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Abstract: The article introduces quantile deviation l as a new sensitivity measure based on the dif-

ference between superquantile and subquantile. New global sensitivity indices based on the square 

of l are presented. The proposed sensitivity indices are compared with quantile-oriented sensitivity 

indices subordinated to contrasts and classical Sobol sensitivity indices. The comparison is per-

formed in a case study using a non-linear mathematical function, the output of which represents the 

elastic resistance of a slender steel member under compression. The steel member has random im-

perfections that reduce its load-carrying capacity. The member length is a deterministic parameter 

that significantly changes the sensitivity of the output resistance to the random effects of input im-

perfections. The comparison of the results of three types of global sensitivity analyses shows the 

rationality of the new quantile-oriented sensitivity indices, which have good properties similar to 

classical Sobol indices. Sensitivity indices subordinated to contrasts are the least comprehensible 

because they exhibit the strongest interaction effects between inputs. However, using total indices, 

all three types of sensitivity analyses lead to approximately the same conclusions. The similarity of 

the results of two quantile-oriented and Sobol sensitivity analysis confirms that Sobol sensitivity 

analysis is empathetic to the structural reliability and that the variance is one of the important char-

acteristics significantly influencing the low quantile of resistance. 

Keywords: sensitivity analysis; buckling; reliability; safety; quantile; superquantile; subquantile; 

civil engineering; limit states 

 

1. Introduction 

Traditional sensitivity analysis (SA) methods are focused on model output [1]. SA is 

a computational procedure that divides and quantifies the uncertainty of input variables 

according to their influence on the uncertainty of the output of the mathematical model. 

Variance-based SA (generally called Sobol SA) introduces uncertainty as variance and de-

composes the variance of the output of the model or system into portions that can be at-

tributed to inputs or sets of inputs [2,3]. Sobol SA is very popular; the principles of the 

method are often mentioned [4–8] and many articles have applied Sobol SA in their re-

search [9–13]. 

In a more general form, SA can be defined as the study of how the output of a system 

is related to, and is influenced by, its inputs. In practical applications, research does not 

usually end with obtaining the output as a random variable or histogram, but other spe-

cific point estimates, such as quantiles, are needed. However, what influences the variance 

may or may not have the same influence on the quantile. 

1.1. A Brief Review of Sensitivity Analysis in Civil Engineering 

SA is a multidisciplinary science and, therefore, review articles focused purely on SA 

have a multidisciplinary character [14–19]. Only approximately 2.5% of all articles on SA 

are focused on civil engineering. In civil engineering, publications related to SA have a 
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growing trend, but are not as progressive as traditional engineering topics, such as buck-

ling; see Figure 1. 

 

Figure 1. Number of publications in civil engineering Web of Science categories (Web of Science 

core collection database, 29 January 2021) on the topic “sensitivity analysis “and “buckling”. 

In civil engineering, SA is focused on the stability of steel frames [20], deflection of 

concrete beams with correlated inputs [21], multiple-criteria decision-making (MCDM) 

[22], structural response to stochastic dynamic loads [23], rheological properties of asphalt 

[24], thermal performance of facades [25], strength of reinforced concrete beams [26], use 

of machines during the construction of tunnels [27], stress-based topology of structural 

frames [28], seismic response of steel plate shear walls [29], deformation of retaining walls 

[30], multiple-attribute decision making (MADM) [31], efficiency of the operations of 

transportation companies [32], unbalanced bidding prices in construction projects [33], 

shear buckling strength [34], reliability index β of steel girders [35], system reliability [36], 

seismic response and fragility of transmission toners [37], shear strength of corrugated 

web panels [38], inelastic response of conical shells [39], fatigue limit state [40], corrosion 

depth [41], building-specific seismic loss [42], vibration response of train–bridge coupled 

systems [43], shear strength of reinforced concrete beam–column joints [44], forecasts of 

groundwater levels [45], equivalent rock strength [46], vertical displacement and maxi-

mum axial force of piles [47], regional-scale subsurface flow [48], ultimate limit state of 

cross-beam structures [49], serviceability limit state of structures [50], deflection of steel 

frames [51], stability of observatory central detectors [52], bearing deformation and pylon 

ductility of bridges [53], load-carrying capacity of masonry arch bridges [54], free torsional 

vibration frequencies of thin-walled beams [55], stress and displacement of pipelines [56], 

fatigue dynamic reliability of structural members [57], deflection of roof truss structures 

[58], etc. Studies are performed using very different SA methods, which are not always 

chosen solely for purpose, but are subject to different paradigms that define what and 

how it should be investigated. Many studies apply only one type of SA, although more 

than one suitable SA method can be used. Some of the applied methods are traditional, 

e.g., applications of derivations [25,28], applications of Sobol SA [42,46] or application of 

the Borgonovo method [30], but highly specific and original SA methods [23,54], which 

are difficult or even impossible to compare with conventional methods [1], are also being 

developed. 

In civil engineering, SA objectives are usually focused on the optimization of the 

properties of structures, design characteristics of structures or processes associated with 

construction activities. One of the important features of any structure is its reliability. 

1.2. Reliability-Oriented Sensitivity Analysis 

In civil engineering, structural reliability is assessed using the well-developed con-

cept of limit states [59,60], which clearly defines the design quantiles of resistance and the 
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effect of load action. Regarding the ultimate limit state, a load-bearing structure is consid-

ered reliable if the high quantile of load action is smaller than the low quantile of re-

sistance [61]. 

A comparative study [61] showed large differences between four reliability-oriented 

sensitivity analyses (ROSA) and additional four SA used in reliability analysis. The con-

clusions [61] showed that a common platform that clearly translates the correlation be-

tween indices and their information value is absent in ROSA methods. 

A reliability-oriented SA concept based on design quantiles was introduced in [62]. 

SA was performed using the total indices of the design quantiles of resistance and load 

without having to evaluate the SA of failure probability. This saves the computational 

costs of numerically demanding models. Mirroring the concept of limit states into the 

principles of SA brings the results of sensitivity studies closer to the engineering practice, 

reduces computational costs and expands the possibilities of modelers. 

This article builds on [62] by introducing more general quadratic forms of quantile-

oriented sensitivity indices, which are compared with quantile-oriented sensitivity indices 

subordinated to contrasts [63]. Two SAs are compared with the classical Sobol SA in a case 

study using a non-linear function of the elastic static resistance of a compressed steel struc-

tural member. The advantages and disadvantages of all three methods are described and 

discussed. 

2. Quantile-Oriented and Sobol Global Sensitivity Indices 

From a black box perspective, any model may be regarded as a function R = g(X), 

where X is a vector of M uncertain model inputs {X1, X2, ... XM}, and R is a one-dimensional 

model output. The uncertain model inputs are considered as statistically independent ran-

dom variables. This incurs no loss of generality, because mutual relations are created 

through the computational model on the path to the output. 

Three types of global SA (in short SA) are used: Q indices, K indices and Sobol indi-

ces. All three types of SA have the ability to measure sensitivity across the input space 

(i.e., they are global methods), are capable of dealing with non-linear responses, and can 

quantify the influence of interactions in a non-additive systems. The first two SAs [62,63] 

are quantile-oriented, the third is the classical Sobol SA [2,3]. Both quantile-oriented SAs 

can study structural reliability, the assessment of which is based on limit states and design 

quantiles. The reason for including Sobol SA is its orientation on variance, which is an 

important, but not the only, part of reliability analysis. 

2.1. Linear Form of Quantile-Oriented Sensitivity Indices—Contrast Q Indices 

Sensitivity indices subordinated to contrasts associated with quantiles [63] (in short, 

Contrast Q indices) are based on linear contrast functions. The contrast function Ψ asso-

ciated with the α-quantile of output R can be expressed using parameter θ as 

          RRERψE 1,ψ , (1)

where R is a scalar. Equation (16) attains its minimum if the argument θ has a value of α-

quantile of R, see Equation (2) 

     


  RRE 1 Argminψ Argmin* , (2)

where θ* is the α-quantile of R. The minimum of Equation (1) can be expressed using θ* 

as 

         





11ψψ min *
** lRE

R , (3)

where l is the absolute difference (distance) between the mean value of the population 

below the α-quantile θ* and mean value of the population above the α-quantile θ*. Let l 

be the quantile deviation. The quantile deviation l is the difference between superquantile 

E(R|R ≥ θ*) and subquantile E(R|R < θ*) 
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where l = l1 + l2. l1 is the mean absolute deviation from θ* below θ*, l2 is the mean absolute 

deviation from θ* above the quantile θ* (in short quantile deviation l), and f(r) is the prob-

ability density function (pdf) of the model output. 

The introduction of superquantile and subquantile in Equation (4) introduces quan-

tile deviation l as a new quantile sensitivity measure. 

It can be noted that superquantiles are fundamental building blocks for estimates of 

risk in finance [64] and engineering [65]. In finance, the superquantile has various names, 

such as expected tail loss [66], conditional value-at-risk (CVaR) [67–70] or tail value-at-

risk [71], average value at risk [72], expected shortfall [73,74]. Subquantile is not such a 

widespread concept. 

In the context of SA, l was first introduced as a new sensitivity measure in [62]. A 

property of the quantile deviation l is that it is expressed in the same unit as the data. The 

quantile deviation l is a robust statistic, which, compared with the standard deviation, is 

more resilient to outliers in a dataset. This is due to the fact that in the case of standard 

deviation, i.e., the square root of variance, the distances from the mean are squared, so 

that large deviations are weighted more and can, therefore, be strongly influenced by out-

liers. Regarding quantile deviation l, the deviations of a small number of outliers are in-

consequential. 

With regard to random sampling, the quantile deviation l of a finite observation of 

size N with values rj can be estimated as 
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 , 
(5)

where N1 is the total number of observations below the α-quantile, N2 = N – N1 is the total 

number of observations above the α-quantile, where α-quantile θ* can be estimated so 

that α·N observations are smaller than θ* and (1-α)·N observations are greater than θ*. 

Figures 2 and 3 depict examples of symmetric and asymmetric probability density 

functions (pdfs), where the value of l is expressed as the distance between the centres of 

gravity of the green and yellow areas. All probability density functions (pdfs) have mean 

value μR = 0 and standard deviation σR = 1. Figure 2a depicts the Uniform probability den-

sity function (pdf). Figures 2b and 3a,b depict a four-parameter Hermite pdf, where the 

third and fourth parameters are skewness and kurtosis. 

  

(a) (b) 

Figure 2. Quantile deviation l of 0.4-quantile of: (a) Uniform symmetric pdf; (b) Hermite asymmetric pdf. 
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(a) (b) 

Figure 3. Quantile deviation l of 0.4-quantile of: (a) Hermite asymmetric pdf; (b) Hermite symmetric pdf. 

By modifying Equation (3), quantile deviation l can be computed using the probabil-

ity density function according to Equation (6) 
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where the value of α·(1 − α) is constant. The first-order contrast Qi index defined in [63] 

has a form that can be rewritten using the quantile deviation l as Equation (7) 
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, (7)

where the mean value E(·) is considered over all likely values of Xi. The new form of the 

contrast index Qi is 

 
l

XlEl
Q i
i


 . (8)

In a general model, fixing Xi can change all the statistical characteristics of output R. 

Only the changes in l caused by changes in Xi are important for the value of index Qi; see 

Equation (8). What statistical characteristics does l depend on? The quantile deviation l is 

not dependent on μR. Changes in l would hypothetically depend only on changes in σR 

provided that the shape of the pdf does not change (e.g., still Gaussian output in additive 

model with Gaussian inputs). However, this cannot be generally assumed. 

Figure 2 shows an example where changing the shape of the pdf causes a change in l 

from l = 1.73 to l = 1.47 when μR = 1 and σR = 1 is considered. Analogously, changing the 

shape of the pdf can change σR, but not l. Figure 3 shows an example where changing the 

pdf shape does not cause a change in l when μR = 1 and σR = 1 is considered. Therefore, 

changing the shape of the pdf may or may not affect l. The skewness and kurtosis may or 

may not affect l. In general, l does not depend on the change of μR itself, but depends on 

the pdf shape where the influence of moments acts in combinations, which can have a 

greater or lesser influence on l depending on the specific model type. These questions are 

examined in more detail in the case study presented in Chapter 5. 

The second-order α-quantile contrast index Qij is derived similarly by fixing of pairs 

Xi, Xj 

 
ji

ji
ij QQ

l

XXlEl
Q 




,
, (9)

where E(·) is considered across all Xi and Xj. The third-order sensitivity index Qijk is com-

puted analogously 

 
jkikijkji

kji
ijk QQQQQQ

l

XXXlEl
Q 




,,
. (10)



Symmetry 2021, 13, 263 6 of 22 
 

 

Statistically independent input random variables are considered. The sum of all in-

dices must be equal to one 

1... ...123  
 

M
i ij jk

ijk
i ij

ij
i

i QQQQ . 
(11)

The total index QTi can be written as 

 
l

XlEl
Q i
Ti

~1


 , (12)

where the second term in the numerator contains the conditional quantile deviation l eval-

uated for input random variable Xi and fixed variables (X1, X2,…, Xi–1, Xi+1,…, XM). 

Contrast Q indices expressed using the quantile deviation l are the same as the indi-

ces based on contrasts defined in [63], but are obtained in a different way. Contrast Q 

indices can also be written in an asymptotic form [62] (p. 15), which is based on measuring 

the distance between an α-quantile θ* and the mean value μ of the model output l ≈ ±(θ* 

− μ), but limited to only large and small quantiles. 

The contrast Q indices described in this chapter use quantile deviation l in linear 

form. 

2.2. Quadratic Form of Quantile-Oriented Sensitivity Indices—K Indices 

New sensitivity indices focused on quantiles can be obtained using the square of the 

quantile deviation l. The basic concept of this quadratic form of quantile-oriented sensi-

tivity analysis was introduced in [62] (p. 16). Unlike contrast Q indices, the sensitivity 

measure is expressed in the same unit as the variance. The decomposition of l2 can be 

performed in a similar manner to the decomposition of the variance in Sobol sensitivity 

indices [62]. The asymptotic form of these indices has been denoted as QE indices [62]. 

The first-order Ki index can be written as 

 
2

22

l

XlEl
K

i
i


 . (13)

The second-order index Kij is computed similarly with fixing of pairs Xi, Xj 

 
ji

ji

ij KK
l

XXlEl
K 




2

22 ,
. (14)

The third-order sensitivity index Kijk is computed analogously 

 
jkikijkji

kji

ijk KKKKKK
l

XXXlEl
K 




2

22 ,,
. (15)

The other higher-order indices are obtained similarly. Statistically independent input 

random variables are considered. The sum of all indices must be equal to one 

1... ...123  
 

M
i ij jk

ijk
i ij

ij
i

i KKKK . 
(16)

The total index KTi can be written as 

 
2

~
22

1
l

XlEl
K

i
Ti


 , (17)

where the second term in the numerator contains the conditional parameter l2 evaluated 

for input random variable Xi and fixed variables (X1, X2, …, Xi–1, Xi+1,…, XM). Equations 

(13)–(17) can be used for all quantiles, i.e., they are not limited to small and large quantiles. 

2.3. Sobol Sensitivity Indices—Sobol Indices 

Sobol variance-based sensitivity analysis is the most frequently used SA method 

[2,3]. Sobol SA is based on the decomposition of the variance of the model output. Sobol 
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SA estimates the degree of variance that each parameter contributes to the model output, 

including interaction effects. The first-order Si index can be written as 

    
 RV

XRVERV
S i
i


 , (18)

where E(·) is considered across all Xi. The total effect index STi, which measures first and 

higher-order effects (interactions) of variable Xi, is another popular variance-based meas-

ure [1] 

    
 RV

XRVERV
S

i
i

~
 , (19)

where the second term in the numerator contains the conditional variance evaluated for 

input random variable Xi and fixed variables (X1, X2, …, Xi–1, Xi+1, …, XM). 

Sobol SA is dependent only on the variance. The similarity of the results of Sobol SA 

and quantile-oriented SA can be sought in connection with the degree of the influence of 

the variance on the quantile. 

3. Resistance of Steel Member under Compression 

Most forms of civil engineering structures are designed using European unified de-

sign rules [75]—Eurocodes. The limit state is the structural condition past which it no 

longer satisfies the pertinent design criteria [76]. Limit state design requires the structure 

to satisfy two fundamental conditions: the ultimate limit state (strength and stability) and 

the serviceability limit state (deflection, cracking, vibration). 

The aim of the case study presented in this article is to analyse the static resistance 

(load-carrying capacity) of a slender steel member, which is limited by the strength of the 

material and stability. The resistance R is a random variable that depends on material and 

geometrical characteristics, which are generally random variables. A structure is consid-

ered to satisfy the ultimate limit state criterion if the random realization of the external 

load action is less than the low (design) quantile of load-carrying capacity Rd. Standard 

[59] enables the determination of design value Rd as 0.1 percentile [77–81]. 

The stochastic model of ultimate limit state of a hot-rolled steel member under lon-

gitudinal compression load action F is shown in Figure 4a. Biaxially symmetrical cross 

section HEA 180 of steel grade S235 is considered; see Figure 4b. 

 

 

 

(a) (b) 

Figure 4. Static model: (a) steel member under compression; (b) Cross-section HEA 180. 

The resistance of the steel structural member shown in Figure 4a was derived in [82] 

using the equation e = e0/(1 − F/Fcr), where Fcr is Euler’s critical load. Increasing the external 

load action F increases the compressive stress σx until the yield strength fy is attained in 

the middle of the span in the lower (extremely compressed) part of the cross-section; see 

Figure 4a. Hooke’s law with Young’s modulus E is considered. The dependence of σx on 

F is non-linear if e0 > 0, where F < Fcr. The elastic resistance R (unit Newton) is the maximum 
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load action F; a higher value of force F would cause overstressing and structural failure. 

The resistance R can be computed using the response function [82] 

 
z

zcrzycrzcrzcr

W

WFWfFeWFAAQWFAQ
R






2

2 22
0

22

, (20)

where 

zycr WfeFQ  0 , (21)

 212 22 thttbA  , (22)

22 /LEIF zcr  , (23)

  12/212/2 3
12

3
2 tthbtIz  , (24)

bIW zz /2  , (25)

where e0 is the amplitude of initial axis curvature, L is the member length, h is the cross-

sectional height, b is the cross-sectional width, t1 is the web thickness and t2 is the flange 

thickness. These variables are used to further compute the following variables: A is cross-

sectional area and Iz is second moment of area around axis z. 

It can be noted that e0 is the amplitude of pure geometrical imperfection with an ide-

alized shape according to the elastic critical buckling mode [83]. Amplitude e0 is not an 

equivalent geometrical imperfection [84–86], which would replace the influence of other 

imperfections, such as the residual stress. In Equation (20), the influence of residual stress 

is neglected. 

The member length L is a deterministic parameter. Equation (20) is a non-linear, non-

monotonic function for R > 0 that has the typical elastic resistance properties of a com-

pressed member with initial material and geometrical imperfections with the exception of 

residual stress. Although R is a vector quantity, the direction is still horizontal; see Figure 

4a) and only the magnitude is a random variable. Thus, in this article, the resistance R is 

examined as a scalar model output. 

The material and geometrical characteristics of hot-rolled steel beams have been 

studied experimentally [87,88]. Studies [82,89–91] have confirmed that the variance of t1 

and h have a minimal influence on R. Therefore, these variables can be considered as de-

terministic with values t1 = 6 mm and h = 171 mm. The input random variables are listed 

in Table 1. All random variables are statistically independent of each other. 

Table 1. Input random variables. 

Characteristic Index Symbol Mean Value μ 
Standard Devia-

tion σ 

Yield strength 1 fy 297.3 MPa 16.8 MPa 

Young’s modulus 2 E 210 GPa 10 GPa 

Imperfection 3 e0 0 L/1960 

Flange thickness 4 t2 9.5 mm 0.436 mm 

Flange width 5 b 180 mm 1.776 mm 

All random variables have Gauss pdf, but with the condition fy > 0, E > 0, t2 > 0 and b 

> 0. However, negative realizations of random variables fy, E, t2 and b practically never 

occur if the LHS method [92,93] is used with no more than tens of millions of runs. Theo-

retically, if fy → 0 then R → 0 (due to no stress), if E → 0 then R → 0 (due to zero stiffness), 

if e0 → 0 then R → Fcr or R → fy·A (pure buckling for high L or simple compression for low 

L), if L → 0 then R → fy·A (simple compression). 
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4. Results of Sensitivity Analysis 

The member length L is a deterministic parameter that changes step-by-step as L = 

0.001, 0.424, 0.849, …, 6.366 m. The step value is L0/10, where L0 = 4.244 m is the length of 

the member with non-dimensional slenderness [94]  . The common non-dimen-

sional slenderness of a strut in an efficient structural system is around one, but struts usu-

ally do not have non-dimensional slenderness higher than two [95]. The slenderness is 

directly proportional to the length. It is possible, for the presented case study, to write the 

transformation L = · L0, which makes it easier to understand the lengths. 

All three types of SA are based on double-nested-loop algorithms. Estimation of in-

dices was software-based by implementing randomized Latin Hypercube Sampling-

based Monte Carlo simulation (LHS) algorithms [92,93], which have been tuned for sen-

sitivity assessments [78,80]. Using LHS runs, the outer loop is repeated 2000 times to esti-

mate the arithmetic mean E(·) of the samples (l, l2 or variance), which are estimated using 

an inner loop algorithm. The inner loop is repeated 4 million times (4 million LHS runs) 

to compute statistics (l, l2 or variance) with some random realizations fixed by the outer 

loop. 

The subject of interest for the two quantile-oriented SA is the 0.001-quantile θ* of R. 

The estimate l quantifies the population distribution around the 0.001-quantile θ*, where 

0.001-quantile θ* is estimated as the 4000th smallest value in the set of four million LHS 

runs ordered from smallest to largest [78,80]. 

The estimates of the unconditional characteristics in the denominators of the indices 

are computed using four million runs of the LHS method. Higher-order indices are esti-

mated similarly. 

The same set of (pseudo-) random numbers is used in each member length L, hereby 

ensuring that sampling and numerical errors do not swamp the statistics being sought 

[96,97]. 

Figures 5–8 show contrast Q indices, K indices and Sobol indices for four selected 

member lengths corresponding to non-dimensional slenderness values  = 0, 0.5, 1, 1.5. 

The outer coloured ring displays 31 sensitivity indices, and the inner white-grey pie chart 

shows the representation of member lengths of first-order indices (white area of the chart) 

and higher-order indices (grey areas). 

 

Figure 5. Comparison of three types of sensitivity analysis (SA) for L = 0 m (  = 0). 
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Figure 6. Comparison of three types of SA for L = 2.122 m (  = 0.5). 

 

Figure 7. Comparison of three types of SA for L = 4.244 m (  = 1.0). 

 

Figure 8. Comparison of three types of SA for L = 6.366 m (  = 1.5). 

The results in Figures 5–8 show that Sobol indices have the largest proportion of first-

order sensitivity indices; see the white area in the inner circles in Figures 5–8. Small 

higher-order indices make Sobol first-order indices transparent without the need to eval-

uate total indices. Unfortunately, Sobol indices are not quantile-oriented.  

The new quantile-oriented K indices also have a relatively small proportion of higher-

order indices (grey areas in the inner circles), and thus approach Sobol indices with their 

properties. Q indices have the lowest proportion of first-order sensitivity indices and a 
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high proportion of higher-order indices (interaction effects), which makes the results less 

comprehensible, and the evaluation of total indices is then necessary. 

Figures 9 and 10 display the plots of all thirty-one Q indices vs. member length L. A 

finer step is used in places where the curves change course faster. 

  

(a) (b) 

Figure 9. Q indices: (a) first-order sensitivity indices; (b) second-order sensitivity indices. 

  

(a) (b) 

Figure 10. Q indices: (a) third-order sensitivity indices; (b) fourth- and fifth-order sensitivity indices. 

As for Q indices, the clear influence of individual variables on the 0.001-quantile of 

R is evident only after the evaluation of total indices, see Figure 11. The yield strength fy 

is dominant for low values of L (low slenderness), imperfection e0 is dominant for inter-

mediate lengths L (intermediate slenderness), Young’s modulus and flange thickness gain 

dominance in the case of long members (high slenderness). 
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Figure 11. Q indices: total indices. 

Figures 12 and 13 display the plots of all thirty-one K indices vs. member length, with 

the proportion of higher-order sensitivity indices being relatively small. The total KT indi-

ces shown in Figure 14 provide very similar (but not the same) information as the first-

order Ki indices depicted in Figure 12. 

  

(a) (b) 

Figure 12. K indices: (a) first-order sensitivity indices; (b) second-order sensitivity indices. 

  

(a) (b) 

Figure 13. K indices: (a) third-order sensitivity indices; (b) fourth- and fifth-order sensitivity indices. 
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Figure 14. K indices: total indices. 

Figure 15a shows Sobol first-order sensitivity indices. Sobol higher-order sensitivity 

indices are not shown because they are practically zero. The total indices shown in Figure 

15b provide practically the same information as Sobol first-order sensitivity indices Si. 

 
 

(a) (b) 

Figure 15. Sobol indices: (a) first-order sensitivity indices; (b) total indices. 

Examples of percentage differences between first-order indices are as follows. The 

yield strength has the greatest influence for L = 0 m, with Q1 being 37% smaller than S1, 

and K1 being 3% smaller than S1. Imperfection e0 has the greatest influence for L ≈ 3.8 m, 

with Q3 being 46% smaller than S3, and K3 being 16% smaller than S3. Ki indices are closer 

to Si indices (compared to Qi indices). 

The percentage differences between total indices are as follows. The yield strength 

has the greatest influence for L = 0 m, with QT1 being 22% greater than ST1, and KT1 being 

7% greater than ST1. Imperfection e0 has the greatest influence for L ≈ 3.8 m, with QT3 being 

13% greater than ST3 and KT3 being 3% smaller than ST3. KTi indices are closer to STi indices 

(compared to QTi indices). 

A comparison of the results of all three types of SA shows that the conclusions are 

very similar, despite being reached in a different way. The new K indices with their prop-

erties approach Sobol indices due to quadratic measures of sensitivity using l2, which be-

haves similarly to variance 
2
R . 



Symmetry 2021, 13, 263 14 of 22 
 

 

5. Static Dependencies between l and R and Other Connections 

Quantile-oriented sensitivity indices are based on the quantile deviation l or its 

square l2 while Sobol sensitivity indices are based on variance
2
R . The subject of interest 

of both quantile-oriented SA is the 0.001-quantile of R. 

To better understand the essence of the computation of sensitivity indices, screening 

of statistics l and R is performed when Xi is fixed. The aim is to identify similarities and 

differences between l and R, rather than to accurately quantify sensitivity using Equa-

tions (8), (13) and (18). Samples R|Xi and l|Xi are plotted for 400 LHS runs of Xi, otherwise 

the solution is the same as in the previous chapter. Skewness aR|Xi and kurtosis kR|Xi are 

added for selected samples, see Figures 16–21. 

 

Figure 16. Samples of R|X1 and l|X1 for L = 4.244 m ( = 1.0). 

 

Figure 17. Samples of skewness aR|X3 and kurtosis kR|X3 for L = 4.244 m ( = 1.0). 
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Figure 18. Samples of R|X2 and l|X2 for L = 4.244 m ( = 1.0). 

 

Figure 19. Samples of R|X3 and l|X3 for L = 4.244 m ( = 1.0). 

The samples in Figure 19 are symmetric due to the symmetric shape of the probability 

distribution (Gauss pdf) of input variable e0 with a mean value of zero. Only the absolute 

value of this variable is applied in Equation (20). The output R is not monotonically de-

pendent on e0. The practical consequence is that in the case of an even number of LHS 

runs, it is sufficient to compute the nested loop in Equations (8), (13) and (18) only once 

for the positive value of random realization e0, because the solution is the same for a neg-

ative value. This reduces the computational cost of estimating indices Q3, K3 and S3 by 

half. 

 

Figure 20. Samples of R|X4 and l|X4 for L = 4.244 m ( = 1.0). 
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Figure 21. Samples of R|X5 and l|X5 for L = 4.244 m ( = 1.0). 

The smaller the estimated R|Xi, the more fixing of Xi reduces the uncertainty of the 

output in terms of variance, which measures change around μR. The smaller the estimated 

l|Xi, the more the fixing of Xi reduces the uncertainty of the output in terms of parameter 

l, which measures change around θ. Imperfection e0 (X3) has the greatest influence in both 

cases, see low values on the vertical axes in Figure 19. 

In all cases, the dependence l|Xi vs. σR|Xi is approximately linear with the exception 

of the concave course on the right in Figure 16. Pearson correlation coefficient between 

400 samples l|Xi vs. σR|Xi is approximately 0.66. The concave course and lower correlation 

(compared to other variables) is due to the conflicting influences of σR, aR and kR. By ap-

proximating R using the Hermite distribution R~H(μR, σR, aR, kR), the effects of μR, σR, aR 

and kR on l can be observed separately as follows: change in μR has no influence on l, in-

creasing σR increases l, increasing aR decreases l, increasing kR increases l, assuming small 

values of changes.  

The influence of X1 is interesting. Figure 16, on the left, shows that with increasing 

X1, σR|X1 has an approximately decreasing plot, with the exception of the beginning on 

the left. Figure 17 shows that aR|X1 has an approximately decreasing course, kR|X1 has an 

increasing course. At the beginning on the left, increasing X1 causes an increase in σR|X1, 

kR|X1 and aR|X1, which, taken together, increases l|X1 due to the dominance of the joint 

effect of σR|X1, kR|X1 and aR|X1. The region where σR|X1 starts decreasing but l still in-

creases is interesting. Although the standard deviation is an important output character-

istic, a change in the input variable can have a stronger influence on the quantile through 

skewness and kurtosis. At the opposite end (right), increasing X1 causes a decrease in 

σR|X1, a decrease in aR|X1 and an increase in kR|X1, which together reduces l|X1, because 

the decreasing sole effect of σR|X1 is dominant. The whole course of l|X1 vs. X1 is shown 

in Figure 16 in the middle. The example shows the combined effect of standard deviation, 

skewness and kurtosis on the quantile deviation l, which is the core of the computation of 

quantile-oriented sensitivity indices Qi and Ki. 

For other variables X2, X3, X4 and X5 the range of σR|Xi is significantly larger than that 

of σR|X1 (99.1 − 90.3 = 8.8 MPa) and σR|Xi has a crucial influence on l|Xi. Hence, the de-

pendences l|Xi vs. σR|Xi, i = 2, 3, 4, 5 are approximately linear. 

6. Discussion 

Low quantiles represent a significant part of the analysis of reliability of load-bearing 

structures. SA of design quantiles can be used wherever reliability can be judged by com-

paring two statistically independent variables. 

Both types of quantile-oriented sensitivity analysis identified a very similar sensitiv-

ity order to Sobol SA. Identical identification of probabilistically insignificant variables 

can serve to reliably decrease the dimension of random design space by introducing non-
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influential variables as deterministic. On the contrary, the probability distribution of dom-

inant variables should be identified with the greatest possible accuracy. 

In all cases, the most important output information is the sensitivity order obtained 

using total indices. Total indices identify approximately the same sensitivity order for all 

types of SA; see Figures 11, 14 and 15b. Sobol total indices can be a good proxy of quantile-

oriented total indices in cases where changes in the quantile are primarily influenced by 

changes in the variance and less by the shape of the probability distribution of the output 

variable R. It can be noted that although the case of strong discrepancy between quantile-

oriented indices and Sobol indices has not yet been observed, some atypical (in practice, 

less real) tasks have not yet been solved, e.g., Sobol SA with strong interaction effects or 

SA of quantiles close to the mean. 

Quantile-oriented contrast Q indices are based on the quantile deviation l, which is 

the absolute distance of two average values of the population below and above the quan-

tile; see Equations (4)–(6). Quantile deviation l has the same unit and is similar to σR, be-

cause it measures the variability of the population around the quantile. Quantile deviation 

l has good resistance to outlier values around the quantile. When Xi changes determinis-

tically, the quantile deviation l is found to change, but not always monotonically, despite 

a monotonic variation in the standard deviation σR. The correlation between l and σR may 

or may not be strong even though a dependence exists; see Figure 16. 

By applying the quantile deviation l as a new measure of sensitivity, contrast Q indi-

ces defined by Fort [63] can be rewritten in a new form; see Equations (8)–(12). By substi-

tuting l with l2, Q indices can be rewritten as the new K indices, which are based on the 

decomposition of l2, similarly to the way Sobol indices are based on the decomposition of 

variance; see Equations (13)–(17). 

Contrast Q indices have an unpleasantly relatively high proportion of higher-order 

indices (interaction effects), which makes it difficult to interpret SA results. The new K 

indices have characteristics close to Sobol indices because they have a smaller proportion 

of interaction effects than Q indices. Although K and Sobol indices are similar, they are 

not the same because the key variable l depends not only on the variance but also on the 

shape of the distribution (variance, skewness, kurtosis). 

The comparison of contrast Q indices, K indices and Sobol indices was performed 

using a non-linear function R, which includes both non-linear and non-monotonic effects 

of five input variables Xi on the output. In the case study, four input variables Xi, i = 2, 3, 

4, 5 have approximately linear dependence l|Xi vs. σR|Xi, where l and σR are computed 

for fixed Xi while the other X~i are considered as random. However, this does not apply to 

input variable X1 (yield strength fy), which leads to a non-linear concave dependence l|Xi 

vs. σR|Xi. The example shows the strong influence of the shape of the distribution (skew-

ness and kurtosis) on the quantile deviation l as one of the causes leading to differences 

in K indices from Sobol indices. 

The findings presented here correlate very well with the results of SA of a beam un-

der bending exposed to lateral-torsional buckling, where contrast Q indices and Sobol in-

dices identified very similar sensitivity rank of input random variables [78,80]. 

Although other types of quantile-oriented sensitivity indices exist [98–100], they are 

not of a global type with the sum of all indices equal to one, so they were not used in this 

paper, because mutual comparison would be difficult. 

The K indices and Q indices presented here are as computationally demanding as the 

sensitivity indices derived in [62], but with the advantage that they are not limited to small 

and large quantiles. For small 0.001-quantile, the estimates of asymptotic QE indices [62] 

are practically the same as the results published in this article; therefore, the asymptotic 

form [62] does not provide any immediately apparent application advantage when the 

Monte Carlo method is applied. 

It can be noted that civil engineering has numerous reliability tasks in which interac-

tions can be a significant part of the design of structural members or systems, see e.g., 
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[101–105]. Another goal of SA may be the examination of the design quantiles of these 

tasks. 

7. Conclusions 

Low and high quantiles represent a significant part of the analysis of reliability, not 

only in the design of building structures. The sensitivity analysis of the resistance R of the 

steel strut showed significant similarities and differences between both types of quantile-

oriented sensitivity analysis (SA) and classical Sobol SA.  

The quantile deviation l was defined as the difference between superquantile and 

subquantile. New global sensitivity measures based on the quantile deviation l of model 

output were introduced. The quantile deviation l measures the statistical variability 

around the quantile similarly to how standard deviation measures the statistical variabil-

ity around the mean value. By using l to the first power, it is possible to rewrite quantile-

oriented sensitivity indices subordinated to contrasts (Q indices) in a new form. The ob-

tained results of the presented case study established that Q indices are the least compre-

hensible because they exhibit the strongest interaction effects between inputs. The results 

of Sobol SA are clear; however, they are not directly oriented to design quantiles and reli-

ability. 

With this motivation in mind, new quantile-oriented sensitivity indices (K indices) 

are expressed in this paper with sensitivity measure l2 expressed in the same unit as vari-

ance, thus approaching Sobol sensitivity indices with their properties. l2 has a significance 

similar to variance, but around quantile. The unit consistency between K indices and Sobol 

indices makes K indices attractive in stochastic models, where more parameters (goals) of 

the probability distribution of the model output need to be analysed. Overall, the new K 

indices can be considered effective in solving the effect of input random variables on de-

sign quantiles. 

The case study based on a non-linear and non-monotonic function showed that all 

three types of SA give very similar conclusions when total indices are evaluated. Although 

Sobol SA is based on the decomposition of only the variance of the model output, its con-

clusions are in good agreement with the conclusions of both quantile-oriented SA. The 

case study showed that the correlation between quantile deviation l and standard devia-

tion σR may or may not be strong. Although l correlates with σR, l is also related to the 

shape of the probability distribution.  

In general, it is always better to prioritize quantile-oriented types of global SA, which 

measure the statistical variability around a quantile (e.g., quantile deviation l) rather than 

around a mean value (variance), for quantile-based reliability analysis. 
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