 8, for finite ϕ-lower order, which is stated in the following lemma
without proof.

Lemma 9. Let η1, η2 be two arbitrary complex numbers such that η1 6= η2 and let f be a transcen-
dental meromorphic function of finite ϕ-lower order µ. Then, there exists a subset E5 ⊂ (1, ∞) of
infinite logarithmic measure such that, for any given ε > 0,

exp
{
− (ϕ(r))µ+ε

r

}
<

∣∣∣∣ f (z + η1)

f (z + η2)

∣∣∣∣ < exp
{
(ϕ(r))µ+ε

r

}
.

for sufficiently large |z| = r ∈ E5.

Lemma 10 (Reference [17], p = q = 1, Lemma 2.4). Let f be a meromorphic function with
σ( f , ϕ) = σ < ∞. Then, there exists a set E6 ⊂ (1, ∞) of infinite logarithmic measure such that

lim
r→∞
r∈E6

log T(r, f )
log ϕ(r)

= σ

and for any given ε > 0 and sufficiently large |z| = r ∈ E6,

T(r, f ) > (ϕ(r))σ−ε.
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Proof. We first note that only the proof of the assertions in Lemma 6 was given in Refer-
ence [17], p = q = 1, Lemma 2.4, as that of this lemma remains to be showed in the same
way. It seems meaningful for the authors and the interested reader to copy and modify the
proof in Reference [17], p = q = 1, Lemma 2.4, in a little more detailed manner.

Indeed, employing Lemma 1 in Definition 1, there exists a sequence {rn} in (1, ∞)

such that rn → ∞ as n→ ∞,
(

1 + 1
n

)
rn < rn+1 (n ∈ N), and

lim
rn→∞

log T(rn, f )
log ϕ(rn)

= σ.

For given ε with 0 < ε < 1, there exists n1 ∈ N such that

σ− ε <
log T(rn, f )
log ϕ(rn)

< σ + ε (33)

for all n ≥ n1. Then, for all n ≥ n1 and any r ∈
[
rn,
(

1 + 1
n

)
rn

]
, since T(r, f ) and ϕ(r) are

non-decreasing on (0, ∞) and (1, ∞), respectively, we find

log T(rn, f )

log ϕ
((

1 + 1
n

)
rn

) =
log T(rn, f )
log ϕ(rn)

log ϕ(rn)

log ϕ
((

1 + 1
n

)
rn

)
≤ log T(r, f )

log ϕ(r)
≤

log T
((

1 + 1
n

)
rn, f

)
log ϕ

((
1 + 1

n

)
rn

) log ϕ
((

1 + 1
n

)
rn

)
log ϕ(rn)

.

(34)

It follows from (ii), Remark 2, that

lim
n→∞

log ϕ(rn)

log ϕ
((

1 + 1
n

)
rn

) = 1 = lim
n→∞

log ϕ
((

1 + 1
n

)
rn

)
log ϕ(rn)

.

For any such given ε with 0 < ε < 1, there exists n2 ∈ N such that, for all n ≥ n2,

1− ε <
log ϕ(rn)

log ϕ
((

1 + 1
n

)
rn

) and
log ϕ

((
1 + 1

n

)
rn

)
log ϕ(rn)

< 1 + ε. (35)

Now, let

n0 := max{n1, n2} and E6 :=
∞⋃

n=n0

[
rn,
(

1 +
1
n

)
rn

]
.

Then, combining the inequalities (33)–(35) gives that for all n ≥ n0 and r ∈ E6,

(σ− ε)(1− ε) <
log T(r, f )
log ϕ(r)

< (σ + ε)(1 + ε).

Since ε > 0 is arbitrary, we have

lim
r→∞
r∈E6

log T(r, f )
log ϕ(r)

= σ.
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Obviously, sets
[
rn,
(

1 + 1
n

)
rn

]
(n ∈ N) are mutually disjoint. Therefore, we have

m`(E6) =
∞

∑
n=n0

(1+ 1
n )rn∫

rn

dt
t
=

∞

∑
n=n0

log
(
1 + 1/n

)
. (36)

Let an := log
(
1 + 1/n

)
(n ∈ N). Clearly an > 0 (n ∈ N). We find that lim

n→∞
a

1
n
n = 1

and, therefore, the root test cannot be employed whether the series
∞
∑

n=n0

an is convergent or

not. Let f (x) = log
(
1 + 1/x

)
(x ≥ 1). Then, f (x) ↓ 0 as x ↑ ∞ and

∫ ∞
n0

f (x) dx = ∞. By
the integral test, the last series in (36) diverges to ∞. Hence, m`(E6) = ∞. This completes
the proof.

Lemma 11 (Reference [17], p = q = 1, Lemma 2.5). Let f1 and f2 be meromorphic functions
satisfying σ( f1, ϕ) > σ( f2, ϕ). Then, there exists a set E7 ⊂ (1, ∞) of infinite logarithmic measure
such that, for all r ∈ E7, we have

lim
r→∞

T(r, f2)

T(r, f1)
= 0.

Lemma 12. Let f be an entire function with 0 < µ( f , ϕ) = µ < ∞. Then, there exists a set
E8 ⊂ (1, ∞) of infinite logarithmic measure such that, for all r ∈ E8, we have

τ = τ( f , ϕ) = lim
r→∞
r∈E8

log M(r, f )
ϕ(r)µ .

Proof. The proof would run parallel to that of Lemma 10. As in Lemma 1, in view of
Definition 2, there exists a strictly increasing sequence {rn} in (1, ∞) such that rn → ∞ as
n→ ∞,

(
1 + 1

n

)
rn < rn+1 (n ∈ N), and

τ = lim
rn→∞

log M(rn, f )
ϕ(rn)

µ .

We omit the remaining details.

4. Proof of Main Results

Proof of Theorem 5. The proof here would proceeded in line with that of (Reference [8],
Theorem 9.2) which is modified in a little detailed manner (see, in particular, (39) and (41)).

Let f ( 6≡ 0) be a transcendental meromorphic solution of the Equation (1). If
σ( f , ϕ) = ∞, then the result is obvious. So we assume that σ( f , ϕ) = σ < ∞. Suppose to
the contrary that

σ( f , ϕ) < σ(A`, ϕ) + b. (37)

From (6), a positive real number η can be chosen such that

max
0≤j≤n

j 6=`

σ
(

Aj, ϕ
)
< η < σ(A`, ϕ). (38)

From (37) and (38), we may choose ε > 0 so small that

σ( f , ϕ) + 2ε < σ(A`, ϕ) + b and η + 2ε < σ(A`, ϕ). (39)
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From (2), we find

m(r, A`) ≤ ∑
0≤j≤n

j 6=`

m
(
r, Aj

)
+ ∑

0≤j≤n
j 6=`

m
(

r,
f (z + j)
f (z + `)

)
+ n log 2 + log n. (40)

For such an ε > 0 in (39), using in (29) in Lemma 8, and (39), we find from (40) that,
for sufficiently large |z| = r,

m(r, A`) ≤ O
(
(ϕ(r))σ( f ,ϕ)−b+ε

)
+ O

(
(ϕ(r))η+ε

)
+ O(1)

≤ O
(
(ϕ(r))σ(A`,ϕ)−ε

)
+ O(1).

(41)

Finally, taking logarithm on both sides of the inequality composed by the first and last
terms in (41), and dividing each side of the resulting inequality by log ϕ(r), and taking the
upper limit as r → ∞ on both sides of the last resultant inequality, we obtain σ(A`, ϕ) ≤
σ(A`, ϕ)− ε, which is a contradiction. Hence, we have σ( f , ϕ) ≥ σ(A`, ϕ) + b.

Proof of Theorem 6. Here, the proof would run parallel to that of (Reference [14], Theorem
1.1) which is modified in a little detailed manner (see Theorem 2) (see, in particular, (47)
and (50)).

Let f ( 6≡ 0) be a transcendental meromorphic solution of the Equation (1). Suppose to
the contrary that

µ( f , ϕ) < µ(A`, ϕ) + b < ∞. (42)

Let
N1 :=

{
j | σ
(

Aj, ϕ
)
< µ(A`, ϕ), j = 0, 1, . . . , n, j 6= `

}
,

and
N2 :=

{
j | σ
(

Aj, ϕ
)
= µ(A`, ϕ), j = 0, 1, . . . , n, j 6= `

}
.

From (7), we see that N1 ∪ N2 = {0, 1, . . . , n} \ {`} and, clearly, N1 ∩ N2 = ∅. In
addition, let

σ := max
j∈N1

σ
(

Aj, ϕ
)
< ∞ and τ := max

j∈N2
τ
(

Aj, ϕ
)
.

Then, obviously and from (8), we have

σ < (A`, ϕ) and τ < τ(A`, ϕ). (43)

From Definitions 1 and 2, for any given ε > 0 and sufficiently large |z| = r, we
obtain that ∣∣Aj(z)

∣∣ < exp
(
(ϕ(r))σ+ε

)
(j ∈ N1), (44)

and ∣∣Aj(z)
∣∣ < exp

{
(τ + ε)(ϕ(r))µ(A`,ϕ)

}
(j ∈ N2). (45)

Moreover, by Lemma 9, for any given ε > 0, there exists a subset E5 ⊂ (1, ∞) of
infinite logarithmic measure such that, for all |z| = r ∈ E5, we have∣∣∣∣ f (z + j)

f (z + `)

∣∣∣∣ < exp

{
(ϕ(r))µ( f ,ϕ)+ε

r

}
(j ∈ N1 ∪N2). (46)

From (42) and (43), we can choose ε(> 0) so small that

max{σ, µ( f , ϕ)− b}+ 2ε < µ(A`, ϕ), and τ + 2ε < τ(A`, ϕ). (47)
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From Equation (1), we get

−A`(z) = ∑
j∈N1∪N2

Aj(z)
f (z + j)
f (z + `)

;

hence,

|A`(z)| ≤ ∑
j∈N1∪N2

∣∣Aj(z)
∣∣ ∣∣∣∣ f (z + j)

f (z + `)

∣∣∣∣. (48)

Using the inequalities (44)–(46) on the right-hand side of (48), we get that, for any
given ε > 0 and sufficiently large |z| = r ∈ E5,

|A`| < exp

{
(ϕ(r))µ( f ,ϕ)+ε

r

}(
∑

j∈N1

exp
{
(ϕ(r))σ+ε

}
+ ∑

j∈N2

exp
{
(τ + ε)(ϕ(r))µ(A`,ϕ)

})
.

We, thus, find that, for any given ε > 0 and sufficiently large |z| = r ∈ E5,

M(r, A`(z)) ≤n exp

{
(ϕ(r))µ( f ,ϕ)+ε

r

}
×
(

exp
{
(ϕ(r))σ+ε

}
+ exp

{
(τ + ε)(ϕ(r))µ(A`,ϕ)

})
.

(49)

Taking logarithm on both sides of the inequality (48) and using (5), we obtain that for
any sufficiently small ε > 0 and sufficiently large |z| = r ∈ E5,

log M(r, A`(z)) ≤ log n + (ϕ(r))µ( f ,ϕ)−b+ 3
2 ε

+ log
(

exp
{
(ϕ(r))σ+ε

}
+ exp

{
(τ + ε)(ϕ(r))µ(A`,ϕ)

})
.

(50)

Recalling the following inequality

log

(
n

∑
k=1

xk

)
≤

n

∑
k=1

log xk + log m

(m ∈ N, xk ≥ 1, k = 1, . . . , m)

(51)

to use in (50), we get that, for any sufficiently small ε > 0 and sufficiently large |z| = r ∈ E5,

log M(r, A`) ≤ log n + (ϕ(r))µ( f ,ϕ)−b+ 3
2 ε

+ (ϕ(r))σ+ε + (τ + ε)(ϕ(r))µ(A`,ϕ) + log 2.
(52)

From Definition (2), using (47) and (52), we obtain

τ(A`, ϕ) = lim
r→∞

log M(r, A`)

ϕ(r)µ(A`,ϕ)
≤ lim

r→∞
r∈E5

log M(r, A`)

ϕ(r)µ(A`,ϕ)
= τ + ε < τ(A`, ϕ)− ε,

which leads to a contradiction. Hence, we conclude µ( f , ϕ) ≥ µ(A`, ϕ) + b.

Proof of Theorem 7. The proof would be proceeded by modifying that of (Reference [20],
Theorem 1.3) in a little detailed manner (also see Reference [14], Theorem 1.3) (see, in
particular, (56) and (57)).

Let f ( 6≡ 0) be a transcendental meromorphic solution of the Equation (1). Under the
given assumptions, by Remark 3, we have σ(A`, ϕ) = σ. Suppose to the contrary that

σ( f , ϕ) < σ(A`, ϕ) + b = σ + b < ∞. (53)
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Then, for sufficiently small δ > 0, we still get σ +b− σ( f , ϕ)− 2δ > 0. Take any given
ε > 0 so small that

0 < ε < σ + b− σ( f , ϕ)− 2δ. (54)

By Lemma 8, there exists a set E ⊂ (1, ∞) of finite logarithmic measure such that for
all |z| = r /∈ E ∪ [0, 1] ∪ {`}, we obtain∣∣∣∣ f (z + j)

f (z + `)

∣∣∣∣ < exp

{
(ϕ(r))σ( f ,ϕ)+ε

r

}
(j = 0, 1, . . . , n, j 6= `). (55)

Using (54) in (55) gives∣∣∣∣ f (z + j)
f (z + `)

∣∣∣∣ < exp

{
(ϕ(r))σ+b−2δ

r

}
(j = 0, 1, . . . , n, j 6= `), (56)

for sufficiently large |z| = r /∈ E ∪ [0, 1] ∪ {`}. For the δ
2 > 0, from (5), we find

((ϕ(r))b− δ
2 < r (57)

for sufficiently large r. Employing (57) in the inequality (56) provides∣∣∣∣ f (z + j)
f (z + `)

∣∣∣∣ < exp
{
(ϕ(r))σ− 3

2 δ
}

(j = 0, 1, . . . , n, j 6= `), (58)

for sufficiently large |z| = r /∈ E ∪ [0, 1] ∪ {`}.
Here, let H := (0, ∞) \ E ∪ [0, 1] ∪ {`}. By Remark 1, we find that log dens {E ∪ [0, 1]

∪{`}} = 0 and so log dens H > 0, which implies m(H) = ∞. Using the inequalities (9), (10),
and (58) in (2), we obtain

exp
{

β(ϕ(r))σ−δ
}
< n

{
α(ϕ(r))σ−δ

}
exp

{
(ϕ(r))σ− 3

2 δ
}

,

or, equivalently,

1 < n exp
{
(α− β)(ϕ(r))σ−δ

}
exp

{
(ϕ(r))σ− 3

2 δ
}

, (59)

for sufficiently large |z| = r ∈ H. Since ϕ(r) ↑ ∞ as r → ∞, (ϕ(r))−
δ
2 < ν < η := β− α

for sufficiently large |z| = r ∈ H and some ν > 0. Therefore, we find that, as |z| =
r ∈ H increases to ∞, the right-hand side of the inequality (59) becomes smaller than
n exp

{
(ν− η)(ϕ(r))σ−δ

}
, which, due to ν− η < 0, may approach to 0. In view of (59), this

leads to contradiction. Hence, σ( f , ϕ) ≥ σ(A`, ϕ) + b.

Proof of Theorem 8. Here, the proof would run parallel with that of (Reference [14], Theo-
rem 1.4) which is modified in a little detailed manner (see, in particular, (62) and (62)).

Let f ( 6≡ 0) be a transcendental meromorphic solution of the Equation (1). If σ( f , ϕ) =
∞, then the result is obvious. So we assume that σ( f , ϕ) = σ < ∞. From (40), we find

m(r, A`) ≤ ∑
0≤j≤n

j 6=`

m
(
r, Aj

)
+ ∑

0≤j≤n
j 6=`

m
(

r,
f (z + j)
f (z + `)

)
+ O(1) (60)

for |z| = r (z ∈ H). From (13), consider any η ∈ (0, 1) such that

lim
r→∞ ∑

0≤j≤n
j 6=`

m
(
r, Aj

)
m(r, A`)

< η < 1
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for |z| = r (z ∈ H). Then, for sufficiently large |z| = r (z ∈ H), we have

∑
0≤j≤n

j 6=`

m
(
r, Aj

)
m(r, A`)

< η if and only if ∑
0≤j≤n

j 6=`

m
(
r, Aj

)
< η m(r, A`). (61)

In view of (29) in Lemma 8,

m
(

r,
∣∣∣∣ f (z + j)

f (z + `)

∣∣∣∣) = O
(
(ϕ(r))σ( f ,ϕ)−b+ε

)
(j = 0, 1, . . . , n, j 6= `) (62)

for sufficiently large |z| = r (z ∈ H). Employing (61) and (62) in (60), for given ε > 0, we
get that

(1− η)m(r, A`) ≤ O
(
(ϕ(r))σ( f ,ϕ)−b+ε

)
+ O(1) (63)

for sufficiently large |z| = r (z ∈ H). From Definition 1, we have

σ(A`, ϕ) ≤ σ( f , ϕ)− b + ε,

which, upon ε > 0 being arbitrary, leads to σ( f , ϕ) ≥ σ(A`, ϕ) + b.

Proof of Theorem 9. The process of the proof would be flowed as in that of Theorem II
in Reference [21], which is modified in a little detailed manner (see, in particular, (66)
and (69)).

Let f ( 6≡ 0) be a transcendental meromorphic solution of the Equation (1). If σ( f , ϕ) =
∞, then the result is clear. So we suppose that σ( f , ϕ) = σ < ∞. From Definition 3,

δ(∞, A`) = lim
r→∞

m(r, A`)

T(r, A`)
= δ > 0,

which gives that, for sufficiently large r,

δ

2
T(r, A`) < m(r, A`). (64)

Combining (64) and (40), we obtain

δ

2
T(r, A`) < m(r, A`)

≤ ∑
0≤j≤n

j 6=`

m
(
r, Aj

)
+ ∑

0≤j≤n
j 6=`

m
(

r,
f (z + j)
f (z + `)

)
+ O(1)

(65)

for sufficiently large r. By using (29) in Lemma 8 and the relation between T(r, f ) and
m(r, f ) in (65), we get

δ

2
T(r, A`) < m(r, A`)

≤ ∑
0≤j≤n

j 6=`

T
(
r, Aj

)
+ O

(
(ϕ(r))σ( f ,ϕ)−b+ε

)
+ O(1) (66)

for sufficiently large r. In view of (14), by Lemma 11, there exists a set E7 ⊂ (1, ∞) of
infinite logarithmic measure such that

∑
0≤j≤n

j 6=`

T
(
r, Aj

)
T(r, A`)

→ 0 (67)
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as r(∈ E7)→ ∞. Considering the given δ
4 > 0 in (67), we have that, for sufficiently large

r ∈ E7,

∑
0≤j≤n

j 6=`

T
(
r, Aj

)
T(r, A`)

<
δ

4
. (68)

Applying (68) to (66), we get that, for sufficiently large r ∈ E7,

δ

4
T(r, A`) < O

(
(ϕ(r))σ( f ,ϕ)−b+ε

)
+ O(1). (69)

Taking logarithm on both sides of the inequality (69), and dividing the resulting
inequality by log ϕ(r), and taking the upper limit as r(∈ E7)→ ∞ on both sides of the last
resultant inequality, we finally obtain

σ(A`, ϕ) ≤ σ( f , ϕ)− b + ε,

which, upon ε > 0 being arbitrary, leads to the desired inequality σ( f , ϕ) ≥ σ(A`, ϕ) + b.

Proof of Theorem 10. Let f ( 6≡ 0) be a transcendental meromorphic solution of the Equa-
tion (1). If σ( f , ϕ) = ∞, then the result is trivial. So we consider that σ( f , ϕ) = σ < ∞. As
in the process of the proof of Theorem 8, we find from (63) that, for given ε > 0,

(1− η)m(r, A`) ≤ O
(
(ϕ(r))σ( f ,ϕ)−b+ε

)
+ O(1) (70)

for some η (0 < η < 1) and sufficiently large |z| = r (z ∈ H). Since δ(∞, A`) = δ > 0, we
can use the same inequality (64) in (70) to obtain

(1− η)
δ

2
T(r, A`) ≤ O

(
(ϕ(r))σ( f ,ϕ)−b+ε

)
+ O(1) (71)

for sufficiently large r. Finally, employing the same process in the last paragraph of the
proof of Theorem 9, we may have the desired inequality σ( f , ϕ) ≥ σ(A`, ϕ) + b.

5. Concluding Remarks

In this paper, in order to answer the following natural question: When the coefficients
of the Equation (1) are entire or meromorphic functions of finite ϕ-order, what would the
growth properties of solutions of the linear difference Equation (1) be like?, we introduced
the constant b in (5), depending on ϕ. Then we showed how nicely diverse known
results for the meromorphic solution f of finite ϕ-order of the difference Equation (1) can
be amended.

When ϕ(x) = x (x ∈ [0, ∞)) is chosen in (5), we have b = 1. Accordingly, all
conclusions of Theorems 5–10 become σ( f , ϕ) ≥ σ(A`, ϕ) + 1. In this case, transcendental
meromorphic solution may be replaced by meromorphic solution. Therefore, Theorems 5–9
are found to reduce to some known corresponding results. For example,

• Theorem 5 may yield (Reference [8], Theorem 9.2) (Theorem 1) (also see (Reference [11],
Theorem 5.2), (Reference [6], Theorem 1));

• Theorem 6 may give (Reference [14], Theorem 1.1) (Theorem 2);
• Theorem 7 may provide (Reference [20], Theorem 1.3) (Theorem 3);
• Theorem 8 may afford (Reference [14], Theorem 1.4);
• Theorem 9 may produce (Reference [21], Theorem 11) (Theorem 4).

In addition, it may be interesting to compare Theorem 10 and (Reference [15], Theo-
rem 10).

Next, setting ϕ(x) = xµ (x ∈ [0, ∞), µ ∈ (0, ∞)) in (5), we have b = 1
µ . In addition,

it is obvious that ϕ(x) = xµ satisfies (i) and (ii) in Remark 2. Therefore, all conclusions



Symmetry 2021, 13, 267 17 of 18

of Theorems 5–10 become σ( f , ϕ) ≥ σ(A`, ϕ) + 1
µ . In this case, transcendental meromorphic

solution may be replaced by meromorphic solution. Further, σ(A`, ϕ) + 1
µ ↓ σ(A`, ϕ) as

µ ↑ ∞, while σ(A`, ϕ) + 1
µ ↑ ∞ as µ ↓ 0.

Posing a Problem

Considering the results presented in this paper, by using the constant b in (5), some
known other results for this subject are supposed to be amendable as those in Theorems 5–10,
which are left to the interested readers for future investigation.
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