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Abstract: The nonlinear vibration control of a nonlinear dynamical system modeled as the well-
known Duffing oscillators is investigated within this article. The conventional Positive Position
Feedback (PPF) controller is proposed to mitigate the considered system nonlinear vibrations. The
whole system mathematical model is analyzed by applying the multiple time scales perturbation
method. The slow-flow modulation equations that govern the oscillation amplitudes of both the
main system and controller are derived. The stability analysis is investigated based on Lyapunov’s
first method. The effects of the different control parameters on both the main system and controller
are explored. The obtained analytical and numerical results illustrated that the PPF controller can
eliminate the main system nonlinear vibrations once the controller natural frequency is tuned to
be the same value as the external excitation frequency, otherwise, the controller adds excessive
vibrational energy to the main system rather than suppressing it. In addition, the PPF controller can
destabilize the main system motion when excited by strong excitation force. Therefore, a modified
version of the PPF controller named the Adaptive Positive Position Feedback (APPF) controller
is proposed to overcome the main drawbacks of the conventional PPF controller. The idea is to
track the external excitation frequency using an adaptive frequency measurement technique to
update continuously the PPF controller natural frequency to become the same value of the excitation
frequency. Based on this strategy, the system mathematical model is analyzed again by making the
controller’s natural frequency equal to the external excitation frequency. The obtained analytical and
numerical simulations showed that the adaptive positive position feedback controller can suppress
the main system nonlinear vibration close to zero regardless of the excitation force amplitude and
excitation frequency.

Keywords: nonlinear vibration control; PPF controller; APPF controller; stability; internal resonance;
quasiperiodic motion; Poincaré map; frequency spectrum

1. Introduction

The occurrence of nonlinear vibration in different engineering systems such as aircraft
wings, bridges, satellites, tall structures, robotic arms, rotating machinery, micro-electro-
mechanical systems . . . etc. is an undesirable phenomenon. Accordingly, nonlinear vi-
bration control became important in many engineering applications, where integrating
networks of both the sensors and actuators are becoming an increasingly common feature
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of many engineering structures (smart structures). These sensors and actuators carry differ-
ent tasks such as detecting damage, controlling unwanted vibrations, and in some cases
reshaping the dynamical behaviors of the targeted system. The sensors and actuators are
considered the eyes and hands of the smart structure and have a brain called a controller.
Over the last few years, a large number of control algorithms have been applied to suppress
or eliminate the nonlinear vibrations in different engineering systems. The positive position
feedback (PPF) controller is one of the feasible control techniques that has been applied
extensively to suppress the nonlinear vibration of a wide range of dynamical systems. Baz
and Poh [1] and Baz and Hong [2] utilized a first-order filter with positive position feed-
back gain to control the nonlinear vibrations of the cantilever beam system. Friswell and
Inman [3] utilized the high performance of the PPF controller in modal vibration control
without spillover occurrence. The authors showed the possibility of designing the PPF
controller as an output feedback controller using optimal control methods. Rew et al. [4]
applied the adaptive positive position feedback controller to mitigate the nonlinear vibra-
tions of a frequency varying the structure. Song et al. [5] investigated the robust positive
position feedback controller for modal vibration control of a cantilever beam system. The
authors confirmed experimentally that the PPF controller is a robust control algorithm
either in single-mode or multi-mode vibration control. Song et al. [6] applied both the
positive position feedback and the strain-rate feedback controllers to suppress the nonlinear
vibrations of a cantilever beam system. Shan et al. [7] utilized the PPF controller to mitigate
the multi-mode vibrations of a single-link flexible manipulator during the slewing process.
The authors have designed two PPF controllers. One of them is proposed to control the
first mode vibration, while the second PPF controller is dedicated to controlling the second
mode oscillation. The obtained experimental results approved the capability of the ap-
plied control strategy in suppressing the system vibrations without spillover occurrences.
Moon et al. [8] applied a multi-input multi-output PPF controller to control the nonlinear
vibration of a smart grid structure. Kumar [9] utilized the PPF controller to mitigate the
nonlinear vibration of a single-link flexible manipulator, where the hit and trial technique
has been utilized to design the controller parameters. Shin et al. [10] applied multi-mode
PPF controllers with single-input single-output to control the vibrations of the first three
modes of a clamped beam system. Jun [11] applied the PPF controller as a linear vibration
absorber to control the transversal vibrations of a cantilever beam system when subjected
to the primary resonance case. The multiple time scales perturbation method has been
utilized to investigate the whole system dynamics. The author confirmed that the applied
controller has high efficiency in suppressing the system vibrations once the controller’s
natural frequency is properly tuned to the main system’s natural frequency. According to
Refs. [3–10], the best operational condition of the PPF controller can be achieved when tun-
ning its natural frequency to become the same value as the main system’s natural frequency.
Eissa et al. [12] presented an analytical investigation for a nonlinear PPF controller that has
been coupled to a periodically excited nonlinear system. The authors reported that the best
control efficiency of the PPF controller occurs when tunning its natural frequency to have
the same value as the external excitation frequency. Ferrari and Amabili [13] applied the
PPF controller to control the first four vibration modes of a rectangular sandwich plate
system. Omidi et al. [14,15] introduced a nonlinear PPF controller in two modified versions
in order to improve its vibration suppression efficiency. Syed [16] introduced a comparison
between the positive position feedback controller and negative velocity feedback controller
to control the nonlinear oscillation of a flexible link manipulator. Saeed et al. [17–19] ap-
plied the PPF controller to suppress the lateral vibrations and the corresponding whirling
motion of the rotating machinery. The authors reported that the PPF controller can mitigate
the rotating shafts lateral vibration close to zero when the controller’s natural frequency
is tuned to have the same value as the shaft spinning speed. Zhao et al. [20] applied the
nonlinear positive position feedback (NPPF) controller to suppress the nonlinear vibration
of the Duffing oscillator. The controller is designed to be nonlinear according to symmetric
theory, which states that the controller should be governed by the same equations like those
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of the main structure. Eissa et al. [21] investigated the performance of a control algorithm
consisting of both the negative velocity and positive position feedback controllers. The
time-delays of the control loop are included in the studied model. The authors showed
that the integration of the velocity feedback controller to the PPF one enhances the control
efficiency and widens the stable limits for the loop-delays.

Recently, the fraction-order PPF controller was introduced as a new strategy to suppress
the nonlinear vibrations of the nonlinear dynamical systems [22–24]. Marinangeli et al. [22]
applied both the conventional and the fractional-order PPF controllers to suppress the
modal vibrations of a composite plate system with free-edges. The numerical and ex-
perimental results confirmed that the fractional-order PPF controller is the best control
algorithm for suppressing the modal vibrations without spillover occurrence. Niu et al. [23]
studied the vibration control of a vertical tail system utilizing both the PPF controller and
fractional-order PPF controller. The authors showed that the fractional-order controller is
more efficient in suppressing both the periodic and random vibration responses. Also, the
optimal design of the positive position feedback controller parameters is introduced using
the H2 and H∞ optimization techniques [25,26].

Within this article, the adaptive positive position feedback (APPF) controller is intro-
duced as a new control strategy to overcome the main problem of the conventional PPF
controller when the resonance condition between the controller and the main system is lost.
The main idea of the APPF controller is to track the external excitation frequency using an
adaptive frequency measurement technique. Accordingly, the APPF controller is a conven-
tional PPF controller that uses a real-time frequency tracking method to update its natural
frequency to be the same value as the excitation frequency of the main system. Assuming
the PPF controller’s natural frequency equal to the excitation frequency, a nonlinear analy-
sis for the whole system mathematical model is presented applying perturbation methods.
The steady-state vibration amplitudes of both the main system and APPF controller are
explored. The obtained analytical and numerical investigations illustrated that the APPF
controller can eliminate the main system nonlinear vibration regardless of the excitation
force amplitude and excitation frequency.

2. Positive Position Feedback (PPF) Controller

The dimensionless dynamical equations that govern the oscillatory behaviors of a
one-degree-of-freedom nonlinear system coupled with the conventional positive position
feedback (PPF) controller as shown in Figure 1 are given as follows [12]:

..
x(t) + µ1

.
x(t) + ω2

1x(t) + αx3(t) = f cos(Ωt) + γ y(t) (1a)

..
y(t) + µ2

.
y(t) + ω2

2y(t) = λx(t) (1b)

where γy(t) denotes the control signal, while λx(t) represents the feedback signal.
Symmetry 2021, 13, x FOR PEER REVIEW 4 of 24 
 

 

 
Figure 1. The schematic diagram describes the connection of the main system and the PPF controller. 

2.1. Mathematical Analysis 
As the system model given by Equation (1) is a nonlinear system, the asymptotic analysis 

is sought to obtain a second-order approximate solution of Equation (1) as follows [27]: 

2 3
1 0 1 2 2 0 1 2 3 0 1 2

( , ) ( , , ) ( , , ) ( , , ) ( )x t x T T T x T T T x T T T Oε ε ε ε= + + +  (2a)

2 3
1 0 1 2 2 0 1 2 3 0 1 2

( , ) ( , , ) ( , , ) ( , , ) ( )y t y T T T y T T T y T T T Oε ε ε ε= + + +  (2b)

where ߝ is a small perturbation parameter used as a book-keeping only, ଴ܶ = ,ݐ ଵܶ =  ݐߝ
and ଶܶ = -are three time scales used to capture the fast and slow dynamics of the con ݐଶߝ
sidered system. In terms of the fast and slow time scales ଴ܶ, ଵܶ  and  ଶܶ, the time deriva-
tives ௗௗ௧ and ௗమௗ௧మ can be expressed as follows: 

ε ε ε ε= + + = + + +

∂= =
∂

2
2 2 2 2

0 1 2 0 0 1 1 2 02
, 2 ( 2 ),

, 0, 1, 2. 
j

j

d d
D D D D D D D D D

dt dt

D j
T

 
(3)
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Figure 1. The schematic diagram describes the connection of the main system and the PPF controller.



Symmetry 2021, 13, 255 4 of 22

2.1. Mathematical Analysis

As the system model given by Equation (1) is a nonlinear system, the asymptotic anal-
ysis is sought to obtain a second-order approximate solution of Equation (1) as follows [27]:

x(t, ε) = x1(T0, T1, T2) + εx2(T0, T1, T2) + ε2x3(T0, T1, T2) + O(ε3) (2a)

y(t, ε) = y1(T0, T1, T2) + εy2(T0, T1, T2) + ε2y3(T0, T1, T2) + O(ε3) (2b)

where ε is a small perturbation parameter used as a book-keeping only, T0 = t, T1 = εt and
T2 = ε2t are three time scales used to capture the fast and slow dynamics of the considered
system. In terms of the fast and slow time scales T0, T1 and T2, the time derivatives d

dt and
d2

dt2 can be expressed as follows:

d
dt = D0 + εD1 + ε2D2, d2

dt2 = D2
0 + 2εD0D1 + ε2(D2

1 + 2D2D0),
Dj =

∂
∂Tj

, j = 0, 1, 2.
(3)

According to the order of nonlinearity, the system parameters are scaled as follows:

γ = εγ̂, λ = ελ̂, µ1 = ε2µ̂1, µ2 = ε2µ̂2, α = ε2α̂, f = ε2 f̂ (4)

Substituting Equations (2)–(4) into Equation (1), and then equating the coefficient of
the same power of ε, we obtain the following set of linear ordinary differential equations:

O (ε0): (
D2

0 + ω2
1

)
x1 = 0 (5a)(

D2
0 + ω2

2

)
y1 = 0 (5b)

O (ε1):
(D2

0 + ω2
1)x2 = −2D0D1x1 + γ̂ y1 (6a)

(D2
0 + ω2

2)y2 = −2D0D1y1 + λ̂ x1 (6b)

O (ε2):

(D2
0 + ω2

1)x3 = −2D0D1x2 − D2
1x1 − 2D2D0x1 − µ̂1D0x1 − α̂ x3

1
+γ̂ y2 + f̂ cos(Ωt)

(7a)

(D2
0 + ω2

2)y3 = −2D0D1y2 − D2
1y1 − 2D2D0y1 − µ̂2D0y1 + λ̂ x2 (7b)

Accordingly, the solutions of the homogenous differential Equation (5) can be ex-
pressed as follows:

x1(T0, T1, T2) = A(T1, T2)eiω1T0 + cc (8a)

y1(T0, T1, T2) = B(T1, T2)eiω2T0 + cc (8b)

where cc denotes the complex conjugate of the preceding terms. Inserting Equation (8) into
Equation (6), we get

(D2
0 + ω2

1)x2 = −2iω1eiω1T0 D1 A + γ̂ Beiω2T0 + cc (9a)

(D2
0 + ω2

2)y2 = −2iω2eiω2T0 D1B + λ̂ Aeiω1T0 + cc (9b)

Before we proceed to the next approximation, we must know all the possible resonance
cases which are the primary resonance (Ω = ω1), internal resonance (ω2 = ω1), and
simultaneous resonance (Ω = ω1 = ω2). The simultaneous resonance case is considered
within this work. Accordingly, the closeness of Ω and ω2 to ω1 can be expressed using the
detuning parameters σ1 and σ2 as follows:

Ω = ω1 + σ1 = ω1 + εσ̂1 and ω2 = ω1 + σ2 = ω1 + εσ̂2 (10)
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Substituting Equation (10) into the secular and small-divisor terms of Equation (9), we
get (

D2
0 + ω2

1

)
x2 =

(
−2iω1D1 A + γ̂Beiσ̂2T1

)
eiω1T0 + cc (11a)(

D2
0 + ω2

1

)
y2 =

(
−2iω2D1B + λ̂Ae−iσ̂2T1

)
eiω2T0 + cc (11b)

The solvability conditions of Equation (11) are:

2iω1D1 A− γ̂ Beiσ̂2T1 = 0, and 2iω2D1B− λ̂ Ae−iσ̂2T1 = 0 (12)

Accordingly, the solutions of Equation (11) are:

x2(T0, T1, T1) = δ(T1, T2)eiω1T0 + δ(T1, T2)e−iω1T0 (13a)

y2(T0, T1, T1) = ρ(T1, T2)eiω2T0 + ρ(T1, T2)e−iω2T0 (13b)

Substituting Equations (8) and (13) into Equation (7), we get(
D2

0 + ω2
1

)
x3 = [−2iω1D1δ− D2

1 A− 2iω1D2 A− iµ̂1ω1 A− 3α̂A2 A

+ γ̂ρeiσ̂2T1 +
f̂
2

eiσ̂1T1 ]eiω1T0 − α̂A3e3iω1T0 + cc (14a)(
D2

0 + ω2
2

)
y3 =

[
−2iω2D1ρ− D2

1B− 2iω2D2B− iµ̂2ω2B + λ̂δe−iσ̂2T1
]
eiω2T0 + cc (14b)

By choosing −2iω1D1δ− D2
1 A + γ̂ρeiσ̂2T1 = 0 and −2iω2D1ρ− D2

1B + λ̂δe−iσ̂2T1 = 0,
one finds the solvability conditions of Equation (14) as follows:

− 2iω1D2 A− iµ̂1ω1 A− 3α̂A2 Aeiω1T0 +
f̂
2

eiσ̂1T1 = 0 (15a)

− 2iω2D2B− iω2µ̂2B = 0 (15b)

Inserting Equations (12) and (15) into Equation (3), we get

2iω1
.
A = 2iω1

d
dt

A = εγ̂ Beiσ̂2T1 − ε2

[
iµ̂1ω1 A + 3α̂ A2 Aeiω1T0 − f̂

2
eiσ̂1T1

]
(16a)

2iω2
.
B = 2iω2

d
dt

B = ελ̂ Ae−iσ̂2T1 − ε2iω2µ̂2B (16b)

To analyze the solutions of Equation (16), one can express A and B in the polar for
as follows:

A =
1
2

a1eiβ1 ⇒
.
A =

dA
dt

=
1
2

.
a1eiβ1 +

1
2

ia1
.
β1eiβ1 (17a)

B =
1
2

a2eiβ2 ⇒
.
B =

dB
dt

=
1
2

.
a2eiβ2 +

1
2

ia2
.
β2eiβ2 (17b)

where a1 and a2 are the steady-state vibration amplitudes of the system and PPF controller,
respectively, while β1 and β2 are the phases of the motion. Substituting Equation (17) into
Equation (16), and applying the reconstitution method [28], we get

iω1
.
a1 −ω1a1

.
β1 =

1
2

γ a2ei(β2−β1+σ2t) − 1
2

iµ1ω1a1 −
3
8

α a3
1 +

f
2

ei(σ1t−β1) (18a)

iω2
.
a2 −ω2a2

.
β2 =

1
2

λ a1e−i(β2−β1+σ2t) − 1
2

iω2µ2a2 (18b)



Symmetry 2021, 13, 255 6 of 22

Separating the real and imaginary parts of Equation (18), one can get the following
autonomous amplitude-phase modulating equations

.
a1 = −1

2
µ1a1 +

1
2ω1

γa2 sin(ϕ2) +
f

2ω1
sin(ϕ1) (19a)

.
a2 = −1

2
µ2a2 −

1
2ω2

λa1 sin(ϕ2) (19b)

.
ϕ1 = σ1 −

3
8ω1

αa2
1 +

1
2ω1a1

γa2 cos(ϕ2) +
f

2ω1a1
cos(ϕ1) (19c)

.
ϕ2 = σ2 −

3
8ω1

αa2
1 +

(
γa2

2ω1a1
− λa1

2ω2a2

)
cos(ϕ2) +

f
2ω1a1

cos(ϕ1) (19d)

where ϕ1 = −β1 + σ1t and ϕ2 = β2 − β1 + σ2t.

2.2. Steady-State Vibration and Stability Investigations

At steady-state, we have
.
a1 =

.
a2 =

.
ϕ1 =

.
ϕ2 = 0.0. Substituting this condition into

Equation (19), we get the following nonlinear algebraic equations:

1
2

µ1a1 =
1

2ω1
γa2 sin(ϕ2) +

f
2ω1

sin(ϕ1) (20a)

µ2ω2a2 = −λa1 sin(ϕ2) (20b)

σ1 = − 1
2ω1a1

γa2 cos(ϕ2) +
3

8ω1
αa2

1 −
f

2ω1a1
cos(ϕ1) (20c)

2(σ1 − σ2)ω2a2 = −λa1 cos(ϕ2) (20d)

Eliminating ϕ1 and ϕ2 from Equation (20), we get the following frequency-response
equations that govern the steady-state vibration amplitudes of the system and controller.[

µ2
2 + 4(σ1 − σ2)

2
]
ω2

2a2
2 = λ2a2

1 (21a)

[
2σ1ω1a1 −

3
4

αa3
1 −

2(σ1 − σ2)ω2γa2
2

λa1

]2

+

[
µ1ω1a1 +

µ2ω2γa2
2

λa1

]2

= f 2 (21b)

By solving the obtained nonlinear algebraic equations (i.e., Equation (21)) in terms of
different system parameters utilizing σ1 or f as a bifurcation control parameter, one can
obtain different response curves given Section 2.3. Moreover, the stability of the obtained
solution can be explored by examining the eigenvalues of the Jacobian matrix of the right-
hand side of Equation (19). To derive the stability criteria, let a10, a20, ϕ10 and ϕ20 is the
steady-state solution of Equation (20), while a11, a21, ϕ11 and ϕ21 is a small perturbation
about that steady-state solution. Accordingly, we can assume that [27]:

a1 = a11 + a10, a2 = a21 + a20, ϕ1 = ϕ11 + ϕ10, ϕ2 = ϕ21 + ϕ20
⇒ .

a1 =
.
a11,

.
a2 =

.
a21,

.
ϕ1 =

.
ϕ11,

.
ϕ2 =

.
ϕ21

(22)

Substituting Equation (22) into Equation (19), we get the following linear dynami-
cal system: 

.
a11.
ϕ11.
a21.
ϕ21

 =


R11 R12 R13 R14
R21 R22 R23 R24
R31 R32 R33 R34
R41 R42 R43 R44




a11
ϕ11
a21
ϕ21

 (23)

The above square matrix is the Jacobian matrix. The linear system is given by Equation (23)
is topologically equivalent to the nonlinear system given by Equation (19) as long as the
eigenvalues are hyperbolic. Thus, the stability of the nonlinear system given by Equation (19)
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depends on the eigenvalues of the obtained Jacobian matrix in Equation (23). Accordingly,
the eigenvalues of the linear system given by Equation (23) can obtain as follows:∣∣∣∣∣∣∣∣

R11 − ∆ R12 R13 R14
R21 R22 − ∆ R23 R24
R31 R32 R33 − ∆ R34
R41 R42 R43 R44 − ∆

∣∣∣∣∣∣∣∣ = 0 (24)

Expanding the above determinate, one can obtain the following characteristic equation:

∆4 + β1∆3 + β2∆2 + β3∆ + β4 = 0 (25)

where ∆ is the eigenvalue of the Jacobian matrix, and β1, β2, β3, and β4 are the coefficients
of Equation (25). The Routh–Hurwitz criterion is used to establish the stability of the
equilibrium solutions. According to Routh–Hurwitz criterion, the necessary and sufficient
conditions for the system stability are:

β1 > 0, β1β2 − β3 > 0, β3 (β1β2 − β3)− β2
1β4 > 0, β4 > 0 (26)

2.3. Response Curves and Numerical Validations

According to the obtained frequency-response equation (i.e., Equation (21)), the dif-
ferent response curves of both the main system and PPF controller are obtained as in
Figures 2–9. The results are presented in graphical forms as steady-state vibration ampli-
tudes (a1 & a2) against the detuning parameter σ1 or the excitation amplitude f . In addition,
the stability of the obtained solution is investigated according to the condition given by
Equation (26). In all obtained response curves, the solid line refers to the stable solution,
while the dotted line represents the unstable one. Moreover, numerical validations for
some obtained response curves are performed via solving the system temporal equations
(i.e., Equation (1)) numerically using ODE45 MATLAB solver. The numerical results are
marked as small circles when sweeping the bifurcation parameter forward and as big-dots
when sweeping the bifurcation parameter backward. The obtained figures were plotted by
adopting the values of the system parameters given in Table 1 unless otherwise specified.

Figure 2a shows the uncontrolled system frequency-response curve for three different
values of the external excitation force f , while Figure 2b illustrates the uncontrolled system
force-response curve at two different values of the detuning parameter σ1. It is clear
from Figure 2 that the system oscillation amplitude is a monotonic increasing function of
the excitation force, where increasing the excitation force amplitude bent the frequency-
response curve to the right leading to a hardening effect and the appearance of the jump
phenomenon. Besides, the figure illustrates the dominance of nonlinearities on the system
response curves at large values of the excitation force, where the system may have bistable
solutions depending on both the excitation force f and excitation frequency Ω.

The system frequency-response curve after the connection of the PPF controller is
showed in Figure 3, where Figure 3a shows the main system frequency-response curve,
while Figure 3b illustrates the PPF controller frequency-response curve. It is clear from
Figure 3a that the main system vibration amplitude is approximately suppressed to zero,
while the excess energy is transferred to the connected controller when σ1 = 0 (i.e., when
Ω = ω1 from Equation (10)). However, the controlled system may suffer from high
oscillation amplitudes and jump phenomenon occurrence at two frequency bands on both
sides of σ1 = 0 (i.e., when σ1

∼= ±0.1). This means that the PPF controller can suppress the
primary resonance vibration of the considered system effectively when excitation frequency
(Ω) is very close to the system natural frequency (ω1). But, when the excitation frequency
becomes higher or lower than the system’s natural frequency, the PPF controller increases
the vibration amplitudes rather than suppressing them.

The controlled system frequency-response curves at three different values of the
internal detuning parameter σ2 are illustrated in Figure 4. By examining Figure 4a, we can



Symmetry 2021, 13, 255 8 of 22

conclude that the minimum steady-state vibration amplitude of the main system (a1) occurs
when σ1 = σ2 (i.e., when Ω = ω2 from Equation (10)), where for σ2 = 0.05 the minimum
oscillation amplitude (a1) occurred at σ1 = 0.05, for σ2 = 0.0 the minimum oscillation
amplitude (a1) occurred at σ1 = 0.0, and for σ2 = −0.05 the minimum oscillation amplitude
(a1) occurred at σ1 = −0.05. By substituting this condition (i.e., σ1 = σ2) into Equation (10),
we can get Ω = ω2. Accordingly, the optimum vibration suppression efficiency of the
PPF controller occurs when tuning its natural frequency (ω2) to be the same value as the
external excitation frequency (Ω).
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Table 1. The main system and PPF controller parameters.

The Main System Parameters PPF Controller Parameters

ω1 1.0 ω2 1.0
µ1 0.01 µ2 0.001
α 0.05 γ 0.2
f 0.03 λ 0.2

σ1 0.0 σ2 0.0

The effect of the control gain γ and feedback gain λ on the frequency-response curves
of both the main system and PPF controller is illustrated in Figures 5 and 6, respectively.
It is clear from Figures 5a and 6a that the increasing of the control gain and/or feedback
gain widen the frequency bandwidth in which the PPF controller can suppress the system
nonlinear vibrations. However, increasing γ or/and λ increases the peak amplitudes on
both sides of σ1 = 0.0. Also, Figures 5b and 6b show that the increasing of γ decreases
the controller steady-state oscillation amplitude while the increasing of λ increases the
controller vibration amplitude. Figure 7 illustrates the influence of the controller linear
damping coefficient µ2 on frequency-response curves of the main system and controller. It
is noted that the existence of multiple-solution and jump phenomenon occurrence depends
on the value of µ2, where for small values of the damping coefficient (i.e., µ2 = 0.0, 0.01),
the multiple-solution and jumping phenomenon appear on both sides of σ1 = 0.0. But,
for large values of the damping coefficient (i.e., µ2 ≥ 0.02), both the main system and
the PPF controller respond as a linear system with two vibration peaks on both side of
σ1 = 0.0. However, it is worth mentioning that the increase in µ2 decreases the PPF
controller efficiency in eliminating the primary resonance excitations.

The frequency-response curve of the controlled system for three different values of
the excitation force amplitude is shown in Figure 8. It is clear from Figure 8a that the main
system vibration amplitude on both side of σ1 = 0.0 is a monotonic increasing function of
the excitation force, but the controller can keep the system vibration very small at σ1 = 0.0.
This means that the PPF controller has excellent efficiency in suppressing the main system
vibrations as long as Ω = ω2 regardless of the excitation force amplitude.
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Figure 9 shows a typical force-response curve of both the main system and the con-
troller for five different values of the external detuning parameter σ1 in the presence of 1:1
internal resonance (i.e., σ2 = 0). The trace of the vibration amplitudes a1 and a2 depends on
the external detuning σ1. Initially, a1 and a2 are zeros, and they follow the curve according
to the value of σ1. It is clear from Figure 9a that the main system vibration amplitude (a1) is
a nearly constant (with a value close to zero), while the controller vibration amplitude (a2)
increases in a linear form as the excitation amplitude increases when σ1 = 0.0, but both the
main system and the controller steady-state amplitude increase in nonlinear form as the
excitation amplitude increase when σ1 6= 0. Besides, at σ1 6= 0, the main system may suffer
from jump phenomena and unstable behaviors at large external excitation depending on
the value of σ1. This confirms the failure of the conventional PPF controller to suppress the
primary resonant vibrations if a small mistuning between the controller natural frequency
and the external excitation frequency occurred.
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Numerical simulation for temporal oscillations of both the main system and PPF
controller according to the three points P1, P2, and P3 marked in Figure 9 are presented in
Figures 10–12, respectively. The given figures are obtained by solving the original system
equations (Equation (1)) numerically using ODE45 MATLAB solver. Figure 10 shows the
system time histories (Figure 10a,b), Poincaré map (Figure 10c,d), and frequency spectrum
(Figure 10e,f) according to the stable operating point P1 (i.e., when σ1 = σ2 = 0, f = 0.5).
It is clear from Figure 10 that the PPF controller has high efficiency in suppressing the
main system vibration close to zero (i.e., a1

∼= 0.0126) even at the large excitation force
amplitude (i.e., f = 0.5) when σ1 = σ2 = 0.0 (i.e., ω2 = Ω), where the excessive vibrational
energy of the main system due to the large excitation force has been channeled to the
connected controller.
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The time histories, Poincaré map, and frequency spectrum of the controlled system
according to the point P2 (i.e., σ1 = 0.05, σ2 = 0.0, f = 0.5) that is marked on Figure 9 are
illustrated in Figure 11. It is clear from Figure 11a,b that there is a failure of the PPF controller
in suppressing the main system nonlinear vibrations when σ1 6= σ2. Moreover, both the
main system and the PPF controller lose their periodical motions to respond with a quasi-
periodic oscillation as is clear from the Poincaré map (i.e., Figure 11c,d) and the frequency
spectrum (i.e., Figure 11e,f). The time histories, Poincaré map, and frequency spectrum of the
controlled system according to the point P3 (i.e., σ1 = 0.14, σ2 = 0.0, f = 0.5) that is marked
in Figure 9 are illustrated in Figure 12. It is clear from Figure 12a,b that there is a failure
of the PPF controller in suppressing the main system nonlinear vibrations. In addition,
both the main system and PPF controller lose their periodical motions and respond with
a quasi-periodic oscillation, as is clear from the Poincaré map (i.e., Figure 12c,d) and the
frequency spectrum (i.e., Figure 12e,f).
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According to the above discussion, we can conclude that the PPF controller can
suppress the main system nonlinear vibration as long as the controller natural frequency
(ω2) is tuned to be the same value of the excitation frequency (Ω) even at the large external
excitation force ( f ). However, the PPF controller can destabilize the main system vibration
at large external excitation forces if a mistuning between the controller natural frequency
and the excitation frequency has occurred.

3. Adaptive Positive Position Feedback (APPF) Controller

To enhance the system response and eliminate the two undesired peaks that appeared
on both sides of σ1 = 0.0 as in Figure 3, a new modification of the conventional PPF
controller is proposed. Based on the obtained results from Figures 4 and 9, one can
conclude that the maximum vibration suppression efficiency of the conventional PPF
controller occurs when the controller natural frequency (ω2) is tuned to be the same value
of the external excitation frequency (Ω). However, most dynamical systems in practice are
subject to varying excitation frequencies. The idea here is to track the external excitation
frequency (Ω) using an adaptive frequency measurement technique and then updating the
PPF controller natural frequency (ω2) continuously in real-time according to the measured
Ω. This can grant the PPF controller a unique feature by making it an adaptive controller
that is able to suppress the main system vibrations regardless of the excitation frequency
or the excitation force amplitude. It is worth mentioning that the frequency tracking
method has been applied for vibration control before as in Refs. [29,30]; the authors utilized
different frequency measurement methods. The best frequency measurement technique
was introduced in Ref. [29], where the authors implemented a technique that uses the
Adaptive Line Enhancer (ALE). The experimental results showed that this method works
very well and fast enough to be used in the real-time control system. Accordingly, the
steady-state dynamical behaviors of both the main system and the adaptive positive
position feedback (APPF) controller are investigated considering that ω2 = Ω within
this section. Figure 13 shows a schematic diagram that describes the connection of the
APPF controller to the main system, where the oscillation amplitude is measured via a
displacement sensor. The measured signal x(t) is fed to a digital computer via an A/D
converter. The digital computer on which the PPF controller is installed manipulates the
acquired signal according to the PPF control law to generate the control signal γy(t). At
the same time, the digital computer measures the excitation frequency using a frequency
measurement algorithm like ALE to update the controller natural frequency ω2 to the same
value of the measured Ω.
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Frequency-Response Equation of APPF Controller

The equations of motions and the corresponding frequency-response equation of the
main system and APPF controller can be obtained via setting ω2 = Ω and then σ1 = σ2
into Equations (1) and (21), respectively. Accordingly, the new equations of motion are:

..
x(t) + µ1

.
x(t) + ω2

1x(t) + αx3(t) = f cos(Ωt) + γ y(t) (27a)

..
y(t) + µ2

.
y(t) + Ω2y(t) = λx(t) (27b)

and the corresponding frequency-response equations of the main system and APPF con-
troller are given as:[

2σ1ω1 −
3
4

αa2
1

]2
a2

1 +

[
µ1ω1 +

λ

γµ2Ω

]2
a2

1 = f 2, a2 =
λ

µ2Ω
a1 (28)

Based on Equation (28), the steady-state oscillation amplitudes of both the main system
and APPF controller are explored in Figures 14 and 15 utilizing σ1 and f as bifurcation
control parameters. Figure 14 shows the frequency-response curves of the main system
and APPF controller for different values of the excitation force amplitude f . By comparing
Figure 14 (i.e., in case of APPF) with Figure 8 (i.e., in case of the conventional PPF), one
can find that the two undesired peaks and the jump phenomenon reported in Figure 8
have been eliminated when the APPF controller has been connected to the main system, as
shown in Figure 14. Also, Figure 14 confirms that the main system can exhibit a very small
vibration amplitude in the case of the APPF controller at a wide band of the excitation
frequency even if the excitation force amplitude is strong (i.e., f = 0.1, 0.5, 1).
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The force-response curves of the main system and APPF controller at five different
values of the detuning parameter σ1 are shown in Figure 15. It is clear from the figure that
the oscillation amplitudes of both the main system and APPF controller are monotonic
increasing linear functions of the excitation force f , where the increasing rate of a1 is
very small compared to the increasing rate of a2, which confirms that the energy added
to the main system due to the excitation force is channeled to the connected controller
effectively. By comparing Figure 15 (i.e., in case of the APPF) with Figure 9 (i.e., in case of
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the conventional PPF), we can find that the nonlinearity dominance and unstable motions
that the system can perform in the case of the PPF controller as illustrated in Figure 9 have
been eliminated in the case of the APPF controller as shown in Figure 15. In addition,
the main system can exhibit very small vibration amplitudes for the different values of
the detuning parameter σ1 when the APFF controller is connected to the main system. To
promote confidence in the obtained response curves, Equation (27) has been integrated
numerically using MATLAB ODE45 solver, where the obtained steady-state vibration
amplitudes have been plotted as small circles when sweeping the bifurcation parameter
(σ1 or f ) forward, and as big dots when sweeping the bifurcation parameter backward as
shown in Figures 14 and 15. According to Figures 14 and 15, we can confirm that the APPF
controller is an excellent replacement for the conventional PPF controllers that can work
effectively even if the main system is subjected to a strong external excitation force with
varying excitation frequency.
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4. Comparison between the PPF and APPF Controllers

A comparison between the PPF and APPF controllers is introduced in this section,
where Figure 16 shows the main system frequency-response curves before control and after
connecting the PPF and APPF controllers to the system. It is clear from Figure 16a that
the conventional PPF controller can eliminate the main system nonlinear vibration when
subjected to a periodic excitation force ( f ) having an angular frequency (Ω) as long as
the internal and external resonance ratio between the main system and the PPF controller
is kept at 1:1:1 (i.e., ω1 = ω2 ∼= Ω). However, for a small mistuning between Ω and ω1,
the PPF controller not only loses its efficiency in suppressing the main system nonlinear
vibrations but also it may add excessive vibratory energy to the controlled system as
shown in Figure 16a when Ω ∈ ]0.85, 0.92[∪]1.075, 1.2[. Figure 16a also confirms that once
the controller natural frequency ω2 is made adaptive to track the excitation frequency Ω
(i.e., ω2 = Ω), the APPF controller can eliminate the main system vibration amplitude
regardless of the excitation force and excitation frequency.

Numerical simulations for temporal oscillations of the main system and the connected
controllers according to Figure 16 for three different values of the excitation frequency Ω
(i.e., Ω = 0.9, 1, 1.1) are illustrated in Figures 17–19, respectively. Figure 17 simulates the
main system temporal oscillations before and after control according to Figure 16 when
Ω = 0.9. The figure shows the main system nonlinear oscillation without the control along
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the time interval t ∈ [0, 1000], where at t = 1000 the conventional PPF controller is turned
on along the time interval t ∈ [1000, 3000]. At t = 3000 the PPF controller is turned off,
while the APPF controller is activated at the same instant (i.e., at t = 3000) until the variable
t reaches the value t = 5000. It is clear from Figure 17 that the PPF controller amplifies the
vibration amplitude of the main system rather than mitigating it along the time interval
t ∈ [1000, 3000], while switching the control strategy from the PPF to APPF at t = 3000
can suppress the main system vibrations close to zero. Figure 18 is a repetition for Figure 17
but with Ω = 1.0. It is clear from Figure 18 that the PPF controller can work very well
as the APPF controller when the resonance condition meets (i.e., Ω ∼= ω1 = ω2 = 1.0).
Figure 19 is also a repetition of Figure 17 when Ω = 1.1. Figure 19 confirms again that the
PPF controller adds extra vibrational energy to the main system rather than suppressing it
when the resonance condition has been lost (i.e., Ω = 1.1, ω1 = ω2 = 1.0).
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The force-response curves of the main system before and after control (i.e., PPF and
APPF controllers) have been compared in Figure 20 when the excitation frequency Ω = 1.12.
Figure 20a illustrates not only the failure of the PPF controller in suppressing the main system
nonlinear vibrations when the resonance condition is lost (i.e., Ω = 1.12, ω1 = ω2 = 1.0),
but also it destabilizes the system motion at a large excitation amplitude (i.e., when f ≥ 0.18).
However, the figure shows that the APPF controller has an excellent force-response curve
that guarantees the capability of the controller in eliminating the main system vibration
amplitude even at strong excitation forces without losing the periodic oscillation of both
the main system and the APPF controller.

Figure 21 shows the system bifurcation diagram according to the force-response curves
in Figure 20, where the Poincaré map for steady-state temporal oscillations of both the
main system and PPF controller are plotted against the excitation force f when Ω = 1.12,
while Figure 22 shows the same bifurcation diagram according to the force-response
curves in Figure 20, where the Poincaré map for the steady-state temporal oscillations
of both the main system and APPF controller are plotted against f when Ω = 1.12. It is
clear from Figure 21 that the main system loses its periodic oscillations to perform a
quasiperiodic motion in the case of the PPF controller at strong excitation forces (i.e., when
f ≥ 0.18), while Figure 22 confirms the efficiency of the APPF controller in suppressing the
main system vibrations and forcing it to oscillate periodically with very small oscillation
amplitudes. Figure 23 compares the time histories of both the main system and controller that
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is controlled either by the conventional PPF controller or by the APPF controller according to
Figures 20–22 when the excitation force f is swept from 0.01 to 0.45. The figure shows that
the APPF controller can eliminate the main system vibration amplitude for all the values of
the excitation forces, while the conventional PPF controller failed, as shown in Figure 23a.
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5. Conclusions

In this work, the positive position feedback (PPF) controller and the adaptive posi-
tive position feedback (APPF) controller are suggested to control the primary resonance
vibration of a nonlinear dynamical system. The multiple time scales perturbation method
is employed to obtain a second-order approximate solution for the controlled system math-
ematical model. The amplitude-phase modulating equations that govern the steady-state
vibration amplitudes of both the main system and controller (i.e., PPF and APPF) are
derived. The vibration suppression efficiency of the applied control algorithms is inves-
tigated via plotting the different response curves utilizing the excitation frequency and
the excitation force amplitude as the main bifurcation control parameters. Based on the
discussions given above, the following remarks can be concluded:

1. The conventional PPF controller can eliminate the primary resonance vibrations of
the considered system in the presence of 1:1 internal resonance.

2. Once the resonance conditions between the main system and the PPF controller are
lost, the controller adds excessive vibrational energy to the main system rather than
suppressing it.

3. At the large excitation force amplitudes, the main system may lose its stability to
respond with a quasiperiodic motion when the resonance condition between the main
system and the PPF controller is lost.

4. Regardless of the main system natural frequency, once the controller natural frequency
is properly tuned to be the same value as the excitation frequency (ω2 = Ω), the
controller can suppress the main system vibrations when subjected to any excitation
force amplitude and/or any excitation frequency.

5. According to point (4) of the conclusion, the adaptive positive position feedback
controller is the best control strategy that can eliminate the main system vibrations
regardless of the excitation frequency and excitation force amplitude.
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Abbreviations

x,
.
x,

..
x Dimensionless displacement, velocity, and acceleration of the main system.

y,
.
y,

..
y Dimensionless displacement, velocity, and acceleration of the controller.

µ1, µ2 Dimensionless linear damping coefficients of the main system and controller, respectively.
ω1, ω2 Dimensionless linear natural frequencies of the main system and controller, respectively.
α Dimensionless cubic nonlinear stiffness coefficient.
f Dimensionless excitation force amplitude.
Ω Excitation force angular frequency.
γ Dimensionless control signal gain.
λ Dimensionless feedback signal gain.
σ1 The detuning parameter σ1 = Ω−ω1
a1, a2 Dimensionless steady-state oscillation amplitudes of the main system and

controller, respectively.
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