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Abstract: Chiral symmetry, and its dynamical breaking, has become a cornerstone in the description
of the hadron’s phenomenology at low energy. The present manuscript gives a historical survey on
how the quark model of hadrons has been implemented along the last decades trying to incorpo-
rate, among other important non-perturbative features of quantum chromodynamics (QCD), the
dynamical chiral symmetry breaking mechanism. This effort has delivered different models such as
the chiral bag model, the cloudy bag model, the chiral quark model or the chiral constituent quark
model. Our main aim herein is to provide a brief introduction of the Special Issue “Advances in
Chiral Quark Models” in Symmetry and contribute to the clarification of the differences among the
above-mentioned models that include the adjective chiral in their nomenclature.

Keywords: quantum chromodynamics; hadron physics; quark models

Shortly after the notion of quarks was introduced by Gell-Man and Zweig [1,2] several
models were developed to describe the properties of hadrons in terms of these new degrees
of freedom. Greenberg [3] was the first who tried to understand the structure of baryons
in a kind of potential model. To avoid evident issues with the Pauli principle, Greenberg
introduced the hypothesis that quarks are parafermions of order three, which later became
the SU(3)C color degree of freedom [4,5].

The strong interaction was better understood after the introduction of quantum
chromodynamics (QCD), which is a Poincaré-invariant quantum non-Abelian gauge field
theory based on quark and gluon degrees of freedom [6–8]. That progress was mostly due
to the fact that quarks, and gluons, interact weakly at high energies (asymptotic freedom);
thus, the hadronic processes can be described perturbatively. At the QCD’s low-energy
regime, where hadrons live, the quark and gluon interactions become strong and lead to
many non-perturbative phenomena, such as dynamical chiral symmetry breaking and
confinement, which make the description of hadron properties in terms of quarks and
gluons degrees of freedom very complicated. This is the reason why effective models of
QCD at low energies were developed over time that incorporated as many QCD properties
as their formulation allowed.

De Rújula et al. [9] and Eichten et al. [10] were the first to develop potential quark
models, which imitated two of the most important properties of QCD, namely asymptotic
freedom and confinement. Both potential quark models incorporate an effective quark
mass with a value around one-third of the nucleon mass. This was already suggested
by Greenberg [3] to explain the nucleon magnetic moments, but it was also discussed by
Politzer [11] within the framework of a field theoretical description of inclusive lepton-
hadron scattering. The idea of the potential quark model was then further developed in its
non-relativistic and semirelativistic versions by Isgur and Karl in Refs. [12–14].

At the same time, researches from the Massachusetts Institute of Technology (MIT)
pursued a completely different approach, more quantum field theory based, to the same
problem: the bag model [15]. Within this formalism, massless quarks are confined in a
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spherical region with radius R and satisfy the Dirac equation inside it. However, the sharp
bag’s boundary alone is not enough to confine the quarks because the quark energy
decreases as the cavity radius increases. To introduce confinement, it is necessary to
include a repulsive energy density, B, which stabilizes the bag. Then, the model has two
adjustable parameters R and B:

L =
(
ψ̄i ∂µγµψ− B

)
ϑV −

1
2

ψ̄ψδV , (1)

where ϑV is the step function which is equal to one inside the bag and zero otherwise,
and it ensures quark confinement. The surface delta function δV = δ(r− R) guarantees
that the vector current vanishes at the bag surface, and thus no baryon number leakage
exists from inside to outside the bag.

Both branches of modeling triggered a huge number of research works, not only
describing the hadron spectra [14,16,17] but also the short range of the nucleon–nucleon
interaction [18–21]. Reviews of these two kinds of models can be found in, for instance,
References [22,23]. Their theoretical output is still used by experimentalists as a template
to assign quantum numbers to the new discovered resonances, considering as exotic states
those that do not fit in the model predictions. Moreover, such exotic phenomena are
always under discussion by the scientific community and lead to new quark model based
development [24]. However, it is important to note that despite the success of both the
potential quark model and the bag model, an important QCD’s property, chiral symmetry
and its dynamical breaking, was still missing in their original versions.

The QCD lagrangian for N f massless quarks posses a symmetry under U(N f )×U(N f )
independent rotations of the left- and right-handed quark fields. This symmetry group
factorizes according to SU(N f )L × SU(N f )R ×U(1)V ×U(1)A. The U(1)V is responsible
for the baryon number conservation, whereas the U(1)A cannot be realized in a quantum
theory, and it is known as the axial anomaly. The remaining SU(N f )L × SU(N f )R is the
chiral symmetry. If this symmetry was exact, all hadron states with same quantum numbers
but opposite parity would be degenerate. However, in nature the mass splittings between
the parity partners are big and difficult to explain due to the fact of having current quark
masses in the QCD Lagrangian. For example, the mass splitting between the ρ meson
and its chiral partner, the a1 meson, is about 300 MeV. In the baryon sector, the mass
splitting between the nucleon and its parity partner is even larger, namely about 600 MeV.
The conclusion that one can draw is that chiral symmetry is dynamically broken in QCD. It
is also important to notice herein that there are two generic consequences of the dynamical
chiral symmetry breaking: (i) the appearance of an octet of pseudo-Goldstone bosons,
and (ii) the acquisition by the valence quarks of a constituent (dynamical) mass.

The importance of the chiral symmetry, and its dynamical breaking pattern, was
already emphasized by Skyrme [25]. Preliminary investigations on how to incorporate
them were performed by, for instance, Gross and Neveu [26] using two-dimensional
model field theories, involving massless fermions with quartic interactions, and they were
expanded in powers of 1/N, where N is the number of components of the fermion field
(see also [27,28], and references therein, for recent developments on this formalism). At the
same time, the bag model was developed in Reference [29] to deal with the dynamical
breaking of chiral symmetry, and its related features. In such an article the authors point
out that the conservation of axial current, a consequence of chiral symmetry, is violated
on the surface of the bag because the quarks change their momentum but not the spin on
the surface. To solve this problem, Chodos and Thorn [29] take into account outside the
bag a SU(2)× SU(2) multiplet, {σ, π}, that is coupled to the degrees of quarks on the
bag surface:

L =
(
ψ̄i ∂µγµψ− B

)
ϑV −

λ

2
ψ̄(σ + iτ · πγ5)ψδV −

1
2
(∂µσ∂µσ∂µπ∂µπ) , (2)
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where λ is a Lagrange multiplier. These authors attempted to find exact classical solutions
of the pion field; the only feasible way was a highly idealized baryon called the hedgehog
ansatz for spherically symmetric systems, which reduces the field equations to single scalar
equations. Within this educated guess, an S-wave spinor with mixed spin-isospin structure
describes a quark, while the pion field at a point r is proportional to the radial unit vector.
Therefore, the pion fields point radially outwards, like the spines of an afraid hedgehog,
whose configuration provides the lowest-energy, self-consistent solution of the equation
of motion.

In the bag interior the axial vector current is carried by the massless quarks, whereas
outside the bag the pion field is introduced as to ensure the continuity of this current.
The existence of the pion field is important not only to guarantee the axial vector current
conservation but also in the possible description of nuclear forces from these models.

In the original description of the MIT chiral bag, the effect of the pion field is assumed
to be small and then treated perturbatively. However, when nonlinear effects are summed
up to all orders in the pion field the pressure exerted by the pion cloud squeezes the
chiral bag to a little bag [30], which has a radius considerably smaller than the prediction
of the MIT bag. Moreover, one of the major triumphs of the MIT bag model was the
correct prediction of the axial charge of the nucleon ga. Once the pion field was introduced,
additional contributions to ga destroy the former agreement, with the situation becoming
worse as the bag radius decreases.

The question of the size of a baryon, in particular the nucleon, is relevant for several
reasons. On one hand, the average distance between nucleons in nuclear matter is 1.8 fm,
and thus a bag radius of about 1.1 fm is large enough to consider overlap between bags in
the nuclear medium, and that explicit quark degrees of freedom must be relevant for the
description of nuclear phenomena. On the other hand, considering the nucleons as very
small, almost point-like, objects leads essentially to the conventional nuclear system.

To avoid the issues found with the implementation of the pion field outside the bag
and its coupling with the quark field on the surface, Thomas, Theberg and Miller developed
the so-called cloudy bag model. These authors argue that there is no reason to exclude pions
from the bag’s interior, and that such a simplification is not only unreasonable but may be
wrong. They succeed to stabilize the nucleon bag without messing up the agreement with
the experimental data. A complete and clear review of the cloudy bag model can be found
in Thomas [31] (see also Miller [32]).

Despite their success in describing the hadron spectra, the static bag models are
necessarily limited in scope because of their non-covariant formulation of the bag surface.
Moreover, the static bag surface hinders the treatment of the center-of-mass, which affects
the description of the hadron observables. To improve it, several Lagrangian models with
explicit quark degrees of freedom appeared. Examples of them are the Friedberg–Lee
model [33], the Nambu–Jona-Lasinio model [34] and the chiral quark models proposed by
Diakonov and Petrov [35], as well as by Manohar and Georgi [36]. The motivation for all
these models resides in the idea that QCD produces very strong forces between quarks and
antiquarks at low energy, and this results in quark–antiquark condensates in the vacuum.

A novel way to confine quarks, which avoids the difficulties found with the static bag
surface, is provided by the soliton bag model (the concept of soliton will be used in a broad
sense, referring to any static or non-dispersive solution of a set of non-linear equations).
The idea behind this model is to look for non-topological soliton solutions of a Dirac
Hamiltonian based on the Lagrangian proposed by Friedberg and Lee, which includes
a scalar field χ. This field is a phenomenological representation of the self-interacting
gluon field. The energy of the system U(χ) as a function of χ has two minima. The value
of the χ-field coincides with the vacuum one in the absence of quarks; when quarks are
introduced, the (expectation) value of the χ-field moves to the second minimum. In the
last situation quarks become confined and, therefore, confinement is given dynamically by
the scalar field rather than imposed as a boundary condition at the bag surface.
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Goldflam and Wilets developed from the ideas above the soliton bag model [37].
Although the model does not incorporate chiral dynamics, the proposed quark confining
mechanism is more suitable to include such a property of QCD. However, their model had
no mechanism to split the N and ∆ masses, and it also had difficulties to reproduce the
nucleon’s magnetic moment and axial coupling.

Attempts to include chirality, and its dynamical breaking, in the soliton bag model were
done by Birse and Banerjee [38], Kahana and Ripka [39], and Seki, Ohta and Shigemi [40,41].
The last authors developed a chiral soliton bag model based on the soliton solution of a
Lagrangian, which combines the soliton bag model’s idea and the old non-linear σ model
from Gell-Mann–Levy [42]:

L = ψ̄i /∂ψ +
1
2
(∂µχ)2 −U(χ)− ψ̄χ(σ + iπ · τγ5)ψ +

1
2
[(∂µσ)2 + (∂µπ)2] , (3)

with the condition
σ2 + π2 = f 2

π . (4)

The equations obtained from the Lagrangian above have two soliton solutions with
winding numbers Z = 0 and Z = 1. The solution with Z = 0 coincides basically with the
solution of the cloudy bag model, while the Z = 1 turns out to be a chiral soliton solution.

Both Birse–Banerjee [38] and Kahana–Ripka [39] solve the mean field equations for
a hedgehog baryon and calculate the observables corresponding to N and ∆ baryons.
In contrast with the Seki–Ohta–Shigemi’s work, the Birse–Banerjee and Kahana–Ripka
Lagrangians do not include a χ-field, and thus the chiral quartet must be responsible
of both chiral invariance and quark confinement, although there was no evidence that
confinement and chiral symmetry breaking have the same origin.

Continuing with the idea of describing baryons as solitons of a certain Lagrangian, one
of the most successful models was the one proposed by Nambu and Jona-Lasinio [34,43].
The NJL model is a quark model with a chiral invariant quartic quark interaction:

L = ψ̄(i /∂−m0)ψ +
G
2
[(ψ̄ψ)2 + (ψ̄iγ5τψ)2] , (5)

where ψ is the quark field and m0 the average u- and d-quark current mass. The local
four-fermion interaction with a dimension full coupling constant is not renormalizable and
lacks confinement. The non-renormarizability can be avoided with a suitable ultraviolet
cut-off. Usually, the model is semi-bosonized by introducing two auxiliary fields, σ and
π [44]:

L = ψ̄(i /∂− σ− iπ · τγ5)ψ +
1

2G
[(σ)2 + (π)2] +

m0

G
σ . (6)

The mean field only exists if the classical meson fields are subject to the condition

σ2 + π2 = M2 , (7)

where M is the constituent quark mass, generated by dynamical chiral symmetry breaking.
Imposing this condition, the Nambu–Jona-Lasinio’s Lagrangian reduces to an effective one
(note here that from now on we keep only the contributions bilinear in the fermion):

L = ψ̄(i /∂−m0 −MUγ5)ψ , (8)

where Uγ5 = eiλaφaγ5/ fπ is the matrix of Goldstone-boson fields.
At this level, the NJL Lagrangian describes a theory of quarks which interact between

themselves through boson fields. One can, however, integrate out the quark degrees of
freedom (bosonization) and arrives to an effective meson theory in which baryons appear
as soliton solutions of the meson fields. This model is usually referred as either non-linear
NJL model or chiral quark soliton model (this last notation when applied to baryons).



Symmetry 2021, 13, 252 5 of 9

The simplicity of the NJL model allows to describe a wide variety of baryon observ-
ables such as mass splittings, magnetic moments, mass and electromagnetic radii, as well
as Dirac and Pauli, axial, induced-pseudoscalar and pion-nucleon form factors. A thorough
review of the achievements made by the different versions of the NJL model can be found
in References [45–47] and references therein.

Among various attempts to derive the NJL model as some low-energy limit of QCD,
we shall refer to the quark-soliton model based on the instanton liquid model developed
by Diakonov and Petrov [35].

Instantons are gluon-field fluctuations of a non-perturbative nature, and Shuryak [48]
demonstrated that the QCD vacuum can be described as an instanton medium relatively
dilute, with average distances R̄ ≈ (200 MeV)−1 and average size ρ̄ ≈ (600 MeV)−1.
Using these ideas, Diakonov and Petrov [35] studied the instanton vacuum by means
of a variational methods using, as a trial ansatz, a superposition of instantons and anti-
instantons. They show that the picture of QCD vacuum as a dilute medium of instantons
nicely explains the dynamical braking of chiral symmetry. Moreover, the quark propagator
in the instanton vacuum acquires the form of a massive propagator

S(p) =
/p + iM(p2)

p2 + M2(p2)
, (9)

where M(p) is a momentum-dependent mass, usually called dynamical or constituent
quark mass. The momentum-dependent point-wise behavior of M(p) is the key to under-
stand why the notion of constituent quark has worked so well over the last 30 years in
hadron physics [49]. Once the dynamical or constituent quark mass is introduced, a simple
Lagrangian invariant under chiral transformation can be formulated as

L = ψ̄(i /∂−M(p)Uγ5)ψ , (10)

where Uγ5 = exp(iπaλaγ5/ fπ) is again the matrix of Goldstone boson fields.
The effective Lagrangian induced by instantons phenomenology is not local, i.e.,

the constituent quark mass depends on the quark’s momentum in contrast to the NJL
model. However, one can assume that the dynamical quark mass M(p) is a constant at
momenta p � 1/ρ̄, but it vanishes when the momenta p � 1/ρ̄. Interesting too, such
momentum-dependent quark mass makes the instanton liquid model be ultraviolet finite.

As in the NJL model, the chiral Lagrangian introduced by Diakonov and Petrov is
bilinear in the quark fields. They can be integrated out to obtain an effective meson action.
The soliton solution of this action connects the idea of having pseudo massive particles
as quarks and the nucleon bound state made of them, giving place to the chiral quark
soliton model of the nucleon. Within this approach, excited baryons appear as excitations
of the static classical solution of the nucleon when quantizing the slow rotations of the
soliton field [50,51]. In fact, taking the hedgehog ansatz, the baryon octet and decuplet
are obtained.

Besides the chiral quark-soliton model, others can be derived from the Diakonov
Lagrangian. An example is the chiral constituent quark model [52,53] (see also [54]), which
can be derived from the Diakonov Hamiltonian by expanding the Goldstone-boson fields as

Uγ5 = 1 +
i
fπ

γ5λaπa − 1
2 f 2

π
πaπa + . . . . (11)

Moreover, although an expression of the dynamical constituent quark mass can be obtained
from Diakonov’s effective theory [49], it can be parametrized as

M(p) = mqF(p2) , with F(p2) =

[
Λ2

Λ2 + p2

]1/2

, (12)

where the parameter Λ is related with the scale at which the chiral symmetry is broken.
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Using the above expression for the dynamical mass, the first term in Equation (11)
generates the constituent quark mass, the second gives rise to a one pion exchange between
quarks with a form factor F(p2) =

[
Λ2

Λ2+p2

]
, and the main contribution of the third term

comes from the two-pion exchange interaction, which can be simulated by a σ-potential
term between quarks.

With these definitions one arrives at an effective Lagrangian that is invariant under chi-
ral transformations and, at second order in the pion field, contains a constituent quark mass
as well as the one-pion and one-sigma exchange interactions modulated by the form factor
F(p2). The non-relativistic reduction in this Lagrangian constitutes the basis of the chiral
quark constituent model [52,53], where hadrons are described as clusters of constituent
quarks (antiquaks) interacting through, at least, one-pion and one-sigma potentials.

In the heavy quark sector, chiral symmetry is explicitly broken and the Goldstone-
boson exchanges are not active. Therefore, one cannot reproduce the hyperfine splitting for
heavy mesons. Then, the quark–(anti-)quark interaction is complemented with a one-gluon
exchange potential generated from the vertex Lagrangian

Lqqg = i
√

4παs ψ̄γµGµ
c λcψ, (13)

where λc are the SU(3) color matrices, Gµ
c is the gluon field and αs is the strong coupling

constant. The scale dependence of αs can be found in, for instance, Reference [53]; it allows
a consistent description of light, strange and heavy mesons.

The chiral constituent quark model lacks a quark confining mechanism, which must
be implemented by means of an additional confinement potential. It is well known that
multi-gluon exchanges produce an attractive linearly rising potential proportional to the
distance between infinite-heavy quarks [55,56]. However, sea quarks are also important
ingredients of the strong interaction dynamics that contribute to the screening of the rising
potential at low momenta and constitute the basis eventually to the breaking of the quark–
antiquark binding string [57]. The chiral quark model of Fernández et al. [52,53] tries to
mimic this behavior using the following expression:

VCON(~r ) =
[
−ac(1− e−µcr) + ∆

]
(~λc

q ·~λc
q̄) , (14)

where ac and µc are model parameters. At short distances this potential presents a linear
behavior with an effective confinement strength, σ = −ac µc (~λc

i ·~λc
j ), while it becomes

constant at large distances.
Obviously, these models do not constitute a relativistic field-theoretical treatment of

hadrons. However, they keep most of the non-perturbative characteristics of QCD and have
enough flexibility to describe a large amount of hadron [53,58–66], hadron–hadron [52,67–70]
and multiquark [71–76] phenomenology.

It is fair to mention herein that similar approaches have been proposed by other
authors like Manohar and Georgi [77] who assume that the scale of the chiral symmetry
breaking Λχ is greater than the confinement scale ΛQCD. Then, an effective Lagrangian
including quarks, gluons and Goldstone boson fields is characteristic of the energy region
between Λχ and ΛQCD.

Summarizing, the aim of this manuscript has been to provide, on one side, an intro-
duction to the Special Issue “Advances in Chiral Quark Models" in Symmetry and, on the
other side, a brief historical development of the chiral quark model with the main pur-
pose of clarifying the differences between those models that include the word chiral in
their names. We have described how chiral symmetry can be implemented in the bag
model (chiral bag model, little bag model, cloudy bag model) and how the requirement
of more flexibility, avoiding the static bag surfaces, gives place to models based on phe-
nomenological Lagrangians such as the Friedberg–Lee model (soliton bag model) and the
Nambu–Jona-Lasinio model (chiral quark soliton model). As an improvement of the NJL
Hamiltonian, we have introduced the ideas developed by Diakonov based on the instanton



Symmetry 2021, 13, 252 7 of 9

liquid mode,l which led to soliton type-solutions of baryons and then becoming a variant
of the chiral quark soliton model; but it also constitutes a foundation of the constituent
quark model. A non-relativistic reduction of Diakonov’s Lagrangian gives rise to a chiral
constituent quark model, which includes gluons and Goldstone–boson exchanges between
constituent valence quarks. Because of its flexibility, the model has been very popular in
describing a large amount of hadron phenomena like meson and baryon spectra, their
decays and reactions, exotic matter as the so-called XYZ states recently discovered and
even meson–meson, meson–baryon and baryon–baryon interactions.
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