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Abstract: Wave diffusion in the composite soil layer with the lined tunnel structure is often en-
countered in the field of seismic engineering. The wave function expansion method is an effective
method for solving the wave diffusion problem. In this paper, the wave function expansion method
is used to present a semi-analytical solution to the shear horizontal (SH) wave scattering problem of
a circular lined tunnel under the covering soil layer. Considering the existence of the covering soil
layer, the great arc assumption (that is, the curved boundary instead of the straight-line boundary) is
used to construct the wavefield in the composite soil layer. Based on the wave field and boundary
conditions, an infinite linear equation system is established by adding the application of complex
variable functions. The finite term is intercepted and solved, and the accuracy of the solution is
analyzed. Although truncation is inevitable, due to the Bessel function has better convergence, a
smaller truncation coefficient can achieve mechanical accuracy. Based on numerical examples, the
influence of SH wave incident frequency, soil parameters, and lining thickness on the dynamic stress
concentration factor of lining is analyzed. Compared with the SH wave scattering problem by lining
in a single medium half-space, due to the existence of the cover layer and the influence of its stiffness,
the dynamic stress of the lining can be increased or inhibited. In addition, the lining thickness has
obvious different effects on the dynamic stress concentration coefficient of the inner and outer walls
of different materials.

Keywords: dynamic response; circular lined tunnel; covering layer; SH wave; great arc assumption

1. Introduction

In recent decades, while the use of underground space by humans has increased,
underground tunnels have been used extensively in infrastructure. There are many types
of urban underground tunnels, including water supply, drainage, gas, heat, electricity,
communications, radio and television, industry, etc. The seismic waves will be dispersed
as they spread to the ground and the outer and inner surface of the tunnel. Under the
superposition of incident waves and these scattered waves, dynamic stress concentration
will occur around the tunnel, which can cause damage to the tunnel structure [1]. However,
the traditional concept is that underground structures are safe during earthquakes. It
was not until the Kobe earthquake in Japan and the Wenchuan earthquake in China,
both of which caused severe damage to underground structures, that concerns were
raised about the seismic resistance of underground structures [2,3]. Hence, the need to
study the seismic resistance of tunnel engineering. In order to understand and reveal the
influence of seismic waves on underground structures, researchers have carried out a lot of
research work on seismic wave scattering using numerical methods [4–6] and analytical
methods [7–9]. Although numerical methods are more suitable for solving complex and
realistic configurations, analytical solutions have inherent meaning, not only revealing
the physical process of wave scattering but also serving as a benchmark for calibrating
numerical results. Since Baron used the integral transformation method and the wave
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function expansion method to give the analytical solution of the cylindrical cavity to
the compression wave pulse scattering problem, the wave function expansion method
has become the main analysis method to study the wave scattering problem [10]. So far,
whether in the field of traditional seismic research or in the field of smart materials, the
wave function expansion method has played an important role [11–15].

The idea of using the great arc assumption method to deal with the elastic wave scatter-
ing problem was first mentioned in the article of Sheidl et al. They suggested using a circle
with a large radius to approximate the straight boundary of the half-space near the obstacle
so that the scattered wave at the straight boundary can be converted into the scattered
wave at the large circle boundary, which can then be solved by mathematical formulas [16].
Lee et al. improved this method by replacing the non-convergent ordinary series with the
Fourier-Bessel series and obtained satisfactory results [7]. Then, the researchers studied
a series of scattering problems using the wave function expansion method based on the
large arc assumption method [17–19]. On this basis, Jiang studied the scattering of plane
waves with a lined cylindrical cavity in a poroelastic half-plane by adding Biot’s poroelastic
theory [20]. The successful application of the complex variable function theory to the
problems related to elastic wave scattering and dynamic stress concentration in any hole in
the whole space makes the great arc assumption method easier to use [20–22].

Many strata in nature have undergone alternate deposition, magmatic intrusion, and
multiple tectonic activities during the long geological age, resulting in alternate layers of
soft and stiff soil layers. This is different from when the earth is assumed to be a whole
elastic half-space, when considering the influence of the composite soil layer, the boundary
conditions become more complex. Few pieces of literature show that scholars from various
countries have given ideal methods to solve this kind of problem and discussed the scat-
tering problem of tunnel lining in composite soil. However, the wave function expansion
method combined with the great arc assumption method is an ideal analytical method to
solve the problem of elastic wave scattering by tunnels in composite soil layers. In our
previous research work, the two soil layers with large differences in rock and soil mechan-
ics and engineering geology were simplified into the covering soil layer and the lower
soil layer. The dynamic response of a circular lined tunnel [23] and a partially debonded
circular lined tunnel [24] in the covering soil layer under the action of SH waves are stud-
ied. Accurate results are obtained, which can provide theoretical reference for the seismic
design of tunnels. Our previous studies have considered tunnels within the covering soil
layer, while tunnels in actual projects are not only within the covering soil layer but also in
the soil layer below the covering soil layer. Therefore, this paper further investigates the
dynamic stress concentration in circular tunnels under SH-wave interference in the soil
below the covering soil layer.

2. Model and Analysis

The two-dimensional model to be studied is shown in Figure 1. It contains two kinds
of soil layers, and the lower soil layer contains a circular lining tunnel. The circular lined
tunnel is disturbed by the steady-state SH wave with an incident angle of α0. According
to the partition method, we divide the model into three domains. The lower soil layer is
Domain I, the covering layer is Domain II, and the lined tunnel is Domain III. A Cartesian
coordinate system, X1O1Y1, is established at the center of the large arc; a Cartesian coordi-
nate system, X2O2Y2, is established at the center of the lining. The hypothesis parameters
are as follows:

The density, the shear velocity, and the shear modulus of the lower soil layer: ρ1, c1, µ1.
The density, the shear velocity, and the shear modulus of the covering layer: ρ2, c2, µ2.
The density, the shear velocity, and the shear modulus of the lined tunnel: ρ3, c3, µ3.
The inner radius and outer radius of the lined tunnel: a, b.
The radius of the upper and lower boundary of the covering layer: RU , RD.
The thickness of the covering layer: h.
The distance from the center of the circular lining to the lower boundary: d.
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The upper boundary of the covering layer is marked as TU , the lower boundary is TD.
Using the large-arc assumption method, the upper and lower boundaries of the covering
layer are approximated using concentric arcs, each with a large radius; the upper boundary
becomes TU , and the lower boundary becomes TD. The inner boundary and outer boundary
of the lined tunnel are T2 and T1, respectively. Introducing complex variables as follows
zS = XS + iYS and zS = XS − iYS, where S = 1, 2. So, the complex coordinates (z1, z1) and
(z2, z2) correspond to the Cartesian coordinates X1O1Y1 and X2O2Y2.
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Figure 1. The circular lined tunnel under the covering layer disturbed by shear horizontal (SH) wave.

The wave potential function of incident plane SH wave can be expressed by Fourier-
Bessel series under coordinate (z2, z2) as

W(i)
(z2,z2)

= W0

n=+∞

∑
n=−∞

in Jn(k1|z2|)einα0(z2/|z2|)n, (1)

where W0 is the amplitude of the incident SH waves and Jn(·) is the Bessel functions of
order n. It is worth noting that the point in the parentheses of the Bessel function represents
the argument. Since the argument here is variable, a point is used instead. In addition, k in
the argument is the wavenumber with k = ω/c, shear wave velocity c =

√
µ/ρ, ω is the

circular frequency of the displacement.
For the circular tunnel lining, scattered waves propagating outward will be gener-

ated at the interface between the tunnel lining and Domain I. They can be expressed as
series forms:

W(S1)
(z2,z2)

=
n=+∞

∑
n=−∞

AnH(1)
n (k1|z2|)(z2/|z2|)n, (2)

where An is the unknown coefficient to be determined and H(1)
n (·) is the Hankel function

of order n of the first kind. Moreover, the standing wave is generated inside the lining,
which is composed of W(ST2) which scatters outward from the inner boundary and W(ST1)

which scatters inward from the outer boundary. The standing wave can be expressed as
series forms:

W(ST)
(z2,z2)

= W(ST1)
(z2,z2)

+ W(ST2)
(z2,z2)

=
n=+∞

∑
n=−∞

Bn H(2)
n (k3|z2|)(z2/|z2|)n +

n=+∞

∑
n=−∞

Cn H(1)
n (k3|z2|)(z2/|z2|)n (3)

where Bn and Cn are the unknown coefficients of the standing wave to be determined.
For the covering layer, scattered waves will be generated at the boundary TD and TU .

They are W(S2) which propagates downward from boundary TD, W(S3) which propagates
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upward from boundary TD, and W(S4) which propagates downward from boundary
TU .The series form is as follows

W(S2)
(z1,z1)

=
n=+∞

∑
n=−∞

Dn H(2)
n (k1|z1|)(z1/|z1|)n, (4)

W(S3)
(z1,z1)

=
n=+∞

∑
n=−∞

EnH(1)
n (k2|z1|)(z1/|z1|)n, (5)

W(S4)
(z1,z1)

=
n=+∞

∑
n=−∞

Fn H(2)
n (k2|z1|)(z1/|z1|)n, (6)

So far, the above wave fields need to meet the following boundary conditions. They
are the continuous displacement on TD, the continuous radial stress on TD, the traction
free on TU , the continuous displacement on T1, the continuous radial stress on T1 and
the traction free on T2. Converting the expression of the wave field to the corresponding
complex coordinates is the premise for calculating the unknown coefficients. According to
the conversion relation z2 = z1− i(RD − d), we can get the following wave field expression.

W(i)
(z2,z2)

= W0

n=+∞

∑
n=−∞

in Jn(k1|z2 − i(RD − d)|)einα0

[
z1 − i(RD − d)
|z1 − i(RD − d)|

]n
, (7)

W(S1)
(z1,z1)

=
n=+∞

∑
n=−∞

An H(1)
n [k1|z1 − i(RD − d)|]

[
z1 − i(RD − d)
|z1 − i(RD − d)|

]n
, (8)

W(S2)
(z2,z2)

=
n=+∞

∑
n=−∞

Dn H(2)
n (k1|z2 + i(RD − d)|)

(
z2 + i(RD − d)
|z2 + i(RD − d)|

)n
, (9)

According to the boundary conditions, we can get an infinite linear equation system
with unknown coefficients An, Bn, Cn, Dn, En and Fn.

W(i)
(z1,z1)

+ W(S1)
(z1,z1)

+ W(S2)
(z1,z1)

= W(S3)
(z1,z1)

+ W(S4)
(z1,z1)

(|z1| = RD)

τ
(i)
zρ,(z1,z1)

+ τ
(S1)
zρ,(z1,z1)

+ τ
(S2)
zρ,(z1,z1)

= τ
(S3)
zρ,(z1,z1)

+ τ
(S4)
zρ,(z1,z1)

(|z1| = RD)

τ
(S3)
zρ,(z1,z1)

+ τ
(S4)
zρ,(z1,z1)

= 0 (|z1| = RU)

W(i)
(z2,z2)

+ W(S1)
(z2,z2)

+ W(S2)
(z2,z2)

= W(ST1)
(z2,z2)

+ W(ST2)
(z2,z2)

(|z2| = b)

τ
(i)
zρ,(z2,z2)

+ τ
(S1)
zρ,(z2,z2)

+ τ
(S2)
zρ,(z2,z2)

= τ
(ST1)
zρ,(z2,z2)

+ τ
(ST2)
zρ,(z2,z2)

(|z2| = b)

τ
(ST1)
zρ,(z2,z2)

+ τ
(ST2)
zρ,(z2,z2)

= 0 (|z2| = a),

(10)

where the corresponding radial stress is of the following form,

τ
(i)
zρ,(z2,z2)

=
k1µ1

2

n=+∞

∑
n=−∞

ineinα0
[

Jn−1(k|z2|)− Jn+1(k|z2|)
]
(z2/|z2|)n,

τ
(i)
zρ,(z1,z1)

= k1µ1
2

n=+∞
∑

n=−∞
ineinα0

{
Jn−1[k|z1 − i(RD − d)|]

[
z1−i(RD−d)
|z1−i(RD−d)|

]n−1 z1
|z1|
−

Jn+1[k|z1 − i(RD − d))|]
[

z1−i(RD−d))
|z1−i(RD−d)|

]n+1 z1
|z1|

}

τ
(S1)
zρ,(z2,z2)

=
k1µ1

2

n=+∞

∑
n=−∞

An

[
H(1)

n−1(k1|z2|)− H(1)
n+1(k1|z2|)

]
(z2/|z2|)n,
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τ
(S1)
zρ,(z1,z1)

= k1µ1
2

n=+∞
∑

n=−∞
An

{
H(1)

n−1[k1|z1 − i(RD − d)|]
[

z1−i(RD−d)
|z1−i(RD−d)|

]n−1 z1
|z1|
−

H(1)
n+1[k1|z1 − i(RD − d)|]

[
z1−i(RD−d)
|z1−i(RD−d)|

]n+1 z1
|z1|

}

τ
(ST1)
zρ,(z2,z2)

=
k3µ3

2

n=+∞

∑
n=−∞

Bn

[
H(2)

n−1(k3|z2|)− H(2)
n+1(k3|z2|)

]
(z2/|z2|)n,

τ
(ST2)
zρ,(z2,z2)

=
k3µ3

2

n=+∞

∑
n=−∞

Cn

[
H(1)

n−1(k3|z2|)− H(1)
n+1(k3|z2|)

]
(z2/|z2|)n,

τ
(S2)
zρ,(z1,z1)

=
k1µ1

2

n=+∞

∑
n=−∞

Dn

[
H(2)

n−1(k1|z1|)− H(2)
n−1(k1|z1|)

]
(z1/|z1|)n,

τ
(S2)
zρ,(z2,z2)

= k1µ1
2

n=+∞
∑

n=−∞
Dn

{
H(2)

n−1[k1|z2 + i(RD − d)|]
[

z2+i(RD−d)
|z2+i(RD−d)|

]n−1 z2
|z2|
−

H(2)
n+1[k1|z2 + i(RD − d)|]

[
z2+i(RD−d)
|z2+i(RD−d)|

]n+1 z2
|z2|

}

τ
(S3)
zρ,(z1,z1)

=
k2µ2

2

n=+∞

∑
n=−∞

En

[
H(1)

n−1(k2|z1|)− H(1)
n+1(k2|z1|)

]
(z1/|z1|)n,

τ
(S4)
zρ,(z1,z1)

=
k2µ2

2

n=+∞

∑
n=−∞

Fn

[
H(2)

n−1(k2|z1|)− H(2)
n+1(k2|z1|)

]
(z1/|z1|)n,

The coefficient matrix of the system of equations (Equation 10) consists of 6 rows and
6n columns. Since n is infinite, the matrix does not reach full rank and thus the unknown
coefficients cannot be obtained. Multiply the two sides of the infinite algebraic equation
by exp(−imθ)(θ = θ1 under coordinate (z1, z1) and θ = θ2 under coordinate (z2, z2)) with
m = 0,±1,±2, . . . and integrate θ on the interval (−π, π). In this way, the coefficient
matrix is expanded into an infinite matrix with 6m rows and 6n columns. According to the
attenuation characteristics of scattered waves, n (m = n) is taken to a finite value under the
condition of guaranteed accuracy. At this point, the above equation is transformed into a
finite term linear equation. Furthermore, the unknown coefficients An, Bn, Cn, Dn, En and
Fn are obtained for the finite term linear equations.

3. Results and Discussion

The stresses at or near the boundary of the lining can be significantly phantom under
the disturbance of SH waves. For this kind of problem, the dynamic stress concentration
factor is usually used to reflect the degree of stress concentration. The dynamic stress
concentration around the lining can cause a brittle fracture or fatigue cracking, and un-
derstanding the dynamic stress distribution around the liner can be of great help to the
structural design. In reference [25], the dynamic stress concentration factor (DSCFσ∗θz) is
defined as the ratio of the hoop stress to the incident wave stress amplitude:

σ∗θz =
∣∣∣(τ

(ST1)
zϕ,(z2,z2)

+ τ
(ST2)
zϕ,(z2,z2)

)
/(ik3µ3W0)

∣∣∣
|z2|∈[a,b]

, (11)

where

τ
(ST1)
zϕ,(z2,z2)

=
ik3µ3

2

n=+∞

∑
n=−∞

Bn

[
H(2)

n−1(k3|z2|) + H(2)
n+1(k3|z2|)

]
(z2/|z2|)n,

τ
(ST2)
zϕ,(z2,z2)

=
ik3µ3

2

n=+∞

∑
n=−∞

Cn

[
H(1)

n−1(k3|z2|) + H(1)
n+1(k3|z2|)

]
(z2/|z2|)n,
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The numerical example investigates the dynamic stress concentration on the inner
and outer surfaces of a circular concrete lining when the SH wave is incident in the vertical
direction. Since the studied geometric model is symmetric in the y-axis direction, the
dynamic stress distribution diagram on the lining surface under the action of SH wave
vertical disturbance is also symmetric in the y-axis direction. To facilitate numerical
calculation and analysis, a dimensionless wave number k1a consisting of wavenumber and
lining inner wall radius is introduced. Define the ratio between parameters c∗ = c2/c1, c# =
c3/c1, ρ∗ = ρ2/ρ1, ρ# = ρ3/ρ1, k∗ = k2/k1, and k# = k3/k1. C30 concrete used materials are
applied to create the lining, with density ρ3= 2400 kg/m3 and shear velocity c3= 2240 m/s.
Domain I is sandstone of density ρ1= 2500 kg/m3 and shear velocity c1= 2400 m/s. So
ρ# ≈ 0.96 and k# ≈ 1.1. According to the different geological and mechanical parameters
of the covering layer, the following two different groups of parameters are assigned to
Domain II, respectively.

• A: (The covering layer is “softer”) Domain II is coal of density ρ2= 1500 kg/m3 and
shear velocity c2= 1000 m/s, then ρ∗ = 0.6, k∗ = 2.4.

• B: (The covering layer is “stiffer”) Domain II is dense limestone of density ρ2= 2900 kg/m3

and shear velocity c2= 3200 m/s, then ρ∗ = 1.2, k∗ = 0.75.

Set µ∗ = k∗ = ρ∗ = 1, then the parameters of the upper and lower soil layers are
the same, so there is no boundary TD. Accordingly, the problem studied in this paper is
reduced to the problem of scattering of SH waves by a circular lining in a single medium
half-space, which was solved in previous work by using the wave function expansion
method combined with the image method [9]. Figure 2 shows the DSCFs around the inner
surface of the circular lining for Rd = 100a, h = 0.5a, d = 1.5a, µ# = µ3/µ1 = 3.2, k# = 0.7
and b/a = 1.1 when k1a = 0.1 , 1.0, 2.0, respectively. Through careful comparison, the
results are basically consistent with the previous results.
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Figure 2. DSCFσ∗θz of the inner surface when degenerated into a circular lining in half-space.

The Bessel series has good convergence. Although the convergence slows down with
the increase of k1a, the very small truncation coefficient can meet the accuracy requirement.
The convergence of the numerical results can be substituted into the equation by the
coefficients found, and tested with the traction free conditions. Dimensionless residual
stress was introduced to describe the accuracy of series solutions. We define the residual
radial stress of the inner surface as follows:

τb
zρ =

∣∣∣(τ
(ST1)
zρ,(z2,z2)

+ τ
(ST2)
zρ,(z2,z2)

)
/(ik1µ1W0)

∣∣∣
|z2|=a

(12)

Figure 3 is the residual radial stress diagram of the inner boundary of the lining when
Figure 2 is obtained. It can be seen that the order of magnitude is around 10−4. This can
show that accuracy can be guaranteed in the numerical calculation process.
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Figure 3. The residual radial stress of the inner surface.

The size variables are the covering layer thickness h, the distance from the center of the
circular lining to the lower boundary d, and the outer radius of lining b. Let us first discuss
the influence of b under the assumption of h = 2a and d = 2a. Figures 4 and 5 respectively
show the variation of the DSCFσ∗θzmax of the outer boundary of the concrete lining in the
sandstone layer with the incident wavenumber k1a under the geological combination A
and B. The parameters ρ#= 0.96 and k#= 1.10 of the circular lining are the same, while
the parameters ρ∗ and k∗ of the two covering layers are different. The purpose of the first
analysis of this part is to find the frequency band where the concrete lining is most sensitive
to the dynamic response of the incident wave under the two geological combinations. On
the one hand, according to Figures 4 and 5, this provides “critical frequencies” for the
discussion of subsequent issues in this article. On the other hand, it can provide a theoretical
basis for how to reduce the impact of dynamic stress concentration in engineering design.
In Figure 4, the DSCFσ∗θzmax of the outer surface of the lining increases gradually along
with k1a in the geological combination A, reaches a peak when k1r ≈ 0.3, and then follows
a trend of decreasing vibration. The effect of the change in lining thickness on DSCFσ∗θzmax
is not very obvious when k1a = 0.1∼ 0.5. When k1a ≥ 0.5, increasing the thickness of the
lining is beneficial for reducing DSCFσ∗θzmax. Comparing Figures 4 and 5, we can find that
the DSCFσ∗θzmax of the lining outer surface in the geological combination B reaches peak at
k1a ≈ 0.5. When the SH wave is incident at a low frequency (k1a = 0.1∼ 1.1), increasing
the thickness of the lining will suppress the increase in the maximum dynamic stress. So,
it can be clearly seen that the difference from the half-space problem is the difference in
the stiffness of the cover layer, which will significantly affect the frequency band at which
the dynamic stress response of the lining is maximum. The stiffer covering layer has a
shielding effect on the influence of SH on the tunnel, and it can also be said that the softer
covering layer has an amplification effect on the dynamic stress concentration factor. Next,
take k1a= 0.1, 0.3, 1.2 in Figure 4 and k1a= 0.1, 0.5, 1.2 in Figure 5 as the “critical frequency”
to analyze the distribution of DSCFs around the inner and outer surface of the lining.
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Figure 5. Variation of the DSCFσ∗θzmax around outer surface with k1a for geological combination B.

Figure 6 illustrates the dynamic stress concentration around the surface of the concrete
lining in the sandstone layer when the geological combination A is taken (that is, when the
SH wave is incident perpendicularly from the sandstone layer to the coal layer). At this
time, the covering layer is relatively soft. It can be seen from figures that when k1a = 0.1,
the distribution of the dynamic stress concentration factor of the outer surface is elliptical,
DSCFσ∗θzmax appears at about 0◦ and 180◦. When the incident frequency k1a increases to
0.3, the increase in the DSCFσ∗θz of the outer surface is very substantial compared with
the case when k1a = 0.1. When k1a = 1.2, the overall value becomes smaller, but the
DSCFσ∗θz distribution shape of the outer surface changes considerably. It can be seen that
the lining under geological combination A is more sensitive to the dynamic response of
low-frequency incident waves. This may be caused by the resonance between the structure
and the site under low-frequency conditions. By comparing the distribution of DSCFσ∗θz
under different lining thickness conditions, it can be found that DSCFσ∗θz of the outer
surface decreases as the thickness of the lining increases under the incident waves of three
frequencies. Under the same incident frequency, it can be clearly observed that the value
of DSCFσ∗θz near the inner surface of the lining is mostly larger than that near the outer
surface. This indicates that in current geological combination conditions, it is necessary
to pay attention to the concentration of dynamic stresses on the inner surface. When
k1a = 0.1, 0.3, the increase in lining thickness has little effect on the DSCFσ∗θz of the inner
surface, while when k1a = 1.2, the DSCFσ∗θz of the inner surface can be slightly reduced
by increasing the thickness of the lining. Therefore, the existence of the covering layer
makes the distribution of DSCFσ∗θz in the inner and outer surfaces of the lining more
complicated than the problem in the half-space. It cannot be said in general that the thicker
the lining, the more beneficial it is to reduce DSCFσ∗θz. For linings of different thicknesses,
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it is necessary to take special measures in the engineering design to strengthen the weak
areas of the inner and outer surfaces.

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 14 
 

 

near the outer surface. This indicates that in current geological combination conditions, it 

is necessary to pay attention to the concentration of dynamic stresses on the inner surface. 

When 1k a=0.1 , 0.3
, the increase in lining thickness has little effect on the 

*
zDSCF   of 

the inner surface, while when 1 1.2k a 
, the 

*
zDSCF   of the inner surface can be slightly 

reduced by increasing the thickness of the lining. Therefore, the existence of the covering 

layer makes the distribution of 
*
zDSCF   in the inner and outer surfaces of the lining 

more complicated than the problem in the half-space. It cannot be said in general that the 

thicker the lining, the more beneficial it is to reduce 
*
zDSCF  . For linings of different 

thicknesses, it is necessary to take special measures in the engineering design to 

strengthen the weak areas of the inner and outer surfaces. 

 

Figure 6. of the surface with the geological combination A when 1 =0.1 0.3 1.2k a ， ，
. 

Figure 7 shows the dynamic stress concentration around the surface of the concrete 

lining in the sandstone layer under geological combination B. At this time, the SH wave 

is incident perpendicularly from the sandstone layer to the dense limestone layer. The 
*
zDSCF   around the outer surface decreases as the thickness of the lining increases un-

der the incident waves of three frequencies. Compared with Figure 6, it can be found that 

the dynamic stress distribution of tunnel under the condition of geological combination B 

is more complex when 1 =1.2k a
. It can be obtained from the figures that the same rule as 

in the case of geological combination A is that the overall value of 
*
zDSCF   in the inner 

surface of the lining is larger than that in the outer surface at mid- and low-frequency 

incidents. The increase in the thickness of the lining has little effect on the 
*
zDSCF   

around the inner surface. The difference is that when the incident frequency is higher, the 

Figure 6. DSCFσ∗θzof the surface with the geological combination A when k1a= 0.1, 0.3, 1.2.

Figure 7 shows the dynamic stress concentration around the surface of the concrete
lining in the sandstone layer under geological combination B. At this time, the SH wave
is incident perpendicularly from the sandstone layer to the dense limestone layer. The
DSCFσ∗θz around the outer surface decreases as the thickness of the lining increases under
the incident waves of three frequencies. Compared with Figure 6, it can be found that the
dynamic stress distribution of tunnel under the condition of geological combination B is
more complex when k1a= 1.2. It can be obtained from the figures that the same rule as
in the case of geological combination A is that the overall value of DSCFσ∗θz in the inner
surface of the lining is larger than that in the outer surface at mid- and low-frequency
incidents. The increase in the thickness of the lining has little effect on the DSCFσ∗θz
around the inner surface. The difference is that when the incident frequency is higher, the
increase in the thickness of the lining is more obvious for reducing the DSCFσ∗θz around
the inner surface.
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Figure 7. DSCFσ∗θz of the surface with the geological combination B when k1a= 0.1, 0.5, 1.2.

Then we discuss the influence of the distance from the center of the circular lining to
the lower boundary d in the case of the covering layer thickness h = a, 2a, 3a and b = 1.2a.
Figures 8 and 9 show the variation of the outer surface of the lining with d/a under the con-
dition of geological combination A and B, respectively. The “critical wavenumber” under
each geological combination is selected for analysis. It is obvious that DSCFσ∗θzmax changes
periodically with d/a. In addition, by comparing Figures 8 and 9, it is obvious that the
maximum value of DSCFσ∗θzmax under geological combination A is larger than that under
geological combination B. Under the geological combination A, DSCFσ∗θzmax decreases
slightly with the increase of h, while under the geological combination B, DSCFσ∗θzmax
increases slightly with the increase of h.
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4. Conclusions

The wave field in the composite soil layer is given in the form of a Fourier-Bessel
series using a wave function expansion method that incorporates a large arc assumption
method. The solution of the SH-wave scattering problem by circular lining in the soil
below the covering layer is calculated after truncating the infinite linear system of equa-
tions with guaranteed accuracy. The effect of dynamic stress concentration around the
circular concrete lining is analyzed by numerical calculations under two typical geological
combinations. The following conclusions are drawn:

• The parameters of the different soil layer mediums, the frequency of the incident
waves, and the lining thickness all affect the dynamic stress concentration factor of the
inner and outer surfaces of the lining. Therefore, engineering designs should consider
the influence of various factors in combination with different geological conditions.

• When the SH wave incidence is of a low frequency, the soft covering layer has a signif-
icant amplification effect on DSCFσ∗θzmax, while the stiff cover layer has a shielding
effect on the SH wave. When the SH wave incidence frequency is high, this effect is
not obvious. Compared with the SH wave scattering problem of lining in half-space,
the combination of the soil layer and lining medium parameters in the covering layer
is more complicated. The presence of a softer covering layer makes the dynamic
response of the lining most sensitive to frequencies less than the presence of a stiffer
covering layer.

• When the SH wave incidence frequency is low, increasing the thickness of the lining
is effective to reduce the dynamic stress concentration on the outer surface of the
lining, but it has little effect on the inner wall. Only when the SH wave incidence
frequency is higher, increasing the thickness is meaningful for reducing the dynamic
stress concentration of the inner surface. This effect should be considered in the project,
and different strengthening measures should be taken for the inner and outer surfaces.

• It is also worth noting that although only the SH-wave disturbance is considered in
this article, the large-circle hypothesis method is adopted, so based on this method,
the scattering of similar models under p-wave and SV-wave disturbances can be
further studied.
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